Shoot growth Dotaz Zobrazit nápovědu
In perennial plants, seasonal shifts provide cues that control adaptive growth patterns of the shoot apex. However, where these seasonal cues are sensed and communicated to the shoot apex remains unknown. We demonstrate that systemic signals from leaves play key roles in seasonal control of shoot growth in model tree hybrid aspen. Grafting experiments reveal that the tree ortholog of Arabidopsis flowering time regulator FLOWERING LOCUS T (FT) and the plant hormone gibberellic acid (GA) systemically convey seasonal cues to the shoot apex. GA (unlike FT) also acts locally in shoot apex, downstream of FT in seasonal growth control. At the shoot apex, antagonistic factors-LAP1, a target of FT and the FT antagonist TERMINAL FLOWER 1 (TFL1)-act locally to promote and suppress seasonal growth, respectively. These data reveal seasonal changes perceived in leaves that are communicated to the shoot apex by systemic signals that, in concert with locally acting components, control adaptive growth patterns.
- MeSH
- Arabidopsis fyziologie MeSH
- chiméra růst a vývoj MeSH
- fotoperioda MeSH
- fyziologie rostlin MeSH
- gibereliny metabolismus MeSH
- proteiny huseníčku metabolismus MeSH
- regulátory růstu rostlin metabolismus MeSH
- roční období MeSH
- signální transdukce fyziologie MeSH
- výhonky rostlin růst a vývoj MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The cytokinin response factors (CRFs) are a group of related AP2/ERF transcription factors that are transcriptionally induced by cytokinin. Here we explore the role of the CRFs in Arabidopsis thaliana growth and development by analyzing lines with decreased and increased CRF function. While single crf mutations have no appreciable phenotypes, disruption of multiple CRFs results in larger rosettes, delayed leaf senescence, a smaller root apical meristem (RAM), reduced primary and lateral root growth, and, in etiolated seedlings, shorter hypocotyls. In contrast, overexpression of CRFs generally results in the opposite phenotypes. The crf1,2,5,6 quadruple mutant is embryo lethal, indicating that CRF function is essential for embryo development. Disruption of the CRFs results in partially insensitivity to cytokinin in a root elongation assay and affects the basal expression of a significant number of cytokinin-regulated genes, including the type-A ARRs, although it does not impair the cytokinin induction of the type-A ARRs. Genes encoding homeobox transcription factors are mis-expressed in the crf1,3,5,6 mutant, including STIMPY/WOX9 that is required for root and shoot apical meristem maintenance roots and which has previously been linked to cytokinin. These results indicate that the CRF transcription factors play important roles in multiple aspects of plant growth and development, in part through a complex interaction with cytokinin signaling.
- MeSH
- Arabidopsis genetika růst a vývoj fyziologie MeSH
- cytokininy metabolismus MeSH
- exprese genu MeSH
- fenotyp MeSH
- homeodoménové proteiny genetika metabolismus MeSH
- kořeny rostlin genetika růst a vývoj fyziologie MeSH
- meristém genetika růst a vývoj fyziologie MeSH
- mutace MeSH
- proteiny huseníčku genetika metabolismus MeSH
- regulace genové exprese u rostlin MeSH
- regulátory růstu rostlin metabolismus MeSH
- semenáček genetika růst a vývoj fyziologie MeSH
- signální transdukce * MeSH
- transkripční faktory genetika metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
RAB GTPases are important directional regulators of intracellular vesicle transport. Membrane localization of RAB GTPases is mediated by C-terminal double geranylgeranylation. This post-translational modification is catalyzed by the alpha-beta-heterodimer catalytic core of RAB geranylgeranyl transferase (RAB-GGT), which cooperates with the RAB escort protein (REP) that presents a nascent RAB. Here, we show that RAB-geranylgeranylation activity is significantly reduced in two homozygous mutants of the major Arabidopsis beta-subunit of RAB-GGT (AtRGTB1), resulting in unprenylated RAB GTPases accumulation in the cytoplasm. Both endocytosis and exocytosis are downregulated in rgtb1 homozygotes defective in shoot growth and morphogenesis. Root gravitropism is normal in rgtb1 roots, but is significantly compromised in shoots. Mutants are defective in etiolation and show constitutive photomorphogenic phenotypes that cannot be rescued by brassinosteroid treatment, similarly to the det3 mutant that is also defective in the secretory pathway. Transcriptomic analysis revealed an upregulation of specific RAB GTPases in etiolated wild-type plants. Taken together, these data suggest that the downregulation of the secretory pathway is interpreted as a photomorphogenic signal in Arabidopsis.
- MeSH
- Arabidopsis genetika růst a vývoj metabolismus MeSH
- gravitropismus MeSH
- prenylace MeSH
- proteiny huseníčku genetika metabolismus MeSH
- rekombinantní fúzní proteiny genetika metabolismus MeSH
- transferasy genetika metabolismus MeSH
- výhonky rostlin genetika růst a vývoj MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Shoot branching is a primary contributor to plant architecture, evolving independently in flowering plant sporophytes and moss gametophytes. Mechanistic understanding of branching is largely limited to flowering plants such as Arabidopsis, which have a recent evolutionary origin. We show that in gametophytic shoots of Physcomitrella, lateral branches arise by re-specification of epidermal cells into branch initials. A simple model co-ordinating the activity of leafy shoot tips can account for branching patterns, and three known and ancient hormonal regulators of sporophytic branching interact to generate the branching pattern- auxin, cytokinin and strigolactone. The mode of auxin transport required in branch patterning is a key divergence point from known sporophytic pathways. Although PIN-mediated basipetal auxin transport regulates branching patterns in flowering plants, this is not so in Physcomitrella, where bi-directional transport is required to generate realistic branching patterns. Experiments with callose synthesis inhibitors suggest plasmodesmal connectivity as a potential mechanism for transport.
- MeSH
- biologické modely MeSH
- biologický transport účinky léků MeSH
- cytokininy biosyntéza MeSH
- epidermis rostlin cytologie růst a vývoj MeSH
- geneticky modifikované rostliny MeSH
- kyseliny indoloctové metabolismus farmakologie MeSH
- laktony farmakologie MeSH
- mechy účinky léků růst a vývoj MeSH
- morfogeneze účinky léků MeSH
- mutace genetika MeSH
- regulace genové exprese u rostlin účinky léků MeSH
- regulátory růstu rostlin farmakologie MeSH
- rostlinné proteiny metabolismus MeSH
- rozvržení tělního plánu účinky léků MeSH
- výhonky rostlin účinky léků růst a vývoj MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Plants adjust their growth according to gravity. Gravitropism involves gravity perception, signal transduction, and asymmetric growth response, with organ bending as a consequence [1]. Asymmetric growth results from the asymmetric distribution of the plant-specific signaling molecule auxin [2] that is generated by lateral transport, mediated in the hypocotyl predominantly by the auxin transporter PIN-FORMED3 (PIN3) [3-5]. Gravity stimulation polarizes PIN3 to the bottom sides of endodermal cells, correlating with increased auxin accumulation in adjacent tissues at the lower side of the stimulated organ, where auxin induces cell elongation and, hence, organ bending. A curvature response allows the hypocotyl to resume straight growth at a defined angle [6], implying that at some point auxin symmetry is restored to prevent overbending. Here, we present initial insights into cellular and molecular mechanisms that lead to the termination of the tropic response. We identified an auxin feedback on PIN3 polarization as underlying mechanism that restores symmetry of the PIN3-dependent auxin flow. Thus, two mechanistically distinct PIN3 polarization events redirect auxin fluxes at different time points of the gravity response: first, gravity-mediated redirection of PIN3-mediated auxin flow toward the lower hypocotyl side, where auxin gradually accumulates and promotes growth, and later PIN3 polarization to the opposite cell side, depleting this auxin maximum to end the bending. Accordingly, genetic or pharmacological interference with the late PIN3 polarization prevents termination of the response and leads to hypocotyl overbending. This observation reveals a role of auxin feedback on PIN polarity in the termination of the tropic response.
- MeSH
- Arabidopsis genetika růst a vývoj fyziologie MeSH
- gravitropismus * MeSH
- kyseliny indoloctové metabolismus MeSH
- percepce tíhy * MeSH
- proteiny huseníčku genetika metabolismus MeSH
- regulátory růstu rostlin metabolismus MeSH
- výhonky rostlin růst a vývoj MeSH
- zpětná vazba fyziologická MeSH
- Publikační typ
- časopisecké články MeSH
Above- and belowground plant parts are simultaneously attacked by different pests and pathogens. The host mediates these interactions and physiologically reacts, e.g. with local and systemic alterations of endogenous hormone levels coupled with coordinated transcriptional changes. This in turn affects attractiveness and susceptibility of the plant to subsequent attackers. Here, the model plant Arabidopsis thaliana is used to study stress hormone-based systemic responses triggered by simultaneous root parasitism by the cyst nematode Heterodera schachtii and shoot herbivory by the thrips Frankliniella occidentalis and the spider mite Tetranychus urticae. First, HPLC/MS and quantitative reverse transcriptase PCR are used to show that nematode parasitism strongly affects stress hormone levels and expression of hormone marker genes in shoots. Previous nematode infection is then demonstrated to affect the behavioural and life history performance of both arthropods. While thrips explicitly avoid nematode-infected plants, spider mites prefer them. In addition, the life history performance of T. urticae is significantly enhanced by nematode infection. Finally, systemic changes triggered by shoot-feeding F. occidentalis but not T. urticae are shown to make the roots more attractive for H. schachtii. This work emphasises the importance of above- and belowground signalling and contributes to a better understanding of plant systemic defence mechanisms against plant-parasitic nematodes.
- MeSH
- Arabidopsis imunologie parazitologie MeSH
- býložravci * MeSH
- kořeny rostlin imunologie parazitologie MeSH
- mezibuněčná komunikace MeSH
- regulátory růstu rostlin fyziologie MeSH
- rostlinné buňky metabolismus MeSH
- Tetranychidae fyziologie MeSH
- Thysanoptera fyziologie MeSH
- Tylenchoidea fyziologie MeSH
- výhonky rostlin imunologie parazitologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The plant hormones cytokinins (CKs) regulate multiple developmental and physiological processes in Arabidopsis (Arabidopsis thaliana). Responses to CKs vary in different organs and tissues (e.g. the response to CKs has been shown to be opposite in shoot and root samples). However, the tissue-specific targets of CKs and the mechanisms underlying such specificity remain largely unclear. Here, we show that the Arabidopsis proteome responds with strong tissue and time specificity to the aromatic CK 6-benzylaminopurine (BAP) and that fast posttranscriptional and/or posttranslational regulation of protein abundance is involved in the contrasting shoot and root proteome responses to BAP. We demonstrate that BAP predominantly regulates proteins involved in carbohydrate and energy metabolism in the shoot as well as protein synthesis and destination in the root. Furthermore, we found that BAP treatment affects endogenous hormonal homeostasis, again with strong tissue specificity. In the shoot, BAP up-regulates the abundance of proteins involved in abscisic acid (ABA) biosynthesis and the ABA response, whereas in the root, BAP rapidly and strongly up-regulates the majority of proteins in the ethylene biosynthetic pathway. This was further corroborated by direct measurements of hormone metabolites, showing that BAP increases ABA levels in the shoot and 1-aminocyclopropane-1-carboxylic acid, the rate-limiting precursor of ethylene biosynthesis, in the root. In support of the physiological importance of these findings, we identified the role of proteins mediating BAP-induced ethylene production, METHIONINE SYNTHASE1 and ACC OXIDASE2, in the early root growth response to BAP.
- MeSH
- 2D gelová elektroforéza MeSH
- Arabidopsis účinky léků genetika metabolismus MeSH
- biologické modely MeSH
- cytokininy metabolismus farmakologie MeSH
- homeostáza účinky léků MeSH
- kinetin metabolismus farmakologie MeSH
- kořeny rostlin účinky léků genetika metabolismus MeSH
- modely genetické MeSH
- polymerázová řetězová reakce s reverzní transkripcí MeSH
- proteiny huseníčku genetika metabolismus MeSH
- proteom genetika metabolismus MeSH
- regulace genové exprese u rostlin účinky léků MeSH
- regulátory růstu rostlin metabolismus farmakologie MeSH
- stanovení celkové genové exprese MeSH
- výhonky rostlin účinky léků genetika metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Being sessile organisms, plants have evolved mechanisms allowing them to control their growth and development in response to environmental changes. This occurs by means of complex interacting signalling networks that integrate diverse environmental cues into co-ordinated and highly regulated responses. Auxin is an essential phytohormone that functions as a signalling molecule, driving both growth and developmental processes. It is involved in numerous biological processes ranging from control of cell expansion and cell division to tissue specification, embryogenesis, and organ development. All these processes require the formation of auxin gradients established and maintained through the combined processes of biosynthesis, metabolism, and inter- and intracellular directional transport. Environmental conditions can profoundly affect the plant developmental programme, and the co-ordinated shoot and root growth ought to be fine-tuned to environmental challenges such as temperature, light, and nutrient and water content. The key role of auxin as an integrator of environmental signals has become clear in recent years, and emerging evidence implicates auxin biosynthesis as an essential component of the overall mechanisms of plants tolerance to stress. In this review, we provide an account of auxin's role as an integrator of environmental signals and, in particular, we highlight the effect of these signals on the control of auxin production.
The transmission mode of shoot-associated endophytes in hyperaccumulators and their roles in root microbiome assembly and heavy metal accumulation remain unclear. Using 16S rRNA gene profiling, we investigated the vertical transmission of shoot-associated endophytes in relation to growth and Cd/Zn accumulation of Sedum alfredii ( Crassulaceae). Endophytes were transmitted from shoot cuttings to the rhizocompartment of new plants in both sterilized (γ-irradiated) and native soils. Vertical transmission was far more efficient in the sterile soil, and the transmitted endophytes have become a dominant component of the newly established root-associated microbiome. Based on 16S rRNA genes, the vertically transmitted taxa were identified as the families of Streptomycetaceae, Nocardioidaceae, Pseudonocardiaceae, and Rhizobiaceae. Abundances of Streptomycetaceae, Nocardioidaceae, and Pseudonocardiaceae were strongly correlated with increased shoot biomass and total Cd/Zn accumulation. Inoculation of S. alfredii with the synthetic bacterial community sharing the same phylogenetic relatedness with the vertically transmitted endophytes resulted in significant improvements in plant biomass, root morphology, and Cd/Zn accumulation. Our results demonstrate that successful vertical transmission of endophytes from shoots of S. alfredii to its rhizocompartments is possible, particularly in soils with attenuated microbiomes. Furthermore, the endophyte-derived microbiome plays an important role in metal hyperaccumulation.
We have recently discovered that brassinosteroids (BRs) can inhibit the growth of etiolated pea seedlings dose-dependently in a similar manner to the 'triple response' induced by ethylene. We demonstrate here that the growth inhibition of etiolated pea shoots strongly correlates with increases in ethylene production, which also responds dose-dependently to applied BRs. We assessed the biological activities of two natural BRs on pea seedlings, which are excellent material as they grow rapidly, and respond both linearly and uni-phasically to applied BRs. We then compared the BRs' inhibitory effects on growth, and induction of ethylene and ACC (1-aminocyclopropane-1-carboxylic acid) production, to those of representatives of other phytohormone classes (cytokinins, auxins, and gibberellins). Auxin induced ca. 50-fold weaker responses in etiolated pea seedlings than brassinolide, and the other phytohormones induced much weaker (or opposite) responses. Following the optimization of conditions for determining ethylene production after BR treatment, we found a positive correlation between BR bioactivity and ethylene production. Finally, we optimized conditions for pea growth responses and developed a new, highly sensitive, and convenient bioassay for BR activity.
- MeSH
- aminokyseliny cyklické metabolismus MeSH
- biotest metody MeSH
- brassinosteroidy farmakologie MeSH
- ethyleny metabolismus MeSH
- hrách setý účinky léků růst a vývoj metabolismus MeSH
- inhibitory růstu farmakologie MeSH
- kyseliny indoloctové farmakologie MeSH
- regulátory růstu rostlin farmakokinetika farmakologie MeSH
- semenáček účinky léků růst a vývoj metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH