A Combined Phenotypic and Metabolomic Approach for Elucidating the Biostimulant Action of a Plant-Derived Protein Hydrolysate on Tomato Grown Under Limited Water Availability

. 2019 ; 10 () : 493. [epub] 20190503

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31130970

Plant-derived protein hydrolysates (PHs) are an important category of biostimulants able to increase plant growth and crop yield especially under environmental stress conditions. PHs can be applied as foliar spray or soil drench. Foliar spray is generally applied to achieve a relatively short-term response, whereas soil drench is used when a long-term effect is desired. The aim of the study was to elucidate the biostimulant action of PH application method (foliar spray or substrate drench) on morpho-physiological traits and metabolic profile of tomato grown under limited water availability. An untreated control was also included. A high-throughput image-based phenotyping (HTP) approach was used to non-destructively monitor the crop response under limited water availability (40% of container capacity) in a controlled environment. Moreover, metabolic profile of leaves was determined at the end of the trial. Dry biomass of shoots at the end of the trial was significantly correlated with number of green pixels (R 2 = 0.90) and projected shoot area, respectively. Both drench and foliar treatments had a positive impact on the digital biomass compared to control while the photosynthetic performance of the plants was slightly influenced by treatments. Overall drench application under limited water availability more positively influenced biomass accumulation and metabolic profile than foliar application. Significantly higher transpiration use efficiency was observed with PH-drench applications indicating better stomatal conductance. The mass-spectrometry based metabolomic analysis allowed the identification of distinct biochemical signatures in PH-treated plants. Metabolomic changes involved a wide and organized range of biochemical processes that included, among others, phytohormones (notably a decrease in cytokinins and an accumulation of salicylates) and lipids (including membrane lipids, sterols, and terpenes). From a general perspective, treated tomato plants exhibited an improved tolerance to reactive oxygen species (ROS)-mediated oxidative imbalance. Such capability to cope with oxidative stress might have resulted from a coordinated action of signaling compounds (salicylic acid and hydroxycinnamic amides), radical scavengers such as carotenoids and prenyl quinones, as well as a reduced biosynthesis of tetrapyrrole coproporphyrins.

Zobrazit více v PubMed

Allakhverdiev S. I., Kinoshita M., Inaba M., Suzuki I., Murata N. (2001). Unsaturated fatty acids in membrane lipids protect the photosynthetic machinery against salt-induced damage in Synechococcus. Plant Physiol. 125 1842–1853. 10.1104/pp.125.4.1842 PubMed DOI PMC

Al-Tamimi N., Brien C., Oakey H., Berger B., Saade S., Ho Y. S., et al. (2016). Salinity tolerance loci revealed in rice using high-throughput non-invasive phenotyping. Nat. Commun. 7:13342. 10.1038/ncomms13342 PubMed DOI PMC

Asaf S., Khan A. L., Khan M. A., Imran Q. M., Yun B. W., Lee I. J. (2017). Osmoprotective functions conferred to soybean plants via inoculation with Sphingomonas sp. LK11 and exogenous trehalose. Microbiol. Res. 205 135–145. 10.1016/j.micres.2017.08.009 PubMed DOI

Awlia M., Nigro A., Fajkus J., Schmoeckel S. M., Negrão S., Santelia D., et al. (2016). High-throughput non-destructive phenotyping of traits that contribute to salinity tolerance in Arabidopsis thaliana. Front. Plant Sci. 7:1414. 10.3389/fpls.2016.01414 PubMed DOI PMC

Baker N. R., Rosenqvist E. (2004). Applications of chlorophyll fluorescence can improve crop production strategies, an examination of future possibilities. J. Exp. Bot. 55 1607–1621. 10.1093/jxb/erh196 PubMed DOI

Barupal D. K., Fiehn O. (2017). Chemical similarity enrichment analysis (ChemRICH) as alternative to biochemical pathway mapping for metabolomic datasets. Sci. Rep. 7:14567. 10.1038/s41598-017-15231-w PubMed DOI PMC

Berger B., Parent B., Tester M. (2010). High-throughput shoot imaging to study drought responses. J. Exp. Bot. 61 3519–3528. 10.1093/jxb/erq201 PubMed DOI

Borgognone D., Cardarelli M., Rea E., Lucini L., Colla G. (2014). Salinity source-induced changes in yield, mineral composition, phenolic acids and flavonoids in leaves of artichoke and cardoon grown in floating system. J. Sci. Food Agric. 94 1231–1237. 10.1002/jsfa.6403 PubMed DOI

Borgognone D., Rouphael Y., Cardarelli M., Lucini L., Colla G. (2016). Changes in biomass, mineral composition, and quality of cardoon in response to NO3–:Cl– ratio and nitrate deprivation from the nutrient solution. Front. Plant Sci. 7:978. 10.3389/fpls.2016.00978 PubMed DOI PMC

Boursiac Y., Léran S., Corratgé-Faillie C., Gojon A., Krouk G., Lacombe B. (2013). ABA transport and transporters. Trends Plant Sci. 18 325–333. 10.1016/j.tplants.2013.01.007 PubMed DOI

Ceccarelli A. V. (2018). Valutazione Dell’attività Biostimolante Mediante Saggi Biologici in Ambiente Controllato. Master’s thesis, University of Tuscia, Viterbo.

Colantoni A., Recchia L., Bernabei G., Cardarelli M., Rouphael Y., Colla G. (2017). Analyzing the environmental impact of chemically-produced protein hydrolysate from leather waste vs. enzymatically-produced protein hydrolysate from legume grains. Agriculture 7:62 10.3390/agriculture7080062 DOI

Colla G., Cardarelli M., Bonini P., Rouphael Y. (2017a). Foliar applications of protein hydrolysate, plant and seaweed extracts increase yield but differentially modulate fruit quality of greenhouse tomato. Hortscience 52 1214–1220. 10.21273/HORTSCI12200-17 DOI

Colla G., Hoagland L., Ruzzi M., Cardarelli M., Bonini P., Canaguier R., et al. (2017b). Biostimulant action of protein hydrolysates: unravelling their effects on plant physiology and microbiome. Front. Plant Sci. 8:2202. 10.3389/fpls.2017.02202 PubMed DOI PMC

Colla G., Nardi S., Cardarelli M., Ertani A., Lucini L., Canaguier R., et al. (2015). Protein hydrolysates as biostimulants in horticulture. Sci. Hortic. 196 28–38. 10.1016/j.scienta.2015.08.037 PubMed DOI

du Jardin P. (2015). Plant biostimulants: definition, concept, main categories and regulation. Sci. Hortic. 196 3–14. 10.1016/j.scienta.2015.09.021 DOI

Ertani A., Cavani L., Pizzeghello D., Brandellero E., Altissimo A., Ciavatta C., et al. (2009). Biostimulant activities of two protein hydrolysates on the growth and nitrogen metabolism in maize seedlings. J. Plant. Nutr. Soil. Sci. 172 237–244. 10.1002/jpln.200800174 DOI

Farooq M., Ullah A., Lee D. J., Alghamdi S. S., Siddique K. H. M. (2018). Desi chickpea genotypes tolerate drought stress better than kabuli types by modulating germination metabolism, trehalose accumulation, and carbon assimilation. Plant Physiol. Biochem. 126 47–54. 10.1016/j.plaphy.2018.02.020 PubMed DOI

Fernandez V., Eichert T. (2009). Uptake of hydrophilic solutes through plant leaves: current state of knowledge and perspectives of foliar fertilization. Crit. Rev. Plant Sci. 28 36–68. 10.1080/07352680902743069 DOI

Foyer C. H. (2018). Reactive oxygen species, oxidative signaling and the regulation of photosynthesis. Environ. Exp. Bot. 154 134–142. 10.1016/j.envexpbot.2018.05.003 PubMed DOI PMC

Genty B., Briantais J. M., Baker N. R. (1989). The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim. Biophys. Acta 990 87–92. 10.1016/S0304-4165(89)80016-9 DOI

Ghandchi F. P., Caetano-Anolles G., Clough S. J., Ort D. R. (2016). Investigating the control of chlorophyll degradation by genomic correlation mining. PLoS One 11:e0162327. 10.1371/journal.pone.0162327 PubMed DOI PMC

Gorbe E., Calatayud A. (2012). Applications of chlorophyll fluorescence imaging technique in horticultural research: a review. Sci. Hortic. 138 24–35. 10.1016/j.scienta.2012.02.002 DOI

Haplern M., Bar-Tal A., Ofek M., Minz D., Muller T., Yermiyahu U. (2015). The use of biostimulants for enhancing nutrient uptake. Adv. Agron. 130 141–174. 10.1016/bs.agron.2014.10.001 DOI

Helfenstein A., Vahermo M., Nawrot D. A., Demirci F., İşcan G., Krogerus S., et al. (2017). Antibacterial profiling of abietane-type diterpenoids. Bioorg. Med. Chem. 25 132–137. 10.1016/j.bmc.2016.10.019 PubMed DOI

Henley W. J. (1993). Measurement and interpretation of photosynthetic light-response curves in algae in the context of photoinhibition and diel changes. J. Phycol. 29 729–739. 10.1111/j.0022-3646.1993.00729.x DOI

Hou Q., Ufer G., Bartels D. (2016). Lipid signaling in plant responses to abiotic stress. Plant Cell Environ. 39 1029–1048. 10.1111/pce.12666 PubMed DOI

Hu G., Yalpani N., Briggs S. P., Johal G. S. (1998). A porphyrin pathway impairment is responsible for the phenotype of a dominant disease lesion mimic mutant of maize. Plant Cell 10 1095–1105. 10.1105/tpc.10.7.1095 PubMed DOI PMC

Huang X., Hou L., Meng J., You H., Li Z., Gong Z., et al. (2018). The antagonistic action of abscisic acid and cytokinin signaling mediates drought stress response in Arabidopsis. Mol. Plant 11 970–982. 10.1016/j.molp.2018.05.001 PubMed DOI

Humplík J. F., Lazár D., Fürst T., Husičková A., Hýbl M., Spíchal L. (2015a). Automated integrative high-throughput phenotyping of plant shoots: a case study of the cold-tolerance of pea (Pisum sativum L.). Plant Methods 11:20. 10.1186/s13007-015-0063-9 PubMed DOI PMC

Humplík J. F., Lazár D., Husičková A., Spíchal L. (2015b). Automated phenotyping of plant shoots using imaging methods for analysis of plant stress responses – a review. Plant Methods 11:29. 10.1186/s13007-015-0072-8 PubMed DOI PMC

Ishikawa A., Okamoto H., Iwasaki Y., Asahi T. (2001). A deficiency of coproporphyrinogen III oxidase causes lesion formation in Arabidopsis. Plant J. 27 89–99. 10.1046/j.1365-313x.2001.01058.x PubMed DOI

Kaňa R., Vass I. (2008). Thermoimaging as a tool for studying light-induced heating of leaves: correlation of heat dissipation with the efficiency of photosystem II photochemistry and non-photochemical quenching. Environ. Exp. Bot. 64 90–96. 10.1016/j.envexpbot.2008.02.006 DOI

Kruk J., Szymañska R., Nowicka B., Dłużewska J. (2016). Function of isoprenoid quinones and chromanols during oxidative stress in plants. New Biotechnol. 33(5 Pt B), 636–643. 10.1016/j.nbt.2016.02.010 PubMed DOI

Kumar P., Rouphael Y., Cardarelli M., Colla G. (2017). Vegetable grafting as a tool to improve drought resistance and water use efficiency. Front. Plant Sci. 8:1130. 10.3389/fpls.2017.01130 PubMed DOI PMC

La V. H., Lee B. R., Islam M. T., Park S. H., Jung H., Bae D. W., et al. (2019). Characterization of salicylic acid-mediated modulation of the drought stress responses: reactive oxygen species, proline, and redox state in Brassica napus. Environ. Exp. Bot. 157 1–10. 10.1016/j.envexpbot.2018.09.013 DOI

Lee J., Shim D., Moon S., Kim H., Bae W., Kim K., et al. (2018). Genome-wide transcriptomic analysis of BR-deficient micro-tom reveals correlations between drought stress tolerance and brassinosteroid signaling in tomato. Plant Physiol. Biochem. 127 553–560. 10.1016/j.plaphy.2018.04.031 PubMed DOI

Li L., Gu W., Li J., Li C., Xie T., Qu D., et al. (2018). Exogenously applied spermidine alleviates photosynthetic inhibition under drought stress in maize (Zea mays L.) seedlings associated with changes in endogenous polyamines and phytohormones. Plant Physiol. Biochem. 129 35–55. 10.1016/j.plaphy.2018.05.017 PubMed DOI

Li L., Zhang Q., Huang D. (2014). A review of imaging techniques for plant phenotyping. Sensors 14:20078. 10.3390/s141120078 PubMed DOI PMC

Liu J., Li J., Su X., Xia Z. (2014). Grafting improves drought tolerance by regulating antioxidant enzyme activities and stress-responsive gene expression in tobacco. Environ. Exp. Bot. 107 173–179. 10.1016/j.envexpbot.2014.06.012 DOI

Lucini L., Borgognone D., Rouphael Y., Cardarelli M., Bernardi J., Colla G. (2016). Mild potassium chloride stress alters the mineral composition, hormone network, and phenolic profile in artichoke leaves. Front. Plant Sci. 7:948. 10.3389/fpls.2016.00948 PubMed DOI PMC

Lucini L., Rouphael Y., Cardarelli M., Bonini P., Baffi C., Colla G. (2018). A vegetal biopolymer-based biostimulant promoted root growth in melon while triggering brassinosteroids and stress-related compounds. Front. Plant Sci. 9:472. 10.3389/fpls.2018.00472 PubMed DOI PMC

Lucini L., Rouphael Y., Cardarelli M., Canaguier R., Kumar P., Colla G. (2015). The effect of a plant-derived protein hydrolysate on metabolic profiling and crop performance of lettuce grown under saline conditions. Sci. Hortic. 182 124–133. 10.1016/j.scienta.2014.11.022 DOI

Luziatelli F., Ficca A. G., Colla G., Baldassarre Švecová E., Ruzzi M. (2019). Foliar application of vegetal-derived bioactive compounds stimulates the growth of beneficial bacteria and enhances microbiome biodiversity in lettuce. Front. Plant Sci. 10:60. 10.3389/fpls.2019.00060 PubMed DOI PMC

Maxwell K., Johnson G. N. (2000). Chlorophyll fluorescence—a practical guide. J. Exp. Bot. 51345 659–668. 10.1093/jexbot/51.345.659 PubMed DOI

Mukherjee S. (2018). Novel perspectives on the molecular crosstalk mechanisms of serotonin and melatonin in plants. Plant Physiol. Biochem. 132 33–45. 10.1016/j.plaphy.2018.08.031 PubMed DOI

Munné-Bosch S., Schwarz K., Alegre L. (1999). Response of abietane diterpenes to stress in Rosmarinus officinalis L.: new insights into the function of diterpenes in plants. Free Rad. Res. 31(Suppl.), S107–S112. 10.1080/10715769900301391 PubMed DOI

Murchie E. H., Lawson T. (2013). Chlorophyll fluorescence analysis: a guide to good practice and understanding some new applications. J. Exp. Bot. 64 3983–3998. 10.1093/jxb/ert208 PubMed DOI

Na Y. W., Jeong H. J., Lee S. Y., Choi H. G., Kim S. H., Rho I. R. (2014). Chlorophyll fluorescence as a diagnostic tool for abiotic stress tolerance in wild and cultivated strawberry species. Hort. Environ. Biotechnol. 55 280–286. 10.1007/s13580-014-0006-9 DOI

Nasrollahi V., Mirzaie-Asl A., Piri K., Nazeri S., Mehrabi R. (2014). The effect of drought stress on the expression of key genes involved in the biosynthesis of triterpenoid saponins in liquorice (Glycyrrhiza glabra). Phytochemistry 103 32–37. 10.1016/j.phytochem.2014.03.004 PubMed DOI PMC

Paul K., Deaìk Z., Csôsz M., Purnhauser L., Vass I. (2011). Characterization and early detection of tan spot disease in wheat in vivo with chlorophyll fluorescence imaging. Acta Biol. Szeged. 55 87–90. 10.13140/2.1.3021.6320 DOI

Paul K., Pauk J., Deaìk Z., Sass L., Vass I. (2016). Contrasting response of biomass and grain yield to severe drought in cappelle desprez and plainsman V wheat cultivars. PeerJ 4:e1708. 10.7717/peerj.1708 PubMed DOI PMC

Percival G. C. (2010). Effect of systemic inducing resistance and biostimulant materials on apple scab using a detached leaf bioassay. Arb. Urb. Forest. 36 41–46.

Petrozza A., Santaniello A., Summerer S., Di Tommaso G., Di Tommaso D., Paparelli E., et al. (2014). Physiological responses to megafol® treatments in tomato plants under drought stress: a phenomic and molecular approach. Sci. Hortic. 174 185–192. 10.1016/j.scienta.2014.05.023 DOI

Povero G., Mejia J. F., Di Tommaso D., Piaggesi A., Warrior P. (2016). A systematic approach to discover and characterize natural plant biostimulants. Front. Plant Sci. 7:435. 10.3389/fpls.2016.00435 PubMed DOI PMC

Pretali L., Bernardo L., Butterfield T. S., Trevisan M., Lucini L. (2016). Botanical and biological pesticides elicit a similar induced systemic response in tomato (Solanum lycopersicum) secondary metabolism. Phytochemistry 130 56–63. 10.1016/j.phytochem.2016.04.002 PubMed DOI

Radwan A., Kleinwächter M., Selmar D. (2017). Impact of drought stress on specialised metabolism: biosynthesis and the expression of monoterpene synthases in sage (Salvia officinalis). Phytochemistry 141 20–26. 10.1016/j.phytochem.2017.05.005 PubMed DOI

Rascher U., Liebig M., Lüttge U. (2000). Evaluation of instant light-response curves of chlorophyll fluorescence parameters obtained with a portable chlorophyll fluorometer on site in the field. Plant Cell Environ. 23 1397–1405. 10.1046/j.1365-3040.2000.00650.x DOI

Rouphael Y., Cardarelli M., Schwarz D., Franken P., Colla G. (2012). “Effects of drought on nutrient uptake and assimilation in vegetable crops,” in Plant Responses to Drought Stress: From Morphological to Molecular Features, ed. Aroca R. (Berlin: Springer-Verlag; ).

Rouphael Y., Colla G. (2018). Synergistic biostimulatory action: designing the next generation of plant biostimulants for sustainable agriculture. Front. Plant Sci. 9:1655. 10.3389/fpls.2018.01655 PubMed DOI PMC

Rouphael Y., Colla G., Bernardo L., Kane D., Trevisan M., Lucini L. (2016). Zinc excess triggered polyamines accumulation in lettuce root metabolome, as compared to osmotic stress under high salinity. Front. Plant Sci. 7:842. 10.3389/fpls.2016.00842 PubMed DOI PMC

Rouphael Y., Colla G., Giordano M., El-Nakhel C., Kyriacou M. C., De Pascale S. (2017). Foliar applications of a legume-derived protein hydrolysate elicit dose-dependent increases of growth, leaf mineral composition, yield and fruit quality in two greenhouse tomato cultivars. Sci. Hortic. 226 353–360. 10.1016/j.scienta.2017.09.007 DOI

Rouphael Y., Giordano M., Cardarelli M., Cozzolino E., Mori M., Kyriacou M. C., et al. (2018a). Plant- and seaweed-based extracts increase yield but differentially modulate nutritional quality of greenhouse spinach through biostimulant action. Agronomy 8:126 10.3390/agronomy8070126 DOI

Rouphael Y., Spiìchal L., Panzarova K., Casa R., Colla G. (2018b). High-throughput plant phenotyping for developing novel biostimulants: from lab to field or from field to lab? Front. Plant Sci. 9:1197. 10.3389/fpls.2018.01197 PubMed DOI PMC

Russell L., Stokes A. R., Macdonald H., Muscolo A., Nardi S. (2006). Stomatal responses to humic substances and auxin are sensitive to inhibitors of phospholipase A2. Plant Soil 283 175–185. 10.1007/s11104-006-0011-6 DOI

Salehi H., Chehregani A., Lucini L., Majd A., Gholami M. (2018). Morphological, proteomic and metabolomic insight into the effect of cerium dioxide nanoparticles to Phaseolus vulgaris L. under soil or foliar application. Sci. Tot. Environ. 616 1540–1551. 10.1016/j.scitotenv.2017.10.159 PubMed DOI

Sestili F., Rouphael Y., Cardarelli M., Pucci A., Bonini P., Canaguier R., et al. (2018). Protein hydrolysate stimulates growth and N uptake in tomato coupled with N-dependent gene expression involved in N assimilation. Front. Plant Sci. 9:1233. 10.3389/fpls.2018.01233 PubMed DOI PMC

Showalter M. R., Nonnecke E. B., Linderholm A. L., Cajka T., Sa M. R., Lönnerdal B., et al. (2018). Obesogenic diets alter metabolism in mice. PLoS One 13:e0190632. 10.1371/journal.pone.0190632 PubMed DOI PMC

Storer K., Kendall S., White C., Roques S., Berry P. (2016). A Review of the Function, Efficacy and Value of Biostimulant Products Available for UK Cereals and Oilseeds. (Stoneleigh Park: Agriculture and Horticulture Development Board (ADHB)).

Tripathy B. C., Oelmüller R. (2012). Reactive oxygen species generation and signaling in plants. Plant Signal. Behav. 7 1621–1633. 10.4161/psb.22455 PubMed DOI PMC

Tschiersch H., Junker A., Meyer R. C., Altmann T. (2017). Establishment of integrated protocols for automated high throughput kinetic chlorophyll fluorescence analyses. Plant Methods 13:54. 10.1186/s13007-017-0204-4 PubMed DOI PMC

Voynikov Y., Zheleva-Dimitrova D., Gevrenova R., Lozanov V., Zaharieva M. M., Tsvetkova I., et al. (2016). Hydroxycinnamic acid amide profile of Solanum schimperianum hochst by UPLC-HRMS. Int. J. Mass Spectr. 408 42–50. 10.1016/j.ijms.2016.08.008 DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...