Integration of Phenomics and Metabolomics Datasets Reveals Different Mode of Action of Biostimulants Based on Protein Hydrolysates in Lactuca sativa L. and Solanum lycopersicum L. Under Salinity

. 2021 ; 12 () : 808711. [epub] 20220203

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35185959

Plant phenomics is becoming a common tool employed to characterize the mode of action of biostimulants. A combination of this technique with other omics such as metabolomics can offer a deeper understanding of a biostimulant effect in planta. However, the most challenging part then is the data analysis and the interpretation of the omics datasets. In this work, we present an example of how different tools, based on multivariate statistical analysis, can help to simplify the omics data and extract the relevant information. We demonstrate this by studying the effect of protein hydrolysate (PH)-based biostimulants derived from different natural sources in lettuce and tomato plants grown in controlled conditions and under salinity. The biostimulants induced different phenotypic and metabolomic responses in both crops. In general, they improved growth and photosynthesis performance under control and salt stress conditions, with better performance in lettuce. To identify the most significant traits for each treatment, a random forest classifier was used. Using this approach, we found out that, in lettuce, biomass-related parameters were the most relevant traits to evaluate the biostimulant mode of action, with a better response mainly connected to plant hormone regulation. However, in tomatoes, the relevant traits were related to chlorophyll fluorescence parameters in combination with certain antistress metabolites that benefit the electron transport chain, such as 4-hydroxycoumarin and vitamin K1 (phylloquinone). Altogether, we show that to go further in the understanding of the use of biostimulants as plant growth promotors and/or stress alleviators, it is highly beneficial to integrate more advanced statistical tools to deal with the huge datasets obtained from the -omics to extract the relevant information.

Zobrazit více v PubMed

Aggarwal C. C., Hinneburg A., Keim D. A. (2001). “On the Surprising Behavior of Distance Metrics in High Dimensional Space,” in Database Theory — ICDT 2001. ICDT 2001. Lecture Notes in Computer Science, eds Van den Bussche J., Vianu V. (Berlin: Springer; ), 10.1007/3-540-44503-X_27 DOI

Akhtar S. S., Amby D. B., Hegelund J. N., Fimognari L., Großkinsky D. K., Westergaard J. C., et al. (2020). Bacillus licheniformis FMCH001 increases water use efficiency via growth stimulation in both normal and drought conditions. Front. Plant Sci. 11:297. 10.3389/fpls.2020.00297 PubMed DOI PMC

Ali M., Kamran M., Abbasi G. H., Saleem M. H., Ahmad S., Parveen A., et al. (2021). Melatonin-induced salinity tolerance by ameliorating osmotic and oxidative stress in the seedlings of two tomato (Solanum lycopersicum L.) cultivars. J. Plant Growth Regul. 40 2236–2248. 10.1007/s00344-020-10273-3 DOI

Awlia M., Nigro A., Fajkus J., Schmoeckel S. M., Negrão S., Santelia D., et al. (2016). High-throughput non-destructive phenotyping of traits that contribute to salinity tolerance in Arabidopsis thaliana. Front. Plant Sci. 7:1414. 10.3389/fpls.2016.01414 PubMed DOI PMC

Bady P., Dolédec S., Dumont B., Fruget J.-F. (2004). Multiple co-inertia analysis: a tool for assessing synchrony in the temporal variability of aquatic communities. C. R. Biol. 327 29–36. 10.1016/j.crvi.2003.10.007 PubMed DOI

Barradas A., Correia P. M. P., Silva S., Mariano P., Pires M. C., Matos A. R., et al. (2021). Comparing machine learning methods for classifying plant drought stress from leaf reflectance spectra in Arabidopsis thaliana. Appl. Sci. 11:6392. 10.3390/app11146392 DOI

Bates D., Mächler M., Bolker B., Walker S. (2015). Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67 1–48. 10.18637/jss.v067.i01 DOI

Billakurthi K., Schreier T. B. (2020). Insights into the control of metabolism and biomass accumulation in a staple C4 grass. J. Exp. Bot. 71 5298–5301. 10.1093/jxb/eraa307 PubMed DOI PMC

Boisgontier M. P., Cheval B. (2016). The anova to mixed model transition. Neurosci. Biobehav. Rev. 68 1004–1005. 10.1016/j.neubiorev.2016.05.034 PubMed DOI

Briglia N., Petrozza A., Hoeberichts F. A., Verhoef N., Povero G. (2019). Investigating the impact of biostimulants on the row crops corn and soybean using high-efficiency phenotyping and next generation sequencing. Agronomy 9:761. 10.3390/agronomy9110761 DOI

Cano-Ramirez D. L., Dodd A. N. (2018). New connections between circadian rhythms, photosynthesis, and environmental adaptation. Plant Cell Environ. 41 2515–2517. 10.1111/pce.13346 PubMed DOI

Caspi R., Dreher K., Karp P. D. (2013). The challenge of constructing, classifying, and representing metabolic pathways. FEMS Microbiol. Lett. 345 85–93. 10.1111/1574-6968.12194 PubMed DOI PMC

Ceccarelli A. V., Miras-Moreno B., Buffagni V., Senizza B., Pii Y., Cardarelli M., et al. (2021). Foliar application of different vegetal-derived protein hydrolysates distinctively modulates tomato root development and metabolism. Plants 10:326. 10.3390/plants10020326 PubMed DOI PMC

Colla G., Rouphael Y. (2015). Biostimulants in horticulture. Sci. Hortic. 196 1–2. 10.1016/j.scienta.2015.10.044 DOI

Corwin D. L. (2020). Climate change impacts on soil salinity in agricultural areas. Eur. J. Soil Sci. 72 842–862. 10.1111/ejss.13010 DOI

Danzi D., Briglia N., Petrozza A., Summerer S., Povero G., Stivaletta A., et al. (2019). Can high throughput phenotyping help food security in the Mediterranean area?. Front. Plant Sci. 10:15. 10.3389/fpls.2019.00015 PubMed DOI PMC

De Diego N., Perez-Alfocea F., Cantero E., Lacuesta M., Moncalean P. (2012). Physiological response to drought in radiata pine: phytohormone implication at leaf level. Tree Physiol. 32 435–449. 10.1093/treephys/tps029 PubMed DOI

Dell’Aversana E., D’Amelia L., De Pascale S., Carillo P. (2020). “Use of biostimulants to improve salinity tolerance in agronomic crops,” in Agronomic Crops, ed. Hasanuzzaman M. (Springer: Singapore; ), 10.1007/978-981-15-0025-1_2 DOI

Devarajan A. K., Muthukrishanan G., Truu J., Truu M., Ostonen I., Kizhaeral S., et al. (2021). The foliar application of rice phyllosphere bacteria induces drought-stress tolerance in Oryza sativa (L.). Plants 10:387. 10.3390/plants10020387 PubMed DOI PMC

Di Mola I., Conti S., Cozzolino E., Melchionna G., Ottaiano L., Testa A., et al. (2021). Plant-based protein hydrolysate improves salinity tolerance in hemp: agronomical and physiological aspects. Agronomy 11:342. 10.3390/agronomy11020342 DOI

Di Mola I., Cozzolino E., Ottaiano L., Giordano M., Rouphael Y., Colla G., et al. (2019a). Effect of vegetal- and seaweed extract-based biostimulants on agronomical and leaf quality traits of plastic tunnel-grown baby lettuce under four regimes of nitrogen fertilization. Agronomy 9:571. 10.3390/agronomy9100571 DOI

Di Mola I., Ottaiano L., Cozzolino E., Senatore M., Giordano M., El-Nakhel C., et al. (2019b). Plant-based biostimulants influence the agronomical, physiological, and qualitative responses of baby rocket leaves under diverse nitrogen conditions. Plants 8:522. 10.3390/plants8110522 PubMed DOI PMC

Freitas W. E., de S., Oliveira A. B., de Mesquita R. O., de Carvalho H. H., et al. (2019). Sulfur-induced salinity tolerance in lettuce is due to a better P and K uptake, lower Na/K ratio and an efficient antioxidative defense system. Sci. Hortic. 257:108764. 10.1016/j.scienta.2019.108764 DOI

Genitsaris S., Monchy S., Breton E., Lecuyer E., Christaki U. (2016). Small-scale variability of protistan planktonic communities relative to environmental pressures and biotic interactions at two adjacent coastal stations. Mar. Ecol. Prog. Ser. 548 61–75. 10.3354/meps11647 DOI

Halford N. G., Shewry P. R. (2000). Genetically modified crops: methodology, benefits, regulation and public concerns. Br. Med. Bull. 56 62–73. 10.1258/0007142001902978 PubMed DOI

Henley W. J. (1993). Measurement and interpretation of photosynthetic light- response curves in algae in the context of photoinhibition and diel changes. J. Phycol. 29 729–739.

Hou M., Tian F., Zhang T., Huang M. (2019). Evaluation of canopy temperature depression, transpiration, and canopy greenness in relation to yield of soybean at reproductive stage based on remote sensing imagery. Agric. Water Manag. 222 182–192. 10.1016/j.agwat.2019.06.005 DOI

Junker A., Muraya M. M., Weigelt-Fischer K., Arana-Ceballos F., Klukas C., Melchinger A. E., et al. (2015). Optimizing experimental procedures for quantitative evaluation of crop plant performance in high throughput phenotyping systems. Front. Plant Sci. 5:770. 10.3389/fpls.2014.00770 PubMed DOI PMC

Lisiecka J., Knaflewski M., Spiżewski T., Frąszczak B., Kałużewicz A., Krzesinski W. (2011). The effect of animal protein hydrolysate on quantity and quality of strawberry daughter plants cv. ‘Elsanta’. Acta Sci. Pol. Hortorum Cultus 10 31–40. 10.5586/aa.2014.012 DOI

Ludwig-Müller J. (2011). Auxin conjugates: their role for plant development and in the evolution of land plants. J. Exp. Bot. 62 1757–1773. 10.1093/jxb/erq412 PubMed DOI

Lüthje S., Möller B., Perrineau F. C., Wöltje K. (2013). Plasma membrane electron pathways and oxidative stress. Antioxid. Redox Signal. 18 2163–2183. 10.1089/ars.2012.5130 PubMed DOI

McCulloch C. E., Searle S. R. (2000). “Generalized, linear, and mixed models,” in Wiley Series in Probability and Statistics, eds Shewhart W. A., Wilks S. S. (New York: Wiley; ), 10.1002/0471722073 DOI

Mellor N., Band L. R., Pìnèík A., Novák O., Rashed A., Holman T. (2016). Dynamic regulation of auxin oxidase and conjugating enzymes AtDAO1 and GH3 modulates auxin homeostasis. Proc. Natl. Acad. Sci. U. S. A. 113 11022–11027. 10.1073/pnas.1604458113 PubMed DOI PMC

Meza S. L. R., Egea I., Massaretto I. L., Morales B., Purgatto E., Egea-Fernández J. M., et al. (2020). Traditional tomato varieties improve fruit quality without affecting fruit yield under moderate salt stress. Front. Plant Sci. 11:587754. 10.3389/fpls.2020.587754 PubMed DOI PMC

Mimmo T., Tiziani R., Valentinuzzi F., Lucini L., Nicoletto C., Sambo P., et al. (2017). Selenium biofortification in Fragaria × ananassa: implications on strawberry fruits quality, content of bioactive health beneficial compounds and metabolomic profile. Front. Plant Sci. 8:1887. 10.3389/fpls.2017.01887 PubMed DOI PMC

Miras-Moreno B., Zhang L., Senizza B., Lucini L. (2021). A metabolomics insight into the Cyclic Nucleotide Monophosphate signaling cascade in tomato under non-stress and salinity conditions. Plant Sci. 309:110955. 10.1101/2021.03.22.436432 PubMed DOI

Moncada A., Vetrano F., Miceli A. (2020). Alleviation of salt stress by plant growth-promoting bacteria in hydroponic leaf lettuce. Agronomy 10:1523. 10.3390/agronomy10101523 DOI

Mukhopadhyay R., Sarkar B., Jat H. S., Sharma P. C., Bolan N. S. (2021). Soil salinity under climate change: challenges for sustainable agriculture and food security. J. Environ. Manage. 280:111736. 10.1016/j.jenvman.2020.111736 PubMed DOI

Munns R., James R. A. (2000). Screening methods for salinity tolerance: a case study with tetraploid wheat. Plant Soil 253 201–218. 10.1023/a:1024553303144 DOI

Munns R., Tester M. (2008). Mechanisms of Salinity Tolerance. Annu. Rev. Plant Biol. 59 651–681. 10.1146/annurev.arplant.59.032607.092911 PubMed DOI

Mutale-joan C., Redouane B., Najib E., Yassine K., Lyamlouli K., Sbabou L., et al. (2020). Screening of microalgae liquid extracts for their biostimulant properties on plant growth, nutrient uptake and metabolite profile of Solanum lycopersicum L. Sci. Rep. 10:2820. 10.1038/s41598-020-59840-4 PubMed DOI PMC

Paul K., Sorrentino M., Lucini L., Rouphael Y., Cardarelli M., Bonini P., et al. (2019a). A combined phenotypic and metabolomic approach for elucidating the biostimulant action of a plant-derived protein hydrolysate on tomato grown under limited water availability. Front. Plant Sci. 10:493. 10.3389/fpls.2019.00493 PubMed DOI PMC

Paul K., Sorrentino M., Lucini L., Rouphael Y., Cardarelli M., Bonini P., et al. (2019b). Understanding the biostimulant action of vegetal-derived protein hydrolysates by high-throughput plant phenotyping and metabolomics: a case study on tomato. Front. Plant Sci. 10:47. 10.3389/fpls.2019.00047 PubMed DOI PMC

Pretali L., Bernardo L., Butterfield T. S., Trevisan M., Lucini L. (2016). Botanical and biological pesticides elicit a similar Induced Systemic Response in tomato (Solanum lycopersicum) secondary metabolism. Phytochemistry 130 56–63. 10.1016/j.phytochem.2016.04.002 PubMed DOI

Qi Y. (2012). “Random forest for bioinformatics,” in Ensemble machine learning, eds Zhang C., Ma Y. Q. (Springer: Boston; ), 307–323.

R Core Team (2014). R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing.

Rahaman M. M., Ahsan M. A., Gillani Z., Chen M. (2017). Digital biomass accumulation using high-throughput plant phenotype data analysis. J. Integr. Bioinform. 14:20170028. 10.1515/jib-2017-0028 PubMed DOI PMC

Rascher U., Liebig M., Lüttge U. (2000). Evaluation of instant light-response curves of chlorophyll fluorescence parameters obtained with a portable chlorophyll fluorometer on site in the field. Plant Cell Environ. 23 1397–1405.

Robert P., Escoufier Y. (1976). A unifying tool for linear multivariate statistical methods: the RV- coefficient. Appl. Stat. 25:257. 10.2307/2347233 DOI

Rouphael Y., Spíchal L., Panzarová K., Casa R., Colla G. (2018). High-throughput plant phenotyping for developing novel biostimulants: from lab to field or from field to lab?. Front. Plant Sci. 9:1197. 10.3389/fpls.2018.01197 PubMed DOI PMC

Russell L. (2020). Emmeans: Estimated Marginal Means, Aka Least-Squares Means, R package version 1.4.5. Available online at: https://cran.r-project.org/web/packages/emmeans/index.html (Accessed December 22, 2020).

Salek R. M., Neumann S., Schober D., Hummel J., Billiau K., Kopka J., et al. (2015). COordination of Standards in MetabOlomicS (COSMOS): facilitating integrated metabolomics data access. Metabolomics 11 1598–1599. 10.1007/s11306-015-0822-7 PubMed DOI PMC

Saxena A., Prasad M., Gupta A., Bharill N., Patel O. P., Tiwari A., et al. (2017). A review of clustering techniques and developments. Neurocomputing 267 664–681. 10.1016/j.neucom.2017.06.053 DOI

Schläpfer P., Zhang P., Wang C., Kim T., Banf M., Chae L., et al. (2017). Genome-wide prediction of metabolic enzymes, pathways, and gene clusters in plants. Plant Physiol. 173 2041–2059. 10.1104/pp.16.01942 PubMed DOI PMC

Singh A., Ganapathysubramanian B., Singh A. K., Sarkar S. (2016). Machine learning for high-throughput stress phenotyping in plants. Trends Plant Sci. 21 110–124. 10.1016/j.tplants.2015.10.015 PubMed DOI

Sorrentino M., De Diego N., Ugena L., Spíchal L., Lucini L., Miras-Moreno B., et al. (2021). Seed priming with protein hydrolysates improves arabidopsis growth and stress tolerance to abiotic stresses. Front. Plant Sci. 12:626301. 10.3389/fpls.2021.626301 PubMed DOI PMC

Tsugawa H., Cajka T., Kind T., Ma Y., Higgins B., Ikeda K., et al. (2015). MS-DIAL: data-independent MS/MS deconvolution for comprehensive metabolome analysis. Nat. Methods 12 523–526. 10.1038/nmeth.3393 PubMed DOI PMC

Tsugawa H., Kind T., Nakabayashi R., Yukihira D., Tanaka W., Cajka T., et al. (2016). Hydrogen Rearrangement Rules: computational MS/MS Fragmentation and Structure Elucidation Using MS-FINDER Software. Anal. Chem. 88 7946–7958. 10.1021/acs.analchem.6b00770 PubMed DOI PMC

Ugena L., Hılová A., Podlešáková K., Humplík J. F., Doležal K., De Diego N., et al. (2018). Characterization of biostimulant mode of action using novel Multi-Trait High-Throughput Screening of Arabidopsis germination and rosette growth. Front. Plant Sci. 9:1327. 10.3389/fpls.2018.01327 PubMed DOI PMC

Van Oosten M. J., Pepe O., De Pascale S., Silletti S., Maggio A. (2017). The role of biostimulants and bioeffectors as alleviators of abiotic stress in crop plants. Chem. Biol. Technol. Agric. 4:5. 10.1186/s40538-017-0089-5 DOI

Vanderstraeten L., Depaepe T., Bertrand S., Van Der Straeten D. (2019). The ethylene precursor ACC affects early vegetative development independently of ethylene signaling. Front. Plant Sci. 10:1591. 10.3389/fpls.2019.01591 PubMed DOI PMC

Veselov D., Mustafina A., Sabirjanova I., Akhiyarova G. R., Dedov A. V., Veselov S. U., et al. (2002). Effect of PEG-treatment on the leaf growth response and auxin content in shoots of wheat seedlings. Plant Growth Regul. 38 191–194. 10.1023/A:1021254702134 DOI

Yamaguchi T., Blumwald E. (2005). Developing salt-tolerant crop plants: challenges and opportunities. Trends Plant Sci. 10 615–620. 10.1016/j.tplants.2005.10.002 PubMed DOI

Yang L., Wu L., Yao X., Zhao S., Wang J., Li S., et al. (2018). Hydroxycoumarins: new, effective plant-derived compounds reduce Ralstonia pseudosolanacearum populations and control tobacco bacterial wilt. Microbiol. Res. 215 15–21. 10.1016/j.micres.2018.05.011 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...