Understanding the Biostimulant Action of Vegetal-Derived Protein Hydrolysates by High-Throughput Plant Phenotyping and Metabolomics: A Case Study on Tomato
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
30800134
PubMed Central
PMC6376207
DOI
10.3389/fpls.2019.00047
Knihovny.cz E-zdroje
- Klíčová slova
- ROS signaling, functional biostimulant characterization, integrative image-based high-throughput phenotyping, metabolomics, morpho-physiological traits, protein hydrolysates,
- Publikační typ
- časopisecké články MeSH
Designing and developing new biostimulants is a crucial process which requires an accurate testing of the product effects on the morpho-physiological traits of plants and a deep understanding of the mechanism of action of selected products. Product screening approaches using omics technologies have been found to be more efficient and cost effective in finding new biostimulant substances. A screening protocol based on the use of high-throughput phenotyping platform for screening new vegetal-derived protein hydrolysates (PHs) for biostimulant activity followed by a metabolomic analysis to elucidate the mechanism of the most active PHs has been applied on tomato crop. Eight PHs (A-G, I) derived from enzymatic hydrolysis of seed proteins of Leguminosae and Brassicaceae species were foliarly sprayed twice during the trial. A non-ionic surfactant Triton X-100 at 0.1% was also added to the solutions before spraying. A control treatment foliarly sprayed with distilled water containing 0.1% Triton X-100 was also included. Untreated and PH-treated tomato plants were monitored regularly using high-throughput non-invasive imaging technologies. The phenotyping approach we used is based on automated integrative analysis of photosynthetic performance, growth analysis, and color index analysis. The digital biomass of the plants sprayed with PH was generally increased. In particular, the relative growth rate and the growth performance were significantly improved by PHs A and I, respectively, compared to the untreated control plants. Kinetic chlorophyll fluorescence imaging did not allow to differentiate the photosynthetic performance of treated and untreated plants. Finally, MS-based untargeted metabolomics analysis was performed in order to characterize the functional mechanisms of selected PHs. The treatment modulated the multi-layer regulation process that involved the ethylene precursor and polyamines and affected the ROS-mediated signaling pathways. Although further investigation is needed to strengthen our findings, metabolomic data suggest that treated plants experienced a metabolic reprogramming following the application of the tested biostimulants. Nonetheless, our experimental data highlight the potential for combined use of high-throughput phenotyping and metabolomics to facilitate the screening of new substances with biostimulant properties and to provide a morpho-physiological and metabolomic gateway to the mechanisms underlying PHs action on plants.
Arcadia Srl Rivoli Veronese Italy
Department of Agricultural Sciences University of Naples Federico 2 Naples Italy
Department of Agriculture and Forest Sciences University of Tuscia Viterbo Italy
Zobrazit více v PubMed
Agudelo-Romero P., Erban A., Sousa L., Pais M. S., Kopka J., Fortes A. M. (2013). Search for transcriptional and metabolic markers of grape pre-ripening and ripening and insights into specific aroma development in three Portuguese cultivars. PubMed DOI PMC
Awlia M., Nigro A., Fajkus J., Schmoeckel S. M., Negrão S., Santelia D., et al. (2016). High-throughput non-destructive phenotyping of traits that contribute to salinity tolerance in PubMed DOI PMC
Baker N. R. (2008). Chlorophyll fluorescence: a probe of photosynthesis PubMed DOI
Calvo P., Nelson L., Kloepper J. W. (2014). Agricultural uses of plant biostimulants. DOI
Caviglia M., Mazorra Morales L. M., Concellón A., Gergoff Grozeff G. E., Wilson M., Foyer C. H., et al. (2018). Ethylene signaling triggered by low concentrations of ascorbic acid regulates biomass accumulation in PubMed DOI
Colla G., Cardarelli M., Bonini P., Rouphael Y. (2017a). Foliar applications of protein hydrolysate, plant and seaweed extracts increase yield but differentially modulate fruit quality of greenhouse tomato. DOI
Colla G., Hoagland L., Ruzzi M., Cardarelli M., Bonini P., Canaguier R., et al. (2017b). Biostimulant action of protein hydrolysates: unravelling their effects on plant physiology and microbiome. PubMed DOI PMC
Colla G., Nardi S., Cardarelli M., Ertani A., Lucini L., Canaguier R., et al. (2015). Protein hydrolysates as biostimulants in horticulture. DOI
Colla G., Rouphael Y., Canaguier R., Svecova E., Cardarelli M. (2014). Biostimulant action of a plant-derived protein hydrolysate produced through enzymatic hydrolysis. PubMed DOI PMC
Colla G., Rouphael Y., Lucini L., Canaguier R., Stefanoni W., Fiorillo A., et al. (2016). Protein hydrolysate-based biostimulants: origin, biological activity and application methods. DOI
Digruber T., Sass L., Cseri A., Paul K., Nagy A. V., Remenyik J., et al. (2018). Stimulation of energy willow biomass with triacontanol and seaweed extract. DOI
Dubois M., Van den Broeck L., Inzé D. (2018). The pivotal role of ethylene in plant Growth. PubMed DOI PMC
Dudits D., Török K., Cseri A., Paul K., Nagy A. V., Nagy B., et al. (2016). Response of organ structure and physiology to autotetraploidization in early development of energy willow ( PubMed DOI PMC
Ertani A., Cavani L., Pizzeghello D., Brandellero E., Altissimo A., Ciavatta C., et al. (2009). Biostimulant activities of two protein hydrolysates on the growth and nitrogen metabolism in maize seedlings. DOI
Ertani A., Nardi S., Altissimo A. (2012). Review: long-term research activity on the biostimulant properties of natural origin compounds. DOI
Ertani A., Pizzeghello D., Francioso O., Tinti A., Nardi S. (2016). Biological activity of vegetal extracts containing phenols on plant metabolism. PubMed DOI PMC
Ertani A., Schiavon M., Muscolo A., Nardi S. (2013). Alfalfa plant-derived biostimulant stimulate short-term growth of salt stressed DOI
Ertani A., Schiavon M., Nardi S. (2017). Transcriptome-wide identification of differentially expressed genes in Solanum Lycopersicon L. in response to an alfalfa-protein hydrolysate using microarrays. PubMed DOI PMC
European Commission (2016).
Fahlgren N., Gehan M. A., Baxter I. (2015). Lights, camera, action: high-throughput plant phenotyping is ready for a close-up. PubMed DOI
Fehér-Juhász E., Majer P., Sass L., Lantos C., Csiszár J., Turóczy Z., et al. (2014). Phenotyping shows improved physiological traits and seed yield of transgenic wheat plants expressing the alfalfa aldose reductase under permanent drought stress. DOI
Fernández V., Eichert T. (2009). Uptake of hydrophilic solutes through plant leaves: current state of knowledge and perspectives of foliar fertilization. DOI
Feussner I., Polle A. (2015). What the transcriptome does not tell – proteomics and metabolomics are closer to the plants’ patho-phenotype. PubMed DOI
Foyer C. H. (2018). Reactive oxygen species, oxidative signaling and the regulation of photosynthesis. PubMed DOI PMC
Foyer C. H., Ruban A. V., Noctor G. (2017). Viewing oxidative stress through the lens of oxidative signalling rather than damage. PubMed DOI PMC
Gémes K., Kim Y. J., Park K. Y., Moschou P. N., Andronis E., Valassaki C., et al. (2016). An NADPH-oxidase/polyamine oxidase feedback loop controls oxidative burst under salinity. PubMed DOI PMC
Gémes K., Mellidou I, Karamanoli K., Beris D., Park K. Y., Matsi T., et al. (2017). Deregulation of apoplastic polyamine oxidase affects development and salt response of tobacco plants. PubMed DOI
Genty B., Briantais J. M., Baker N. R. (1989). The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. DOI
Ghandchi F. P., Caetano-Anolles G., Clough S. J., Ort D. R. (2016). Investigating the control of chlorophyll degradation by genomic correlation mining. PubMed DOI PMC
Gill S. S., Tuteja N. (2010). Polyamines and abiotic stress tolerance in plants. PubMed DOI PMC
Großkinsky D. K., Svensgaard J., Christensen S., Roitsch T. (2015). Plant phenomics and the need for physiological phenotyping across scales to narrow the genotype-to-phenotype knowledge gap. PubMed DOI
Habben J. E., Bao X., Bate N. J., DeBruin J. L., Dolan D., Hasegawa D., et al. (2014). Transgenic alteration of ethylene biosynthesis increases grain yield in maize under field drought-stress conditions. PubMed DOI
Haplern M., Bar-Tal A., Ofek M., Minz D., Muller T., Yermiyahu U. (2015). The use of biostimulants for enhancing nutrient uptake. DOI
Henley W. J. (1993). Measurement and interpretation of photosynthetic light-response curves in algae in the context of photoinhibition and diel changes. DOI
Hou Q., Ufer G., Bartels D. (2016). Lipid signalling in plant responses to abiotic stress. PubMed DOI
Hou Z.-H., Liu G., Hua Hou L., Xia Wang L., et al. (2013). Regulatory Function of polyamine oxidase-generated hydrogen peroxide in ethylene-induced stomatal closure in Arabidopsis thaliana. DOI
Houle D., Govindaraju D. R., Omholt S. (2010). Phenomics: the next challenge. PubMed DOI
Klukas C., Chen D., Pape J. M. (2014). Integrated analysis platform: an open-source information system for high-throughput plant phenotyping. PubMed DOI PMC
Kumar A., Altabella T., Taylor M., Tiburcio A. F. (1997). Recent advances in polyamine research. DOI
Kumar P., Lucini L., Rouphael Y., Cardarelli M., Kalunke R. M., Colla G. (2015). Insight into the role of grafting and arbuscular mycorrhiza on cadmium stress tolerance in tomato. PubMed DOI PMC
Lamichhane S., Sen P., Dickens A. M., Hyötyläinen T., Orešiè M. (2018). An overview of metabolomics data analysis: current tools and future perspectives. DOI
Lucini L., Rouphael Y., Cardarelli M., Bonini P., Baffi C., Colla G. (2018). A vegetal biopolymer-based biostimulant promoted root growth in melon while triggering brassinosteroids and stress-related compounds. PubMed DOI PMC
Lucini L., Rouphael Y., Cardarelli M., Canaguier R., Kumar P., Colla G. (2015). The effect of a plant-derived protein hydrolysate on metabolic profiling and crop performance of lettuce grown under saline conditions. DOI
Meier R., Ruttkies C., Treutler H., Neumann S. (2017). Bioinformatics can boost metabolomics research. PubMed DOI
Murchie E. H., Lawson T. (2013). Chlorophyll fluorescence analysis: a guide to good practice and understanding some new applications. PubMed DOI
Nardi S., Pizzeghello D., Schiavon M., Ertani A. (2016). Plant biostimulants: physiological responses induced by protein hydrolyzed-based products and humic substances in plant metabolism. DOI
Niculescu M., Bajenaru S., Gaidau C., Simion D., Felipescu L. (2009). Extraction of the protein components as amino-acids hydrolysates from chrome leather wastes through hydrolytic processes.
Paul K., Deaìk Z., Csôsz M., Purnhauser L., Vass I. (2011). Characterization and early detection of tan spot disease in wheat in vivo with chlorophyll fluorescence imaging. DOI
Povero G., Mejia J. F., Di Tommaso D., Piaggesi A., Warrior P. (2016). A systematic approach to discover and characterize natural plant biostimulants. PubMed DOI PMC
Rahaman M. M., Ahsan M. A., Gillani Z., Chen M. (2017). Digital biomass accumulation using high-throughput plant phenotype data analysis. PubMed DOI PMC
Rahaman M. M., Chen D., Gillani Z., Klukas C., Chen M. (2015). Advanced phenotyping and phenotype data analysis for the study of plant growth and development. PubMed DOI PMC
Rascher U., Liebig M., Luttge U. (2000). Evaluation of instant light-response curves of chlorophyll fluorescence parameters obtained with a portable chlorophyll fluorometer on site in the field. DOI
Rouphael Y., Cardarelli M., Bonini P., Colla G. (2017a). Synergistic action of a microbial based biostimulant and a plant-derived protein hydrolysate enhances lettuce tolerance to alkalinity and salinity. PubMed DOI PMC
Rouphael Y., Colla G., Giordano M., El-Nakhel C., Kyriacou M. C., De Pascale S. (2017b). Foliar applications of a legume-derived protein hydrolysate elicit dose dependent increases of growth, leaf mineral composition, yield and fruit quality in two greenhouse tomato cultivars. DOI
Rouphael Y., Colla G., Graziani G., Ritieni A., Cardarelli M., De Pascale S. (2017c). Phenolic composition, antioxidant activity and mineral profile in two seed-propagated artichoke cultivars as affected by microbial inoculants and planting time. PubMed DOI
Rouphael Y., Colla G., Bernardo L., Kane D., Trevisan M., Lucini L. (2016). Zinc excess triggered polyamines accumulation in lettuce root metabolome, as compared to osmotic stress under high salinity. PubMed DOI PMC
Rouphael Y., Kyriacou M., Vitaglione P., Giordano M., Pannico A., Colantuono A., et al. (2017d). Genotypic variation in nutritional and antioxidant profile among iceberg lettuce cultivars. DOI
Rouphael Y., Spiìchal L., Panzarova K., Casa R., Colla G. (2018). High-throughput plant phenotyping for developing novel biostimulants: from lab to field or from field to lab? PubMed DOI PMC
Salehi H., Chehregani A., Lucini L., Majd A., Gholami M. (2018). Morphological, proteomic and metabolomic insight into the effect of cerium dioxide nanoparticles to PubMed DOI
Schaller G. E. (2012). Ethylene and the regulation of plant development. PubMed DOI PMC
Shalaby S., Horwitz B. A. (2015). Plant phenolic compounds and oxidative stress: integrated signals in fungal–plant interactions. PubMed DOI
Small C. C., Degenhardt D. (2018). Plant growth regulators for enhancing revegetation success in reclamation: a review. DOI
Subbarao S. B., Aftab Hussain I. S., Ganesh P. T. (2015). Biostimulant activity of protein hydrolysate: influence on plant growth and yield.
Tschiersch H., Junker A., Meyer R. C., Altmann T. (2017). Establishment of integrated protocols for automated high throughput kinetic chlorophyll fluorescence analyses. PubMed DOI PMC
Tsugawa H. (2018). Advances in computational metabolomics and databases deepen the understanding of metabolisms. PubMed DOI
Ugena L., Hýlová A., Podlešáková K., Humplík J. F., Doležal K., De Diego N., et al. (2018). Characterization of biostimulant mode of action using novel multitrait high-throughput screening of PubMed DOI PMC
Yakhin O. I., Lubyanov A. A., Yakhin I. A., Brown P. H. (2017). Biostimulants in plant science: a global perspective. PubMed DOI PMC
Presence and future of plant phenotyping approaches in biostimulant research and development