Low temperature induced modulation of photosynthetic induction in non-acclimated and cold-acclimated Arabidopsis thaliana: chlorophyll a fluorescence and gas-exchange measurements
Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články
PubMed
30306531
DOI
10.1007/s11120-018-0588-7
PII: 10.1007/s11120-018-0588-7
Knihovny.cz E-zdroje
- Klíčová slova
- 3-(3, 4-dichlorophenyl)-1, 1- dimethylurea, Chlorophyll fluorescence transients, Cold acclimation, Gas-exchange measurements, Low-temperature effect, Methyl viologen, Slow SMT fluorescence phase, State transition,
- MeSH
- aklimatizace MeSH
- Arabidopsis metabolismus MeSH
- chlorofyl a metabolismus MeSH
- fotosyntéza fyziologie MeSH
- nízká teplota MeSH
- teplota MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- chlorofyl a MeSH
Cold acclimation modifies the photosynthetic machinery and enables plants to survive at sub-zero temperatures, whereas in warm habitats, many species suffer even at non-freezing temperatures. We have measured chlorophyll a fluorescence (ChlF) and CO2 assimilation to investigate the effects of cold acclimation, and of low temperatures, on a cold-sensitive Arabidopsis thaliana accession C24. Upon excitation with low intensity (40 µmol photons m- 2 s- 1) ~ 620 nm light, slow (minute range) ChlF transients, at ~ 22 °C, showed two waves in the SMT phase (S, semi steady-state; M, maximum; T, terminal steady-state), whereas CO2 assimilation showed a linear increase with time. Low-temperature treatment (down to - 1.5 °C) strongly modulated the SMT phase and stimulated a peak in the CO2 assimilation induction curve. We show that the SMT phase, at ~ 22 °C, was abolished when measured under high actinic irradiance, or when 3-(3, 4-dichlorophenyl)-1, 1- dimethylurea (DCMU, an inhibitor of electron flow) or methyl viologen (MV, a Photosystem I (PSI) electron acceptor) was added to the system. Our data suggest that stimulation of the SMT wave, at low temperatures, has multiple reasons, which may include changes in both photochemical and biochemical reactions leading to modulations in non-photochemical quenching (NPQ) of the excited state of Chl, "state transitions," as well as changes in the rate of cyclic electron flow through PSI. Further, we suggest that cold acclimation, in accession C24, promotes "state transition" and protects photosystems by preventing high excitation pressure during low-temperature exposure.
Department of Experimental Biology Masaryk University Kamenice 5 625 00 Brno Czech Republic
Global Change Research Institute Czech Academy of Sciences Bělidla 986 4a 603 00 Brno Czech Republic
Zobrazit více v PubMed
Plant Physiol. 1999 Apr;119(4):1387-98 PubMed
Biochim Biophys Acta. 1999 May 26;1412(1):1-28 PubMed
Plant Physiol. 1999 Jun;120(2):391-400 PubMed
Nature. 2000 Jan 27;403(6768):371, 373-4 PubMed
Photochem Photobiol. 2000 Jul;72(1):75-84 PubMed
J Exp Bot. 2000 Apr;51(345):659-68 PubMed
Trends Plant Sci. 2001 Jan;6(1):36-42 PubMed
Plant Physiol. 2001 Apr;125(4):1558-66 PubMed
Proc Natl Acad Sci U S A. 1996 Mar 5;93(5):2213-8 PubMed
Curr Opin Plant Biol. 2002 Jun;5(3):193-8 PubMed
Proc Natl Acad Sci U S A. 2002 Jul 23;99(15):10209-14 PubMed
Philos Trans R Soc Lond B Biol Sci. 2002 Jul 29;357(1423):831-47 PubMed
Biochim Biophys Acta. 2002 Dec 2;1556(2-3):239-46 PubMed
Plant Physiol. 2002 Dec;130(4):1992-8 PubMed
Science. 2003 Mar 7;299(5612):1530-2 PubMed
Genome Res. 2003 Jun;13(6A):1250-7 PubMed
Plant Physiol. 2003 Aug;132(4):2144-51 PubMed
Annu Rev Plant Physiol Plant Mol Biol. 1999 Jun;50:601-639 PubMed
J Exp Bot. 2004 May;55(400):1195-205 PubMed
J Exp Bot. 2004 Aug;55(403):1607-21 PubMed
Proc Natl Acad Sci U S A. 2004 Oct 19;101(42):15243-8 PubMed
Plant Cell Physiol. 2004 Nov;45(11):1595-602 PubMed
Plant Physiol. 2005 Jan;137(1):263-73 PubMed
Plant Cell Physiol. 2005 May;46(5):775-81 PubMed
Photosynth Res. 2005 Jun;84(1-3):173-80 PubMed
Photosynth Res. 2004 Feb;79(2):209 PubMed
Photosynth Res. 2004;82(1):73-81 PubMed
J Exp Bot. 2006;57(2):291-302 PubMed
Biochim Biophys Acta. 2006 May-Jun;1757(5-6):362-8 PubMed
Plant Physiol. 2006 Sep;142(1):98-112 PubMed
Annu Rev Plant Biol. 2007;58:199-217 PubMed
J Microsc. 2007 May;226(Pt 2):90-120 PubMed
Photosynth Res. 2007 Jul-Sep;93(1-3):193-203 PubMed
Photosynth Res. 2007 Nov-Dec;94(2-3):217-24 PubMed
Plant Cell Environ. 2007 Sep;30(9):1086-106 PubMed
Photosynth Res. 2007 Nov-Dec;94(2-3):275-90 PubMed
Nat Genet. 2007 Nov;39(11):1410-3 PubMed
Biochim Biophys Acta. 2007 Dec;1767(12):1363-71 PubMed
Nature. 2007 Nov 22;450(7169):575-8 PubMed
Annu Rev Plant Biol. 2008;59:89-113 PubMed
Plant Methods. 2008 May 27;4:12 PubMed
Tree Physiol. 2008 Aug;28(8):1189-97 PubMed
Plant Cell Environ. 2008 Nov;31(11):1725-33 PubMed
Arch Biochem Biophys. 1991 Jul;288(1):1-9 PubMed
Trends Plant Sci. 2009 Apr;14(4):219-28 PubMed
J Exp Bot. 2009;60(11):2987-3004 PubMed
Biochim Biophys Acta. 2010 May;1797(5):525-30 PubMed
Photosynth Res. 2010 Aug;105(2):101-13 PubMed
Plant Physiol. 2010 Oct;154(2):571-7 PubMed
Plant Physiol. 2011 Jan;155(1):70-8 PubMed
Plant Physiol. 2011 Jan;155(1):86-92 PubMed
J Photochem Photobiol B. 2011 Jul-Aug;104(1-2):236-57 PubMed
Plant Signal Behav. 2011 Feb;6(2):301-10 PubMed
J Photochem Photobiol B. 2011 Jul-Aug;104(1-2):258-70 PubMed
Planta. 2011 Sep;234(3):477-86 PubMed
Proc Natl Acad Sci U S A. 2011 Aug 9;108(32):13317-22 PubMed
Proc Natl Acad Sci U S A. 2011 Sep 27;108(39):16475-80 PubMed
Biochim Biophys Acta. 2012 Aug;1817(8):1237-47 PubMed
Photosynth Res. 2012 Sep;113(1-3):15-61 PubMed
Physiol Plant. 2013 Jan;147(1):55-63 PubMed
Photosynth Res. 2012 Dec;114(2):69-96 PubMed
Philos Trans R Soc Lond B Biol Sci. 2012 Dec 19;367(1608):3455-65 PubMed
Int Rev Cell Mol Biol. 2013;300:243-303 PubMed
Anal Bioanal Chem. 2013 Mar;405(8):2671-83 PubMed
Planta. 1985 Mar;163(3):419-23 PubMed
Planta. 1981 Nov;153(3):273-8 PubMed
Photosynth Res. 1991 Feb;27(2):121-33 PubMed
Plant Methods. 2014 Nov 06;10(1):38 PubMed
J Plant Physiol. 2015 Mar 1;175:131-47 PubMed
Photosynth Res. 2015 Aug;125(1-2):219-31 PubMed
Plant Methods. 2015 Mar 19;11:20 PubMed
Photosynth Res. 2015 Jun;124(3):253-65 PubMed
PLoS One. 2015 May 26;10(5):e0127200 PubMed
Proc Natl Acad Sci U S A. 2015 Jul 14;112(28):8529-36 PubMed
Photosynth Res. 2016 Dec;130(1-3):193-213 PubMed
Plant Methods. 2016 Nov 14;12:46 PubMed
Front Plant Sci. 2016 Dec 16;7:1849 PubMed
Oecologia. 1986 Jul;69(4):524-531 PubMed
Plants (Basel). 2017 Aug 09;6(3):null PubMed
Photosynth Res. 2018 May;136(2):183-198 PubMed
Arch Biochem Biophys. 1985 Mar;237(2):513-9 PubMed
Biochim Biophys Acta. 1979 Oct 10;548(1):128-38 PubMed
Biophys J. 1968 Nov;8(11):1299-315 PubMed
Biophys J. 1968 Nov;8(11):1316-28 PubMed
Biophys J. 1969 Jan;9(1):1-21 PubMed
J Gen Physiol. 1966 Mar;49(4):763-80 PubMed
Biochim Biophys Acta. 1980 Jun 10;591(1):198-202 PubMed
Biochim Biophys Acta. 1981 May 13;635(3):542-51 PubMed
Proc Natl Acad Sci U S A. 1996 Nov 26;93(24):14204-9 PubMed
Biochemistry. 1997 Apr 8;36(14):4149-54 PubMed
Biochim Biophys Acta. 1998 Feb 25;1363(2):95-9 PubMed
Photosynthesis: basics, history and modelling