Chlorophyll a fluorescence, under half of the adaptive growth-irradiance, for high-throughput sensing of leaf-water deficit in Arabidopsis thaliana accessions

. 2016 ; 12 () : 46. [epub] 20161114

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid27872654

BACKGROUND: Non-invasive and high-throughput monitoring of drought in plants from its initiation to visible symptoms is essential to quest drought tolerant varieties. Among the existing methods, chlorophyll a fluorescence (ChlF) imaging has the potential to probe systematic changes in photosynthetic reactions; however, prerequisite of dark-adaptation limits its use for high-throughput screening. RESULTS: To improve the throughput monitoring of plants, we have exploited their light-adaptive strategy, and investigated possibilities of measuring ChlF transients under low ambient irradiance. We found that the ChlF transients and associated parameters of two contrasting Arabidopsis thaliana accessions, Rsch and Co, give almost similar information, when measured either after ~20 min dark-adaptation or in the presence of half of the adaptive growth-irradiance. The fluorescence parameters, effective quantum yield of PSII photochemistry (ΦPSII) and fluorescence decrease ratio (RFD) resulting from this approach enabled us to differentiate accessions that is often not possible by well-established dark-adapted fluorescence parameter maximum quantum efficiency of PSII photochemistry (FV/FM). Further, we screened ChlF transients in rosettes of well-watered and drought-stressed six A. thaliana accessions, under half of the adaptive growth-irradiance, without any prior dark-adaptation. Relative water content (RWC) in leaves was also assayed and compared to the ChlF parameters. As expected, the RWC was significantly different in drought-stressed from that in well-watered plants in all the six investigated accessions on day-10 of induced drought; the maximum reduction in the RWC was obtained for Rsch (16%), whereas the minimum reduction was for Co (~7%). Drought induced changes were reflected in several features of ChlF transients; combinatorial images obtained from pattern recognition algorithms, trained on pixels of image sequence, improved the contrast among drought-stressed accessions, and the derived images were well-correlated with their RWC. CONCLUSIONS: We demonstrate here that ChlF transients and associated parameters measured even in the presence of low ambient irradiance preserved its features comparable to that of measured after dark-adaptation and discriminated the accessions having differential geographical origin; further, in combination with combinatorial image analysis tools, these data may be readily employed for early sensing and mapping effects of drought on plant's physiology via easy and fully non-invasive means.

Zobrazit více v PubMed

Somerville C, Briscoe L. Genetic engineering and water. Science. 2001;292:2217. doi: 10.1126/science.292.5525.2217. PubMed DOI

Lobell DB, Schlenker W, Costa-Roberts J. Climate trends and global crop production since 1980. Science. 2011;333:616–620. doi: 10.1126/science.1204531. PubMed DOI

AghaKouchak A, Feldman D, Hoerling M, Huxman T, Lund J. Recognize anthropogenic drought. Nature. 2015;524:409–411. doi: 10.1038/524409a. PubMed DOI

Sharma KK, Lavanya M. Recent developments in transgenics for abiotic stress in legumes of the semi-arid tropics. In: Ivanaga M, editor. Genetic engineering of crop plants for abiotic stress. Working report no. 23, JIRCAS, Tsukuba, Japan; 2002. p. 61–73.

Thomson JA. Research needs to improve agricultural productivity and food quality, with emphasis on biotechnology. J Nutr. 2002;132:3441S–3442S. PubMed

Valliyodan B, Nguyen HT. Understanding regulatory networks and engineering for enhanced drought tolerance in plants. Curr Opin Plant Biol. 2006;9:189–195. doi: 10.1016/j.pbi.2006.01.019. PubMed DOI

Boyer JS. Drought decision-making. J Exp Bot. 2010;61:3493–3497. doi: 10.1093/jxb/erq231. PubMed DOI

Campbell B. The global imperative: drought affects us all. Nature. 2013;501:S12–S14. doi: 10.1038/501S12a. PubMed DOI

Bray EA. Molecular responses to water-deficit. Plant Physiol. 1992;103:1035–1040. doi: 10.1104/pp.103.4.1035. PubMed DOI PMC

Gargallo-Garriga A, Sardans J, Pérez-Trujillo M, Oravec M, Urban O, Jentsch A, Kreyling J, Beierkuhnlein C, Parella T, Peñuelas J. Warming differentially influences the effects of drought on stoichiometry and metabolomics in shoots and roots. New Phytol. 2015;207:591–603. doi: 10.1111/nph.13377. PubMed DOI

Blum A, Zhang JX, Nguyen HT. Consistent differences among wheat cultivars in osmotic adjustment and their relationship to plant production. Field Crop Res. 1999;64:287–291. doi: 10.1016/S0378-4290(99)00064-7. DOI

Turner NC, Wright GC, Siddique KHM. Adaptation of grain legumes (pulses) to water limited environments. Adv Agron. 2001;71:193–231. doi: 10.1016/S0065-2113(01)71015-2. DOI

Chaves MM, Maroco JP, Pereira JS. Understanding plant responses to drought—from genes to the whole plant. Funct Plant Biol. 2003;30:239–264. doi: 10.1071/FP02076. PubMed DOI

Blum A, Sinmena B, Ziv O. An evaluation of seed and seedling drought tolerance screening tests in wheat. Euphytica. 1980;29:727–736. doi: 10.1007/BF00023219. DOI

Goltsev V, Zaharieva I, Chaernev P, Kouzmanova M, Kalaji HM, Yordanov I, Krasteva V, Alexandrov V, Stefanov D, Allakhverdiev SL, Strasser RJ. Drought-induced modifications of photosynthetic electron transport in intact leaves: analysis and use of neural networks as a tool for a rapid non-invasive estimation. Biochim Biophys Acta Bioenerg. 2012;1817:1490–1498. doi: 10.1016/j.bbabio.2012.04.018. PubMed DOI

Furbank RT, Tester M. Phenomics—technologies to relieve the phenotyping bottleneck. Trends Plant Sci. 2011;16:635–644. doi: 10.1016/j.tplants.2011.09.005. PubMed DOI

Fiorani F, Schurr U. Future scenarios for plant phenotyping. Annu Rev Plant Biol. 2013;64:267–291. doi: 10.1146/annurev-arplant-050312-120137. PubMed DOI

Hartmann A, Czauderna T, Hoffmann R, Stein N, Schreiber F. HTPheno: an image analysis pipeline for high-throughput plant phenotyping. BMC Bioinform. 2011;12:148. doi: 10.1186/1471-2105-12-148. PubMed DOI PMC

Munns R, James R, Sirault XRR, Furbank RT, Jones HG. New phenotyping methods for screening wheat and barley for beneficial responses to water deficit. J Exp Bot. 2010;61:3499–3507. doi: 10.1093/jxb/erq199. PubMed DOI

Berger B, Parent B, Tester M. High-throughput shoot imaging to study drought responses. J Exp Bot. 2010;11(61):3519–3528. doi: 10.1093/jxb/erq201. PubMed DOI

Nägel KA, Kastenholz B, Jahnke S, van Dusschoten D, Aach T, Mühlich M, Truhn D, Scharr H, Terjung S, Walter A, Schurr U. Temperature responses of roots: Impact on growth, root system architecture and implications for phenotyping. Funct Plant Biol. 2009;36:947–959. doi: 10.1071/FP09184. PubMed DOI

Jansen M, Gilmer F, Biskup B, Nagel KA, Rascher U, Fischbach A, Briem S, Dreissen G, Tittmann S, Braun S, De Jaeger I, Metzlaff M, Schurr U, Walter A. Simultaneous phenotyping of leaf growth and chlorophyll fluorescence via GROWSCREEN FLUORO allows detection of stress tolerance in Arabidopsis thaliana and other rosette plants. Funct Plant Biol. 2009;36:902–914. doi: 10.1071/FP09095. PubMed DOI

Mishra KB, Iannacone R, Petrozza A, Mishra A, Armentano N, Vecchia GL, Trtílek M, Cellini F, Nedbal L. Engineered drought tolerance in tomato plants is reflected in chlorophyll fluorescence emission. Plant Sci. 2012;182:79–86. doi: 10.1016/j.plantsci.2011.03.022. PubMed DOI

Dhondt S, Wuyts N, Inze D. Cell to whole-plant phenotyping: the best is yet to come. Trends Plant Sci. 2013;23(18):428–439. doi: 10.1016/j.tplants.2013.04.008. PubMed DOI

Walter A, Liebisch F, Hund A. Plant phenotyping: from bean weighing to image analysis. Plant Methods. 2015;11:14. doi: 10.1186/s13007-015-0056-8. PubMed DOI PMC

Großkinsky DK, Pieruschka R, Svensgaard J, Rascher U, Christensen S, Schurr U, Roitsch T. Phenotyping in the fields: dissecting the genetics of quantitative traits and digital farming. New Phytol. 2015;207:950–952. doi: 10.1111/nph.13529. PubMed DOI

Govindjee 63 years since Kautsky—chlorophyll a fluorescence. Aust J Plant Physiol. 1995;22:131–160. doi: 10.1071/PP9950131. DOI

Baker NR. Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annu Rev Plant Biol. 2008;59:89–113. doi: 10.1146/annurev.arplant.59.032607.092759. PubMed DOI

Ort DR, Merchant SS, Alric J, Barkan A, Blankenship RE, Bock R, Croce R, Hanson MR, Hibberd JM, Long SP, et al. Redesigning photosynthesis to sustainably meet global food and bioenergy demand. Proc Nal Acad Sci USA. 2015;112:8529–8536. doi: 10.1073/pnas.1424031112. PubMed DOI PMC

Papageorgiou GC, Govindjee Photosynthesis II fluorescence: slow changes-scaling from the past. J Photochem Photobiol B. 2011;104:258–270. doi: 10.1016/j.jphotobiol.2011.03.008. PubMed DOI

Strasser RJ, Tsimilli-Michael M, Srivastava A. Analysis of the chlorophyll a fluorescence transient. In: Papageorgiou GC, Govindjee, editors. Advances in photosynthesis and respiration. Dordrecht: Springer; 2004. pp. 321–362.

Stirbet A, Govindjee On the relation between the Kautsky effect (chlorophyll a fluorescence induction) and photosystem II: basics and applications of the OJIP fluorescence transient. J Photochem Photobiol B. 2011;104:236–257. doi: 10.1016/j.jphotobiol.2010.12.010. PubMed DOI

Stirbet A, Govindjee Chlorophyll a fluorescence induction: a personal perspective of the thermal phase, the J–I–P rise. Photosynth Res. 2012;113:15–61. doi: 10.1007/s11120-012-9754-5. PubMed DOI

Baker NR, Rosenqvist E. Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities. J Exp Bot. 2004;55:1607–1621. doi: 10.1093/jxb/erh196. PubMed DOI

Maxwell K, Johnson GN. Chlorophyll fluorescence—a practical guide. J Exp Bot. 2000;51:659–668. doi: 10.1093/jexbot/51.345.659. PubMed DOI

Govindjee . Chlorophyll a fluorescence: a bit of basics and history. In: Papageorgiou GC, Govindjee, editors. Chlorophyll a fluorescence: a signature of photosynthesis. Kluwer: Dordrecht; 2004. pp. 2–42.

Malenovský Z, Mishra KB, Zemek F, Rascher U, Nedbal L. Scientific and technical challenges in remote sensing of plant canopy reflectance and fluorescence. J Exp Bot. 2009;60:2987–3004. doi: 10.1093/jxb/erp156. PubMed DOI

Omasa K, Shimazaki KI, Aiga I, Larcher W, Onoe M. Image analysis of chlorophyll fluorescence transients for diagnosing the photosynthetic system of attached leaves. Plant Physiol. 1987;84(748–28):752. PubMed PMC

Nedbal L, Soukupová J, Kaftan D, Whitmarsh J, Trtílek M. Kinetic imaging of chlorophyll fluorescence using modulated light. Photosynth Res. 2000;66:3–12. doi: 10.1023/A:1010729821876. PubMed DOI

Rascher U, Hütt MT, Siebke K, Osmond B, Beck F, Lüttge U. Spatiotemporal variation of metabolism in a plant circadian rhythm: the biological clock as an assembly of coupled individual oscillators. Proc Nat Acad Sci USA. 2001;98:11801–11805. doi: 10.1073/pnas.191169598. PubMed DOI PMC

Omasa K, Takayama K. Simultaneous measurement of stomatal conductance, non-photochemical quenching, and photochemical yield of photosystem II in intact leaves by thermal and chlorophyll fluorescence imaging. Plant Cell Physiol. 2003;44:1290–1300. doi: 10.1093/pcp/pcg165. PubMed DOI

Soukupová J, Csefalvay L, Urban O, Košvancová M, Marek MV, Rascher U, Nedbal L. Annual variation of the steady-state chlorophyll fluorescence emission of evergreen plants in temperate zone. Funct Plant Biol. 2008;35:63–76. doi: 10.1071/FP07158. PubMed DOI

Nedbal L, Whitmarsh J. Chlorophyll fluorescence imaging of leaves and fruits. In: Papageorgiou GC, Govindjee, editors. Chlorophyll a fluorescence: a signature of photosynthesis. Kluwer: Dordrecht; 2004. pp. 389–407.

Matouš K, Benediktyova Z, Berger S, Roitsch T, Nedbal L. Case study of combinatorial imaging: what protocol and what chlorophyll fluorescence image to use when visualizing infection of Arabidopsis thaliana by Pseudomonas syringae? Photosynth Res. 2006;90:243–253. doi: 10.1007/s11120-006-9120-6. PubMed DOI

Pineda M, Soukupová J, Matouš K, Nedbal L, Barón M. Conventional and combinatorial chlorophyll fluorescence imaging of tobamo virus-infected plants. Photosynthetica. 2008;46(3):441–451. doi: 10.1007/s11099-008-0076-y. DOI

Pudil P, Novovicova J, Kittler J. Floating search methods in feature selection. Pattern Recognit Lett. 1994;16(15):1119–1125. doi: 10.1016/0167-8655(94)90127-9. DOI

Mishra A, Matouš K, Mishra KB, Nedbal L. Towards discrimination of plant species by machine vision: advanced statistical analysis of chlorophyll fluorescence transients. J Fluoresc. 2009;19(905–19):913. PubMed

Mishra A, Mishra KB, Höermiller II, Heyer AG, Nedbal L. Chlorophyll fluorescence emission as a reporter on cold tolerance in Arabidopsis thaliana accessions. Plant Signal Behav. 2011;6:301–310. doi: 10.4161/psb.6.2.15278. PubMed DOI PMC

Mishra A, Heyer AG, Mishra KB. Chlorophyll fluorescence emission can screen cold tolerance of cold acclimated Arabidopsis thaliana accessions. Plant Methods. 2014;10:38. doi: 10.1186/1746-4811-10-38. PubMed DOI PMC

Groom QJ, Kramer DM, Crofts AR, Ort DR. The non-photochemical reduction of plastoquinone in leaves. Photosynth Res. 1993;36:205–215. doi: 10.1007/BF00033039. PubMed DOI

Rutherford AW, Govindjee A, Inoue Y. Charge accumulation and photochemistry in leaves studied by thermoluminescence and delayed light emission. Proc Nat Acad Sci USA. 1984;81:1107–1111. doi: 10.1073/pnas.81.4.1107. PubMed DOI PMC

Murchie EH, Lawson T. Chlorophyll florescence analysis: a guide to good practice and understanding some new applications. J Exp Bot. 2013;64:3983–3998. doi: 10.1093/jxb/ert208. PubMed DOI

Horton P, Ruban AV, Walters RG. Regulation of light harvesting in green plants. Annu Rev Plant Physiol Plant Mol Biol. 1996;47:655–684. doi: 10.1146/annurev.arplant.47.1.655. PubMed DOI

Tyystjärvi E. Photoinhibition of photosystem II. Int Rev Cel Mol Biol. 2013;300:243–303. doi: 10.1016/B978-0-12-405210-9.00007-2. PubMed DOI

Woo NS, Badger MR, Pogson BJ. A rapid, non-invasive procedure for quantitative assessment of drought survival using chlorophyll fluorescence. Plant Methods. 2008;27:4. PubMed PMC

Flexas J, Escalona JM, Evain S, Gulias J, Moya I, Osmond CB, Medrano H. Steady-state chlorophyll fluorescence (Fs) measurements as a tool to follow variations of net CO2 assimilation and stomatal conductance during water-stress in C-3 plants. Physiol Plant. 2002;114:231–240. doi: 10.1034/j.1399-3054.2002.1140209.x. PubMed DOI

Massacci A, Nabiev SM, Pietrosanti L, Nematov SK, Chernikova TN, Thor K, Leipner J. Response of the photosynthetic apparatus of cotton (Gossypium hirsutum) to the onset of drought stress under field conditions studied by gas-exchange analysis and chlorophyll fluorescence imaging. Plant Physiol Biochem. 2008;46:189–195. doi: 10.1016/j.plaphy.2007.10.006. PubMed DOI

Maxwell K, Borland AM, Haslam RP, Helliker BR, Roberts A, Griffiths H. Modulation of rubisco activity during the diurnal phases of the crassulacean acid metabolism plant Kalanchoë daigremontiana. Plant Physiol. 1999;121:849–856. doi: 10.1104/pp.121.3.849. PubMed DOI PMC

Goethem DV, De Smedt S, Valcke R, Potters G, Samson R. Seasonal, diurnal and vertical variation of chlorophyll fluorescence on phyllostachye humilis in Ireland. PLoS One. 2013;8:E72145. doi: 10.1371/journal.pone.0072145. PubMed DOI PMC

Perez-Martin A, Flexas J, Ribas-Carbo M, Bota J, Tomas M, Infante JM, Diaz-Espejo A. Interactive effects of soil water deficit and air vapour pressure deficit on mesophyll conductance to CO2 in Vitis vinifera and Olea europaea. J Exp Bot. 2009;60:2391–2405. doi: 10.1093/jxb/erp145. PubMed DOI

Granier C, Aguirrezabal L, Chenu K, Cookson SJ, Dauzat M, Hamard P, Thioux JJ, Rolland G, Bouchier-Combaud S, Lebaudy A, et al. PHENOPSIS, an automated platform for reproducible phenotyping of plant responses to soil water deficit in Arabidopsis thaliana permitted the identification of an accession with low sensitivity to soil water deficit. New Phytol. 2006;169:623–635. doi: 10.1111/j.1469-8137.2005.01609.x. PubMed DOI

Fukunga K. Introduction to statistical pattern recognition. 2. San Diego: Academic Press Professional; 1990.

Hannah MA, Wiese D, Freund S, Fiehn O, Heyer AG, Hincha DK. Natural genetic variation of freezing tolerance in Arabidopsis. Plant Physiol. 2006;142:98–112. doi: 10.1104/pp.106.081141. PubMed DOI PMC

Raven JA, Geider RJ. Adaptation, acclimation and regulation in algal photosynthesis. In: Larkum AWD, Douglas S, Raven JA, editors. Photosynthesis of algae. Dordrecht: Kluwer; 2003. pp. 385–412.

Mckew BA, Davey P, Finch SJ, Hopkins J, Lefebvre SC, Metodiev MV, Oxborough K, Raines CA, Lawson T, Geider RJ. The trade-off between the light-harvesting and photoprotective functions of fucoxanthin-chlorophyll proteins dominates light acclimation in Emiliania huxleyi (clone CCMP 1516) New Phytol. 2013;200:74–85. doi: 10.1111/nph.12373. PubMed DOI

Genty B, Briantais JM, Baker NR. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta. 1989;990:87–92. doi: 10.1016/S0304-4165(89)80016-9. DOI

Lichtenthaler HK, Langsdorf G, Lenk S, Buschmann C. Chlorophyll fluorescence imaging of photosynthetic activity with the flash-lamp fluorescence imaging system. Photosynthetica. 2005;43:355–369. doi: 10.1007/s11099-005-0060-8. DOI

Lichtenthaler HK, Ač A, Marek MV, Kalina J, Urban O. Differences in pigment composition, photosynthetic rates and chlorophyll fluorescence images of sun and shade leaves of four tree species. Plant Physiol Biochem. 2007;45:577–588. doi: 10.1016/j.plaphy.2007.04.006. PubMed DOI

Chen D, Wang S, Xiong B, Cao B, Deng X. Carbon/nitrogen imbalance associated with drought-induced leaf senescence in drought-induced leaf senescence in sorghum. PLoS One. 2015;10(8):e0137026. doi: 10.1371/journal.pone.0137026. PubMed DOI PMC

Müller P, Li XP, Niyogi KK. Non-photochemical quenching: a response to excess light energy. Plant Physiol. 2001;125:1558–1566. doi: 10.1104/pp.125.4.1558. PubMed DOI PMC

Ort DR, Baker NR. A photoprotective role for O-2 as an alternative electron sink in photosynthesis? Curr Opin Plant Biol. 2002;5:193–198. doi: 10.1016/S1369-5266(02)00259-5. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...