Relationship between photosynthetic performance and yield loss in winter oilseed rape (Brassica napus L.) under frost conditions

. 2024 ; 62 (3) : 240-251. [epub] 20240731

Status PubMed-not-MEDLINE Jazyk angličtina Země Česko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39649356

Winter oilseed rape (Brassica napus L.), the principal oilseed crop in Europe, is notably vulnerable to spring frosts that can drastically reduce yields in ways that are challenging to predict with standard techniques. Our research focused on evaluating the efficacy of photosynthetic efficiency analysis in this crop and identifying specific chlorophyll fluorescence parameters severely impacted by frost, which could serve as noninvasive biomarkers for yield decline. The experiments were carried out in semi-controlled conditions with several treatments: a control, one day at -3°C, three days at -3°C, one day at -6°C, and three days at -6°C. We employed continuous-excitation and pulse-amplitude-modulation chlorophyll fluorescence measurements to assess plant sensitivity to frost. Also, plant gas exchange and chlorophyll content index measurements were performed. Certain parameters strongly correlated with final yield losses, thereby establishing a basis for developing new agricultural protocols to predict and mitigate frost damage in rapeseed crops accurately.

Zobrazit více v PubMed

Baker N.R., Rosenqvist E.: Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities. – J. Exp. Bot. 55: 1607-1621, 2004. 10.1093/jxb/erh196 PubMed DOI

Bernát G., Steinbach G., Kaňa R. et al.: On the origin of the slow M–T chlorophyll a fluorescence decline in cyanobacteria: interplay of short-term light-responses. – Photosynth. Res. 136: 183-198, 2018. 10.1007/s11120-017-0458-8 PubMed DOI

Brestic M., Zivcak M., Olsovska K. et al.: Reduced glutamine synthetase activity plays a role in control of photosynthetic responses to high light in barley leaves. – Plant Physiol. Biochem. 81: 74-83, 2014. 10.1016/j.plaphy.2014.01.002 PubMed DOI

Chytyk C.J., Hucl P.J., Gray G.R.: Leaf photosynthetic properties and biomass accumulation of selected western Canadian spring wheat cultivars. – Can. J. Plant Sci. 91: 305-314, 2011. 10.4141/CJPS09163 DOI

Dąbrowski P., Baczewska-Dąbrowska A.H., Kalaji H.M. et al.: Exploration of chlorophyll a fluorescence and plant gas exchange parameters as indicators of drought tolerance in perennial ryegrass. – Sensors 19: 2736, 2019. 10.3390/s19122736 PubMed DOI PMC

Dąbrowski P., Pawluśkiewicz B., Baczewska A.H. et al.: Chlorophyll a fluorescence of perennial ryegrass (Lolium perenne L.) varieties under long term exposure to shade. – Žemdirbystė 102: 305-312, 2015. 10.13080/z-a.2015.102.039 DOI

Dellero Y., Jossier M., Bouchereau A. et al.: Leaf phenological stages of winter oilseed rape (Brassica napus L.) have conserved photosynthetic efficiencies but contrasted intrinsic water use efficiencies at high light intensities. – Front. Plant Sci. 12: 659439, 2021. 10.3389/fpls.2021.659439 PubMed DOI PMC

Demmig-Adams B., Adams W.W. III, Baker D.H. et al.: Using chlorophyll fluorescence to assess the fraction of absorbed light allocated to thermal dissipation of excess excitation. – Physiol. Plantarum 98: 253-264, 1996. 10.1034/j.1399-3054.1996.980206.x DOI

Flexas J., Carriquí M.: Photosynthesis and photosynthetic efficiencies along the terrestrial plant’s phylogeny: lessons for improving crop photosynthesis. – Plant J. 101: 964-978, 2020. 10.1111/tpj.14651 PubMed DOI

Fu P., Wilen R.C., Wu G.-H. et al.: Dehydrin gene expression and leaf water potential differs between spring and winter cereals during cold acclimation. – J. Plant Physiol. 156: 394-400, 2000. 10.1016/S0176-1617(00)80079-6 DOI

Kalaji H.M., Goltsev V.N., Żuk-Gołaszewska K. et al.: Chlorophyll Fluorescence: Understanding Crop Performance – Basics and Applications. Pp. 244. CRC Press, Boca Raton: 2017b. 10.1201/9781315153605 DOI

Kalaji H.M., Schansker G., Brestic M. et al.: Frequently asked questions about chlorophyll fluorescence, the sequel. – Photosynth. Res. 132: 13-66, 2017a. 10.1007/s11120-016-0318-y PubMed DOI PMC

Kalaji H.M., Schansker G., Ladle R.J. et al.: Frequently asked questions about in vivo chlorophyll fluorescence: practical issues. – Photosynth. Res. 122: 121-158, 2014. 10.1007/s11120-014-0024-6 PubMed DOI PMC

Kasajima I., Takahara K., Kawai-Yamada M., Uchimiya H.: Estimation of the relative sizes of rate constants for chlorophyll de-excitation processes through comparison of inverse fluorescence intensities. – Plant Cell Physiol. 50: 1600-1616, 2009. 10.1093/pcp/pcp102 PubMed DOI

Kosová K., Prášil I.T., Vítámvás P. et al.: Complex phytohormone responses during the cold acclimation of two wheat cultivars differing in cold tolerance, winter Samanta and spring Sandra. – J. Plant Physiol. 169: 567-576, 2012. 10.1016/j.jplph.2011.12.013 PubMed DOI

Marečková M., Barták M., Hájek J.: Temperature effects on photosynthetic performance of Antarctic lichen Dermatocarpon polyphyllizum: a chlorophyll fluorescence study. – Polar Biol. 42: 685-701, 2019. 10.1007/s00300-019-02464-w DOI

Maxwell K., Johnson G.N.: Chlorophyll fluorescence – a practical guide. – J. Exp. Bot. 51: 659-668, 2000. 10.1093/jexbot/51.345.659 PubMed DOI

Mishra K.B., Mishra A., Novotná K. et al.: Chlorophyll a fluorescence, under half of the adaptive growth-irradiance, for high-throughput sensing of leaf-water deficit in Arabidopsis thaliana accessions. – Plant Methods 12: 46, 2016. 10.1186/s13007-016-0145-3 PubMed DOI PMC

Peng B., Guan K., Zhou W. et al.: Assessing the benefit of satellite-based Solar-Induced Chlorophyll Fluorescence in crop yield prediction. – Int. J. Appl. Earth Observ. 90: 102126, 2020. 10.1016/j.jag.2020.102126 DOI

Perera-Castro A.V., Flexas J.: The ratio of electron transport to assimilation (ETR/AN): underutilized but essential for assessing both equipment’s proper performance and plant status. – Planta 257: 29, 2023. 10.1007/s00425-022-04063-2 PubMed DOI

Pons T.L.: Interaction of temperature and irradiance effects on photosynthetic acclimation in two accessions of Arabidopsis thaliana. – Photosynth. Res. 113: 207-219, 2012. 10.1007/s11120-012-9756-3 PubMed DOI PMC

Porcar-Castell A., Garcia-Plazaola J.I., Nichol C.J. et al.: Physiology of the seasonal relationship between the photochemical reflectance index and photosynthetic light use efficiency. – Oecologia 170: 313-323, 2012. 10.1007/s00442-012-2317-9 PubMed DOI

Pullens J.W.M., Kersebaum K.C., Böttcher U. et al.: Model sensitivity of simulated yield of winter oilseed rape to climate change scenarios in Europe. – Eur. J. Agron. 129: 126341, 2021. 10.1016/j.eja.2021.126341 DOI

Pullens J.W.M., Sharif B., Trnka M. et al.: Risk factors for European winter oilseed rape production under climate change. – Agr. Forest Meteorol. 272-273: 30-39, 2019. 10.1016/j.agrformet.2019.03.023 DOI

Rapacz M., Gasior D., Zwierzykowski Z. et al.: Changes in cold tolerance and the mechanisms of acclimation of photosystem II to cold hardening generated by another culture of Festuca pratensis × Lolium multiflorum cultivars. – New Phytol. 162: 105-114, 2004. 10.1111/j.1469-8137.2004.01024.x DOI

Rapacz M., Hura K.: The pattern of changes in photosynthetic apparatus in response to cold acclimation and de-acclimation in two contrasting cultivars of oilseed rape. – Photosynthetica 40: 63-69, 2002. 10.1023/A:1020142223930 DOI

Rapacz M., Sasal M., Kalaji H.M., Kościelniak J.: Is the OJIP test a reliable indicator of winter hardiness and freezing tolerance of common wheat and triticale under variable winter environments? – PLoS ONE 10: e0134820, 2015. 10.1371/journal.pone.0134820 PubMed DOI PMC

Roháček K., Soukupová J., Barták M.: Chlorophyll fluorescence: A wonderful tool to study plant physiology and plant stress. – In: Schoefs B. (ed.): Plant Cell Compartments – Selected Topics. Pp. 41-104. Research Signpost, Kerala: 2008. https://www.researchgate.net/publication/285891590_Chlorophyll_fluorescence_A_wonderful_tool_to_study_plant_physiology_and_plant_stress

Sendall K.M., Muñoz C.M.M., Ritter A.D. et al.: Effects of warming and elevated CO2 on stomatal conductance and chlorophyll fluorescence of C3 and C4 coastal wetland species. – Wetlands 44: 43, 2024. 10.1007/s13157-024-01780-0 DOI

Stachurska J., Rys M., Pociecha E. et al.: Deacclimation-induced changes of photosynthetic efficiency, brassinosteroid homeostasis and BRI1 expression in winter oilseed rape (Brassica napus L.) – relation to frost tolerance. – Int. J. Mol. Sci. 23: 5224, 2022. 10.3390/ijms23095224 PubMed DOI PMC

Stirbet A., Govindjee: The slow phase of chlorophyll a fluorescence induction in silico: Origin of the S–M fluorescence rise. – Photosynth. Res. 130: 193-213, 2016. 10.1007/s11120-016-0243-0 PubMed DOI

Strasser R.J., Tsimilli-Michael M., Srivastava A.: Analysis of the chlorophyll a fluorescence transient. – In: Papageorgiou G.C., Govindjee (ed.): Chlorophyll a Fluorescence: A Signature of Photosynthesis. Advances in Photosynthesis and Respiration. Pp. 321-362. Springer, Dordrecht: 2004. 10.1007/978-1-4020-3218-9_12 DOI

Tsimilli-Michael M.: Revisiting JIP-test: An educative review on concepts, assumptions, approximations, definitions and terminology. – Photosynthetica 58: 275-292, 2020. 10.32615/ps.2019.150 DOI

Tuck G., Glendining M.J., Smith P. et al.: The potential distribution of bioenergy crops in Europe under present and future climate. – Biomass Bioenerg. 30: 183-197, 2006. 10.1016/j.biombioe.2005.11.019 DOI

Urban M.O., Klíma M., Vítámvás P. et al.: Significant relationships among frost tolerance and net photosynthetic rate, water use efficiency and dehydrin accumulation in cold-treated winter oilseed rapes. – J. Plant Physiol. 170: 1600-1608, 2013. 10.1016/j.jplph.2013.07.012 PubMed DOI

van Duren I., Voinov A., Arodudu O., Firrisa M.T.: Where to produce rapeseed biodiesel and why? Mapping European rapeseed energy efficiency. – Renew. Energ. 74: 49-59, 2015. 10.1016/j.renene.2014.07.016 DOI

Wang C., Wang Z., El-Badri A.M. et al..: Moderately deep tillage enhances rapeseed yield by improving frost resistance of seedling during overwintering. – Field Crop. Res. 304: 109173, 2023. 10.1016/j.fcr.2023.109173 DOI

Wei C., Huang J., Wang X. et al.: Hyperspectral characterization of freezing injury and its biochemical impacts in oilseed rape leaves. – Remote Sens. Environ. 195: 56-66, 2017. 10.1016/j.rse.2017.03.042 DOI

Živčák M., Olšovská K., Slamka P. et al.: Measurements of chlorophyll fluorescence in different leaf positions may detect nitrogen deficiency in wheat. – Žemdirbystė 101: 437-444, 2014. 10.13080/z-a.2014.101.056 DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...