Deacclimation-Induced Changes of Photosynthetic Efficiency, Brassinosteroid Homeostasis and BRI1 Expression in Winter Oilseed Rape (Brassica napus L.)-Relation to Frost Tolerance
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
2019/35/B/NZ9/02868
National Science Center
No. CZ.02.1.01/0.0/0.0/16_019/0000827
European Regional Development Fund
PubMed
35563614
PubMed Central
PMC9102500
DOI
10.3390/ijms23095224
PII: ijms23095224
Knihovny.cz E-zdroje
- Klíčová slova
- brassinosteroid insensitive 1, brassinosteroids, dehardening, delayed chlorophyll fluorescence, frost tolerance, homocastasterone, photosystem I, photosystem II, prompt chlorophyll fluorescence, stress tolerance,
- MeSH
- aklimatizace fyziologie MeSH
- Brassica napus * genetika MeSH
- brassinosteroidy MeSH
- fotosyntéza MeSH
- homeostáza MeSH
- nízká teplota MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- brassinosteroidy MeSH
The objective of this study was to answer the question of how the deacclimation process affects frost tolerance, photosynthetic efficiency, brassinosteroid (BR) homeostasis and BRI1 expression of winter oilseed rape. A comparative study was conducted on cultivars with different agronomic and physiological traits. The deacclimation process can occur when there are periods of higher temperatures, particularly in the late autumn or winter. This interrupts the process of the acclimation (hardening) of winter crops to low temperatures, thus reducing their frost tolerance and becoming a serious problem for agriculture. The experimental model included plants that were non-acclimated, cold acclimated (at 4 °C) and deacclimated (at 16 °C/9 °C, one week). We found that deacclimation tolerance (maintaining a high frost tolerance despite warm deacclimating periods) was a cultivar-dependent trait. Some of the cultivars developed a high frost tolerance after cold acclimation and maintained it after deacclimation. However, there were also cultivars that had a high frost tolerance after cold acclimation but lost some of it after deacclimation (the cultivars that were more susceptible to deacclimation). Deacclimation reversed the changes in the photosystem efficiency that had been induced by cold acclimation, and therefore, measuring the different signals associated with photosynthetic efficiency (based on prompt and delayed chlorophyll fluorescence) of plants could be a sensitive tool for monitoring the deacclimation process (and possible changes in frost tolerance) in oilseed rape. Higher levels of BR were characteristic of the better frost-tolerant cultivars in both the cold-acclimated and deacclimated plants. The relative expression of the BRI1 transcript (encoding the BR-receptor protein) was lower after cold acclimation and remained low in the more frost-tolerant cultivars after deacclimation. The role of brassinosteroids in oilseed rape acclimation/deacclimation is briefly discussed.
Zobrazit více v PubMed
Rapacz M., Jurczyk B., Sasal M. Deacclimation may be crucial for winter survival of cereals under warming climate. Plant Sci. 2017;256:5–15. doi: 10.1016/j.plantsci.2016.11.007. PubMed DOI
Popov V.N., Antipina O.V., Pchelkin V.P., Tsydendambaev V.D. Changes in fatty acid composition of lipids in chloroplast membranes of tobacco plants during cold hardening. Russ. J. Plant Physiol. 2017;64:156–161. doi: 10.1134/S1021443717010137. DOI
Strand Å., Hurry V., Henkes S., Huner N., Gustafsson P., Gardeström P., Stitt M. Acclimation of arabidopsis leaves developing at low temperatures. Increasing cytoplasmic volume accompanies increased activities of enzymes in the Calvin cycle and in the sucrose-biosynthesis pathway. Plant Physiol. 1999;119:1387–1397. doi: 10.1104/pp.119.4.1387. PubMed DOI PMC
Rys M., Pociecha E., Oliwa J., Ostrowska A., Jurczyk B., Saja D., Janeczko A. Deacclimation of winter oilseed rape-insight into physiological changes. Agronomy. 2020;10:1565. doi: 10.3390/agronomy10101565. DOI
Byun Y.J., Koo M.Y., Joo H.J., Ha-Lee Y.M., Lee D.H. Comparative analysis of gene expression under cold acclimation, deacclimation and reacclimation in Arabidopsis. Physiol. Plant. 2014;152:256–274. doi: 10.1111/ppl.12163. PubMed DOI
Pagter M., Arora R. Winter survival and deacclimation of perennials under warming climate: Physiological perspectives. Physiol. Plant. 2013;147:75–87. doi: 10.1111/j.1399-3054.2012.01650.x. PubMed DOI
Pagter M., Jensen C.R., Petersen K.K., Liu F., Arora R. Changes in carbohydrates, ABA and bark proteins during seasonal cold acclimation and deacclimation in Hydrangea species differing in cold hardiness. Physiol. Plant. 2008;134:473–485. doi: 10.1111/j.1399-3054.2008.01154.x. PubMed DOI
Vyse K., Pagter M., Zuther E., Hincha D.K. Deacclimation after cold acclimation- A crucial, but widely neglected part of plant winter survival. J. Exp. Bot. 2019;70:4595–4604. doi: 10.1093/jxb/erz229. PubMed DOI PMC
Dabrowski P., Baczewska A.H., Pawluśkiewicz B., Paunov M., Alexantrov V., Goltsev V., Kalaji M.H. Prompt chlorophyll a fluorescence as a rapid tool for diagnostic changes in PSII structure inhibited by salt stress in Perennial ryegrass. J. Photochem. Photobiol. B Biol. 2016;157:22–31. doi: 10.1016/j.jphotobiol.2016.02.001. PubMed DOI
Pagter M., Alpers J., Erban A., Kopka J., Zuther E., Hincha D.K. Rapid transcriptional and metabolic regulation of the deacclimation process in cold acclimated Arabidopsis thaliana. BMC Genom. 2017;18:731. doi: 10.1186/s12864-017-4126-3. PubMed DOI PMC
Rapacz M. Regulation of frost resistance during cold de-acclimation and re-acclimation in oilseed rape. A possible role of PSII redox state. Physiol. Plant. 2002;115:236–243. doi: 10.1034/j.1399-3054.2002.1150209.x. PubMed DOI
Stitt M., Hurry V. A plant for all seasons: Alterations in photosynthetic carbon metabolism during cold acclimation in Arabidopsis. Curr. Opin. Plant Biol. 2002;5:199–206. doi: 10.1016/S1369-5266(02)00258-3. PubMed DOI
Savitch L.V., Leonardos E.D., Krol M., Jansson S., Grodzinski B., Huner N.P.A., Öquist G. Two different strategies for light utilization in photosynthesis in relation to growth and cold acclimation. Plant Cell Environ. 2002;25:761–771. doi: 10.1046/j.1365-3040.2002.00861.x. DOI
Huner N.P.A., Öquist G., Hurry V.M., Krol M., Falk S., Griffith M. Photosynthesis, photoinhibition and low temperature acclimation in cold tolerant plants. Photosynth. Res. 1993;37:19–39. doi: 10.1007/BF02185436. PubMed DOI
Ivanov A.G., Morgan R.M., Gray G.R., Velitchkova M.Y., Huner N.P.A. Temperature/light dependent development of selective resistance to photoinhibition of photosystem I. FEBS Lett. 1998;430:288–292. doi: 10.1016/S0014-5793(98)00681-4. PubMed DOI
Hayat S., Ahmad A. Brassinosteroids: A Class of Plant Hormone. Springer; Dordrecht, The Netherlands: 2011.
Kim B.H., Kim S.Y., Nam K.H. Genes encoding plant-specific class III peroxidases are responsible for increased cold tolerance of the brassinosteroid-insensitive 1 mutant. Mol. Cells. 2012;34:539–548. doi: 10.1007/s10059-012-0230-z. PubMed DOI PMC
Krumova S., Zhiponova M., Dankov K., Velikova V., Balashev K., Andreeva T., Russinova E., Taneva S. Brassinosteroids regulate the thylakoid membrane architecture and the photosystem II function. J. Photochem. Photobiol. B Biol. 2013;126:97–104. doi: 10.1016/j.jphotobiol.2013.07.008. PubMed DOI
Kim H.B., Lee H., Oh C.J., Lee H.Y., Eum H.L., Kim H.S., Hong Y.P., Lee Y., Choe S., An C.S., et al. Postembryonic seedling lethality in the sterol-deficient Arabidopsis cyp51A2 mutant is partially mediated by the composite action of ethylene and reactive oxygen species. Plant Physiol. 2010;152:192–205. doi: 10.1104/pp.109.149088. PubMed DOI PMC
Komatsu T., Kawaide H., Saito C., Yamagami A., Shimada S., Nakazawa M., Matsui M., Nakano A., Tsujimoto M., Natsume M., et al. The chloroplast protein BPG2 functions in brassinosteroid-mediated post-transcriptional accumulation of chloroplast rRNA. Plant J. 2010;61:409–422. doi: 10.1111/j.1365-313X.2009.04077.x. PubMed DOI
Sadura I., Pociecha E., Dziurka M., Oklestkova J., Novak O., Gruszka D., Janeczko A. Mutations in the HvDWARF, HvCPD and HvBRI1 Genes-Involved in Brassinosteroid Biosynthesis/Signalling: Altered Photosynthetic Efficiency, Hormonal Homeostasis and Tolerance to High/Low Temperatures in Barley. J. Plant Growth Regul. 2019;38:1062–1081. doi: 10.1007/s00344-019-09914-z. DOI
Sadura I., Latowski D., Oklestkova J., Gruszka D., Chyc M., Janeczko A. Molecular dynamics of chloroplast membranes isolated from wild-type barley and a brassinosteroid-deficient mutant acclimated to low and high temperatures. Biomolecules. 2021;11:27. doi: 10.3390/biom11010027. PubMed DOI PMC
Sadura I., Janeczko A. Brassinosteroids and the Tolerance of Cereals to Low and High Temperature Stress: Photosynthesis and the Physicochemical Properties of Cell Membranes. Int. J. Mol. Sci. 2022;23:342. doi: 10.3390/ijms23010342. PubMed DOI PMC
Pociecha E., Rapacz M., Dziurka M., Kolasińska I. Mechanisms involved in the regulation of photosynthetic efficiency and carbohydrate partitioning in response to low- and high-temperature flooding triggered in winter rye (Secale cereale) lines with distinct pink snow mold resistances. Plant Physiol. Biochem. 2016;104:45–53. doi: 10.1016/j.plaphy.2016.03.016. PubMed DOI
Pociecha E., Dziurka M., Oklestkova J., Janeczko A. Brassinosteroids increase winter survival of winter rye (Secale cereale L.) by affecting photosynthetic capacity and carbohydrate metabolism during the cold acclimation process. Plant Growth Regul. 2016;80:127–135. doi: 10.1007/s10725-016-0149-z. DOI
Li J., Chory J. A putative leucine-rich repeat receptor kinase involved in brassinosteroid signal transduction. Cell. 1997;90:929–938. doi: 10.1016/S0092-8674(00)80357-8. PubMed DOI
Noguchi T., Fujioka S., Choe S., Takatsuto S., Yoshida S., Yuan H., Feldmann K.A., Tax F.E. Brassinosteroid-insensitive dwarf mutants of Arabidopsis accumulate brassinosteroids. Plant Physiol. 1999;121:743–752. doi: 10.1104/pp.121.3.743. PubMed DOI PMC
Dockter C., Gruszka D., Braumann I., Druka A., Druka I., Franckowiak J., Gough S.P., Janeczko A., Kurowska M., Lundqvist J., et al. Induced variations in brassinosteroid genes define barley height and sturdiness, and expand the green revolution genetic toolkit. Plant Physiol. 2014;166:1912–1927. doi: 10.1104/pp.114.250738. PubMed DOI PMC
Li J., Li Y., Chen S., An L. Involvement of brassinosteroid signals in the floral-induction network of Arabidopsis. J. Exp. Bot. 2010;61:4221–4230. doi: 10.1093/jxb/erq241. PubMed DOI
Meng L.L., Song J.F., Wen J., Zhang J., Wei J.H. Effects of drought stress on fluorescence characteristics of photosystem II in leaves of Plectranthus scutellarioides. Photosynthetica. 2016;54:414–421. doi: 10.1007/s11099-016-0191-0. DOI
Stirbet A. Excitonic connectivity between photosystem II units: What is it, and how to measure it? Photosynth. Res. 2013;116:189–214. doi: 10.1007/s11120-013-9863-9. PubMed DOI
Srivastava A., Guissé B., Greppin H., Strasser R.J. Regulation of antenna structure and electron transport in Photosystem II of Pisum sativum under elevated temperature probed by the fast polyphasic chlorophyll a fluorescence transient: OKJIP. Biochim. Et Biophys. Acta—Bioenerg. 1997;1320:95–106. doi: 10.1016/S0005-2728(97)00017-0. DOI
Kalaji H.M., Bąba W., Gediga K., Goltsev V., Samborska I.A., Cetner M.D., Dimitrova S., Piszcz U., Bielecki K., Karmowska K., et al. Chlorophyll fluorescence as a tool for nutrient status identification in rapeseed plants. Photosynth. Res. 2018;136:329–343. doi: 10.1007/s11120-017-0467-7. PubMed DOI PMC
Schansker G., Tóth S.Z., Strasser R.J. Dark recovery of the Chl a fluorescence transient (OJIP) after light adaptation: The qT-component of non-photochemical quenching is related to an activated photosystem I acceptor side. Biochim. Et Biophys. Acta—Bioenerg. 2006;1757:787–797. doi: 10.1016/j.bbabio.2006.04.019. PubMed DOI
Strasser R.J., Tsimilli-Michael M., Srivastava A. Analysis of the Chlorophyll a Fluorescence Transient. Springer; Dordrecht, The Netherland: 2004. pp. 321–362. DOI
Strasser R.J., Srivastava A., Tsimilli-Michael M. Probing Photosynthesis: Mechanism, Regulation and Adaptation. Taylor and Francis; London, UK: 2000. The fluorescence transient as a tool to characterize and screen photosynthetic samples; pp. 443–480.
Pospíšil P., Dau H. Valinomycin sensitivity proves that light-induced thylakoid voltages result in millisecond phase of chlorophyll fluorescence transients. Biochim. Et Biophys. Acta—Bioenerg. 2002;1554:94–100. doi: 10.1016/S0005-2728(02)00216-5. PubMed DOI
Zaharieva I., Goltsev V. Advances on Photosystem II Investigation by Measurement of Delayed Chlorophyll Fluorescence by a Phosphoroscopic Method. Photochem. Photobiol. 2003;77:292. doi: 10.1562/0031-8655(2003)077<0292:AOPIIB>2.0.CO;2. PubMed DOI
Goltsev V., Zaharieva I., Chernev P., Strasser R.J. Delayed fluorescence in photosynthesis. Photosynth. Res. 2009;101:217–232. doi: 10.1007/s11120-009-9451-1. PubMed DOI
Schansker G., Srivastava A., Govindjee, Strasser R.J. Characterization of the 820-nm transmission signal paralleling the chlorophyll a fluorescence rise (OJIP) in pea leaves. Funct. Plant Biol. 2003;30:785–796. doi: 10.1071/FP03032. PubMed DOI
Salvatori E., Fusaro L., Gottardini E., Pollastrini M., Goltsev V., Strasser R.J., Bussotti F. Plant stress analysis: Application of prompt, delayed chlorophyll fluorescence and 820nm modulated reflectance. Insights from independent experiments. Plant Physiol. Biochem. 2014;85:105–113. doi: 10.1016/j.plaphy.2014.11.002. PubMed DOI
Janeczko A., Pociecha E., Dziurka M., Jurczyk B., Libik-Konieczny M., Oklestkova J., Novák O., Pilarska M., Filek M., Rudolphi-Skórska E., et al. Changes in content of steroid regulators during cold hardening of winter wheat—Steroid physiological/biochemical activity and impact on frost tolerance. Plant Physiol. Biochem. 2019;139:215–228. doi: 10.1016/j.plaphy.2019.03.020. PubMed DOI
Janeczko A., Filek W., Biesaga-Kościelniak J., Marcińska I., Janeczko Z. The influence of animal sex hormones on the induction of flowering in Arabidopsis thaliana: Comparison with the effect of 24-epibrassinolide. Plant Cell Tissue Organ Cult. 2003;72:147–151. doi: 10.1023/A:1022291718398. DOI
Xia X.J., Zhou Y.H., Shi K., Zhou J., Foyer C.H., Yu J.Q. Interplay between reactive oxygen species and hormones in the control of plant development and stress tolerance. J. Exp. Bot. 2015;66:2839–2856. doi: 10.1093/jxb/erv089. PubMed DOI
Sahni S., Prasad B.D., Liu Q., Grbic V., Sharpe A., Singh S.P., Krishna P. Overexpression of the brassinosteroid biosynthetic gene DWF4 in Brassica napus simultaneously increases seed yield and stress tolerance. Sci. Rep. 2016;6:28298. doi: 10.1038/srep28298. PubMed DOI PMC
Kim S.Y., Kim B.H., Lim C.J., Lim C.O., Nam K.H. Constitutive activation of stress-inducible genes in a brassinosteroid- insensitive 1 (bri1) mutant results in higher tolerance to cold. Physiol. Plant. 2010;138:191–204. doi: 10.1111/j.1399-3054.2009.01304.x. PubMed DOI
Eremina M., Unterholzner S.J., Rathnayake A.I., Castellanos M., Khan M., Kugler K.G., May S.T., Mayer K.F.X., Rozhon W., Poppenberger B. Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants. Proc. Natl. Acad. Sci. USA. 2016;113:E5982–E5991. doi: 10.1073/pnas.1611477113. PubMed DOI PMC
Janeczko A., Dziurka M., Pociecha E. Increased leaf tocopherol and β-carotene content is associated with the tolerance of winter wheat cultivars to frost. J. Agron. Crop Sci. 2018;204:594–602. doi: 10.1111/jac.12287. DOI
Strasser R.J., Tsimilli-Michael M., Qiang S., Goltsev V. Simultaneous in vivo recording of prompt and delayed fluorescence and 820-nm reflection changes during drying and after rehydration of the resurrection plant Haberlea rhodopensis. Biochim. Et Biophys. Acta—Bioenerg. 2010;1797:1313–1326. doi: 10.1016/j.bbabio.2010.03.008. PubMed DOI
Kalaji M.H., Goltsev V.N., Żuk-Golaszewska K., Zivcak M., Brestic M. Chlorophyll Fluorescence Understanding Crop Performance—Basics and Applications. Taylor and Francis; London, UK: 2017.
Oklestkova J., Tarkowská D., Eyer L., Elbert T., Marek A., Smržová Z., Novák O., Fránek M., Zhabinskii V.N., Strnad M. Immunoaffinity chromatography combined with tandem mass spectrometry: A new tool for the selective capture and analysis of brassinosteroid plant hormones. Talanta. 2017;170:432–440. doi: 10.1016/j.talanta.2017.04.044. PubMed DOI
Tarkowská D., Novák O., Oklestkova J., Strnad M. The determination of 22 natural brassinosteroids in a minute sample of plant tissue by UHPLC–ESI–MS/MS. Anal. Bioanal. Chem. 2016;408:6799–6812. doi: 10.1007/s00216-016-9807-2. PubMed DOI
Jurczyk B., Rapacz M., Budzisz K., Barcik W., Sasal M. The effects of cold, light and time of day during low-temperature shift on the expression of CBF6, FpCor14b and LOS2 in Festuca pratensis. Plant Sci. 2012;183:143–148. doi: 10.1016/j.plantsci.2011.08.004. PubMed DOI