Cold Acclimation and Deacclimation of Winter Oilseed Rape, with Special Attention Being Paid to the Role of Brassinosteroids
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
2019/35/B/NZ9/02868
National Science Center
PubMed
38892204
PubMed Central
PMC11172585
DOI
10.3390/ijms25116010
PII: ijms25116010
Knihovny.cz E-zdroje
- Klíčová slova
- 24-epibrassinolide, 28-homocastasterone, BRI1, CO2 assimilation, COR, SERK, brassinosteroid analogues, chlorophyll a fluorescence, frost tolerance, leaf reflectance,
- MeSH
- aklimatizace * MeSH
- Brassica napus * fyziologie metabolismus MeSH
- brassinosteroidy * metabolismus MeSH
- listy rostlin metabolismus fyziologie MeSH
- nízká teplota * MeSH
- regulace genové exprese u rostlin * MeSH
- roční období MeSH
- rostlinné proteiny metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- brassinosteroidy * MeSH
- rostlinné proteiny MeSH
Winter plants acclimate to frost mainly during the autumn months, through the process of cold acclimation. Global climate change is causing changes in weather patterns such as the occurrence of warmer periods during late autumn or in winter. An increase in temperature after cold acclimation can decrease frost tolerance, which is particularly dangerous for winter crops. The aim of this study was to investigate the role of brassinosteroids (BRs) and BR analogues as protective agents against the negative results of deacclimation. Plants were cold-acclimated (3 weeks, 4 °C) and deacclimated (1 week, 16/9 °C d/n). Deacclimation generally reversed the cold-induced changes in the level of the putative brassinosteroid receptor protein (BRI1), the expression of BR-induced COR, and the expression of SERK1, which is involved in BR signal transduction. The deacclimation-induced decrease in frost tolerance in oilseed rape could to some extent be limited by applying steroid regulators. The deacclimation in plants could be detected using non-invasive measurements such as leaf reflectance, chlorophyll a fluorescence, and gas exchange monitoring.
Zobrazit více v PubMed
Thomashow M.F. Plant cold acclimation: Freezing tolerance genes and regulatory mechanisms. Annu. Rev. Plant Biol. 1999;50:571–599. doi: 10.1146/annurev.arplant.50.1.571. PubMed DOI
Fürtauer L., Weiszmann J., Weckwerth W., Nägele T. Dynamics of plant metabolism during cold acclimation. Int. J. Mol. Sci. 2019;20:5411. doi: 10.3390/ijms20215411. PubMed DOI PMC
Uemura M., Joseph R.A., Steponkus P.L. Cold acclimation of Arabidopsis thaliana: Effect on plasma membrane lipid composition and freeze-induced lesions. Plant Physiol. 1995;109:15–30. doi: 10.1104/pp.109.1.15. PubMed DOI PMC
Filek M., Rudolphi-Skórska E., Sieprawska A., Kvasnica M., Janeczko A. Regulation of the membrane structure by brassinosteroids and progesterone in winter wheat seedlings exposed to low temperature. Steroids. 2017;128:37–45. doi: 10.1016/j.steroids.2017.10.002. PubMed DOI
Sasaki H., Ichimura K., Oda M. Changes in sugar content during cold acclimation and deacclimation of cabbage seedlings. Ann. Bot. 1996;78:365–369. doi: 10.1006/anbo.1996.0131. DOI
Kosová K., Prášil I.T., Vítámvás P., Dobrev P., Motyka V., Floková K., Novák O., Turečková V., Rolčik J., Pešek B., et al. Complex phytohormone responses during the cold acclimation of two wheat cultivars differing in cold tolerance, winter Samanta and spring Sandra. J. Plant Physiol. 2012;169:567–576. doi: 10.1016/j.jplph.2011.12.013. PubMed DOI
Zhang J.H., Wang L.J., Pan Q.H., Wang Y.Z., Zhan J.C., Huang W.D. Accumulation and subcellular localization of heat shock proteins in young grape leaves during cross-adaptation to temperature stresses. Sci. Hortic. 2008;117:231–240. doi: 10.1016/j.scienta.2008.04.012. DOI
Neilson K.A., Mariani M., Haynes P.A. Quantitative proteomic analysis of cold-responsive proteins in rice. Proteomics. 2011;11:1696–1706. doi: 10.1002/pmic.201000727. PubMed DOI
Fan X., Miao C., Duan Q., Shen C., Wu Y. Future Climate Change Hotspots Under Different 21st Century Warming Scenarios. Earth’s Future. 2021;9:e2021EF002027. doi: 10.1029/2021EF002027. DOI
Nauka o Klimacie. [(accessed on 1 February 2024)]. Available online: https://naukaoklimacie.pl/aktualnosci/zmiana-klimatu-w-polsce-na-mapkach-468.
Stachurska J., Rys M., Pociecha E., Kalaji H.M., Dąbrowski P., Oklestkova J., Jurczyk B., Janeczko A. Deacclimation-Induced Changes of Photosynthetic Efficiency, Brassinosteroid Homeostasis and BRI1 Expression in Winter Oilseed Rape (Brassica napus L.)—Relation to Frost Tolerance. Int. J. Mol. Sci. 2022;23:5224. doi: 10.3390/ijms23095224. PubMed DOI PMC
Rapacz M. Cold-deacclimation of oilseed rape (Brassica napus var. oleifera) in response to fluctuating temperatures and photoperiod. Ann. Bot. 2002;89:543–549. doi: 10.1093/aob/mcf090. PubMed DOI PMC
Byun Y.J., Koo M.Y., Joo H.J., Ha-Lee Y.M., Lee D.H. Comparative analysis of gene expression under cold acclimation, deacclimation and reacclimation in Arabidopsis. Physiol. Plant. 2014;152:256–274. doi: 10.1111/ppl.12163. PubMed DOI
Pagter M., Alpers J., Erban A., Kopka J., Zuther E., Hincha D.K. Rapid transcriptional and metabolic regulation of the deacclimation process in cold acclimated Arabidopsis thaliana. BMC Genom. 2017;18:731. doi: 10.1186/s12864-017-4126-3. PubMed DOI PMC
Rys M., Pociecha E., Oliwa J., Ostrowska A., Jurczyk B., Saja D., Janeczko A. Deacclimation of winter oilseed rape-insight into physiological changes. Agronomy. 2020;10:1565. doi: 10.3390/agronomy10101565. DOI
Pociecha E., Janeczko A., Dziurka M., Gruszka D. Disturbances in the Biosynthesis or Signalling of Brassinosteroids That Are Caused by Mutations in the HvDWARF, HvCPD and HvBRI1 Genes Increase the Tolerance of Barley to the Deacclimation Process. J. Plant Growth Regul. 2020;39:1625–1637. doi: 10.1007/s00344-020-10183-4. DOI
Vaitkevičiūtė G., Aleliūnas A., Gibon Y., Armonienė R. The effect of cold acclimation, deacclimation and reacclimation on metabolite profiles and freezing tolerance in winter wheat. Front. Plant Sci. 2022;13:959118. doi: 10.3389/fpls.2022.959118. PubMed DOI PMC
Stachurska J., Sadura I., Rys M., Dziurka M., Janeczko A. Insight into Hormonal Homeostasis and the Accumulation of Selected Heat Shock Proteins in Cold Acclimated and Deacclimated Winter Oilseed Rape. Agriculture. 2023;13:641. doi: 10.3390/agriculture13030641. DOI
Grove M.D., Spencer G.F., Rohwedder W.K., Mandava N., Worley J.F., Warthen J.D., Steffens G.L., Flippen-Anderson J.L., Cook J.C. Brassinolide, a plant growth-promoting steroid isolated from Brassica napus pollen. Nature. 1979;281:216–217. doi: 10.1038/281216a0. DOI
Sadura I., Janeczko A. Brassinosteroids and the Tolerance of Cereals to Low and High Temperature Stress: Photosynthesis and the Physicochemical Properties of Cell Membranes. Int. J. Mol. Sci. 2022;23:342. doi: 10.3390/ijms23010342. PubMed DOI PMC
Liu J., Zhang D., Sun X., Ding T., Lei B., Zhang C. Structure-activity relationship of brassinosteroids and their agricultural practical usages. Steroids. 2017;124:1–17. doi: 10.1016/j.steroids.2017.05.005. PubMed DOI
Diachkov M.V., Ferrer K., Oklestkova J., Rarova L., Bazgier V., Kvasnica M. Synthesis and biological activity of brassinosteroid analogues with a nitrogen-containing side chain. Int. J. Mol. Sci. 2021;22:155. doi: 10.3390/ijms22010155. PubMed DOI PMC
Kagale S., Divi U.K., Krochko J.E., Keller W.A., Krishna P. Brassinosteroid confers tolerance in Arabidopsis thaliana and Brassica napus to a range of abiotic stresses. Planta. 2007;225:353–364. doi: 10.1007/s00425-006-0361-6. PubMed DOI
Özdemir F., Bor M., Demiral T., Türkan I. Effects of 24-epibrassinolide on seed germination, seedling growth, lipid peroxidation, proline content and antioxidative system of rice (Oryza sativa L.) under salinity stress. Plant Growth Regul. 2004;42:203–211. doi: 10.1023/B:GROW.0000026509.25995.13. DOI
Janeczko A., Koscielniak J., Pilipowicz M., Szarek-Lukaszewska G., Skoczowski A. Protection of winter rape photosystem 2 by 24-epibrassinolide under cadmium stress. Photosynthetica. 2005;43:293–298. doi: 10.1007/s11099-005-0048-4. DOI
Rajewska I., Talarek M., Bajguz A. Brassinosteroids and Response of Plants to Heavy Metals Action. Front. Plant Sci. 2016;7:629. doi: 10.3389/fpls.2016.00629. PubMed DOI PMC
Janeczko A., Gullner G., Skoczowski A., Dubert F., Barna B. Effects of brassinosteroid infiltration prior to cold treatment on ion leakage and pigment contents in rape leaves. Biol. Plant. 2007;51:355–358. doi: 10.1007/s10535-007-0072-2. DOI
Janeczko A., Pociecha E., Dziurka M., Jurczyk B., Libik-Konieczny M., Oklestkova J., Novák O., Pilarska M., Filek M., Rudolphi-Skórska E., et al. Changes in content of steroid regulators during cold hardening of winter wheat—Steroid physiological/biochemical activity and impact on frost tolerance. Plant Physiol. Biochem. 2019;139:215–228. doi: 10.1016/j.plaphy.2019.03.020. PubMed DOI
Pociecha E., Dziurka M., Oklestkova J., Janeczko A. Brassinosteroids increase winter survival of winter rye (Secale cereale L.) by affecting photosynthetic capacity and carbohydrate metabolism during the cold acclimation process. Plant Growth Regul. 2016;80:127–135. doi: 10.1007/s10725-016-0149-z. DOI
Eremina M., Unterholzner S.J., Rathnayake A.I., Castellanos M., Khan M., Kugler K.G., May S.T., Mayer K.F.X., Rozhon W., Poppenberger B. Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants. Proc. Natl. Acad. Sci. USA. 2016;113:E5982–E5991. doi: 10.1073/pnas.1611477113. PubMed DOI PMC
Strasser R.J., Tsimilli-Michael M., Srivastava A. Analysis of the Chlorophyll a Fluorescence Transient. In: Papageorgiou G.C., Govindjee, editors. Chlorophyll a Fluorescence. Volume 19. Springer; Dordrecht, The Netherlands: 2004. pp. 321–362. (Advances in Photosynthesis and Respiration). DOI
Pociecha E., Dziurka M., Waligórski P., Krępski T., Janeczko A. 24-Epibrassinolide Pre-Treatment Modifies Cold-Induced Photosynthetic Acclimation Mechanisms and Phytohormone Response of Perennial Ryegrass in Cultivar-Dependent Manner. J. Plant Growth Regul. 2017;36:618–628. doi: 10.1007/s00344-016-9662-6. DOI
Janeczko A., Swaczynová J. Endogenous brassinosteroids in wheat treated with 24-epibrassinolide. Biol. Plant. 2010;54:477–482. doi: 10.1007/s10535-010-0084-1. DOI
Janeczko A. The significance of ethanol as a hormone solvent in experiments on the physiological activity of brassinosteroids. In: Hayat S., Ahmad A., editors. Brassinosteroids: A Class of Plant Hormone. Springer; Dordrecht, The Netherlands: 2011. pp. 361–374.
Kutsuno T., Chowhan S., Kotake T., Takahashi D. Temporal cell wall changes during cold acclimation and deacclimation and their potential involvement in freezing tolerance and growth. Physiol. Plant. 2023;175:e13837. doi: 10.1111/ppl.13837. PubMed DOI PMC
Falcone D.L., Ogas J.P., Somerville C.R. Regulation of membrane fatty acid composition by temperature in mutants of Arabidopsis with alterations in membrane lipid composition. BMC Plant Biol. 2004;4:17. doi: 10.1186/1471-2229-4-17. PubMed DOI PMC
Narayanan S., Tamura P.J., Roth M.R., Prasad P.V.V., Welti R. Wheat leaf lipids during heat stress: I. High day and night temperatures result in major lipid alterations. Plant Cell Environ. 2016;39:787–803. doi: 10.1111/pce.12649. PubMed DOI PMC
Pearcy R.W. Effect of Growth Temperature on the Fatty Acid Composition of the Leaf Lipids in Atriplex lentiformis (Torr.) Wats. Plant Physiol. 1978;61:484–486. doi: 10.1104/pp.61.4.484. PubMed DOI PMC
Skoczowski A., Filek M. Changes in fatty acids composition of subcellular fractions from hypocotyls of winter rape growing at 2 °C or 20 °C. Plant Sci. 1994;98:127–133. doi: 10.1016/0168-9452(94)90002-7. DOI
Iba K. Acclimative response to temperature stress in higher plants: Approaches of gene engineering for temperature tolerance. Annu. Rev. Plant Biol. 2002;53:225–245. doi: 10.1146/annurev.arplant.53.100201.160729. PubMed DOI
Harwood J. Strategies for coping with low environmental temperatures. Trends Biochem. Sci. 1991;14:126–127. doi: 10.1016/0968-0004(91)90052-W. PubMed DOI
Rudolphi-Szydło E., Dyba B., Janeczko A., Latowski D., Sadura I., Filek M. Brassinosteroid-lipid membrane interaction under low and high temperature stress in model systems. BMC Plant Biol. 2022;22:246. doi: 10.1186/s12870-022-03619-4. PubMed DOI PMC
Dufourc E.J. Sterols and membrane dynamics. J. Chem. Biol. 2008;1:63–77. doi: 10.1007/s12154-008-0010-6. PubMed DOI PMC
Rudolphi-Szydło E., Sadura I., Filek M., Gruszka D., Janeczko A. The Impact of Mutations in the HvCPD and HvBRI1 Genes on the Physicochemical Properties of the Membranes from Barley Acclimated to Low/High Temperatures. Cells. 2020;9:1125. doi: 10.3390/cells9051125. PubMed DOI PMC
Nagao M., Arakawa K., Takezawa D., Fujikawa S. Long- and short-term freezing induce different types of injury in Arabidopsis thaliana leaf cells. Planta. 2008;227:477–489. doi: 10.1007/s00425-007-0633-9. PubMed DOI
Miki Y., Takahashi D., Kawamura Y., Uemura M. Temporal proteomics of Arabidopsis plasma membrane during cold- and de-acclimation. J. Proteom. 2019;197:71–81. doi: 10.1016/j.jprot.2018.11.008. PubMed DOI
Xia X.J., Zhou Y.H., Shi K., Zhou J., Foyer C.H., Yu J.Q. Interplay between reactive oxygen species and hormones in the control of plant development and stress tolerance. J. Exp. Bot. 2015;66:2839–2856. doi: 10.1093/jxb/erv089. PubMed DOI
Li Y., Liu C., Guo G., He T., Chen Z., Gao R., Xu H., Faheem M., Lu R., Huang J. Expression analysis of three SERK-like genes in barley under abiotic and biotic stresses. J. Plant Interact. 2017;12:279–285. doi: 10.1080/17429145.2017.1339836. DOI
Ma J., He Y., Hu Z., Xu W., Xia J., Guo C., Lin S., Cao L., Chen C., Wu C., et al. Characterization and expression analysis of AcSERK2, a somatic embryogenesis and stress resistance related gene in pineapple. Gene. 2012;500:115–123. doi: 10.1016/j.gene.2012.03.013. PubMed DOI
Zhou R., Wang Y., Zhang X., Jia F., Liu Y. Cloning and expression analysis of SERK1 gene in Diospyros lotus. Open Life Sci. 2022;17:1296–1308. doi: 10.1515/biol-2022-0490. PubMed DOI PMC
Karlova R., Boeren S., Russinova E., Aker J., Vervoort J., de Vries S. The Arabidopsis Somatic Embryogenesis Receptor-like Kinase1 Protein Complex Includes Brassinosteroid-Insensitive1. Plant Cell. 2006;18:626–638. doi: 10.1105/tpc.105.039412. PubMed DOI PMC
Sadura I., Pociecha E., Dziurka M., Oklestkova J., Novak O., Gruszka D., Janeczko A. Mutations in the HvDWARF, HvCPD and HvBRI1 Genes-Involved in Brassinosteroid Biosynthesis/Signalling: Altered Photosynthetic Efficiency, Hormonal Homeostasis and Tolerance to High/Low Temperatures in Barley. J. Plant Growth Regul. 2019;38:1062–1081. doi: 10.1007/s00344-019-09914-z. DOI
Rizza F., Pagani D., Stanca A.M., Cattivelli L. Use of chlorophyll fluorescence to evaluate the cold acclimation and freezing tolerance of winter and spring oats. Plant Breed. 2001;120:389–396. doi: 10.1046/j.1439-0523.2001.00635.x. DOI
Singh I., Kumar U., Singh S.K., Gupta C., Singh M., Kushwaha S.R. Physiological and biochemical effect of 24-epibrassinoslide on cold tolerance in maize seedlings. Physiol. Mol. Biol. Plants. 2012;18:229–236. doi: 10.1007/s12298-012-0122-x. PubMed DOI PMC
Rapacz M., Hura K. The pattern of changes in photosynthetic apparatus in response to cold acclimation and de-acclimation in two contrasting cultivars of oilseed rape. Photosynthetica. 2002;40:63–69. doi: 10.1023/A:1020142223930. DOI
Hatfield J.L., Dold C. Water-use efficiency: Advances and challenges in a changing climate. Front. Plant Sci. 2019;10:103. doi: 10.3389/fpls.2019.00103. PubMed DOI PMC
Carter G.A. Responses of Leaf Spectral Reflectance to Plant Stress. Am. J. Bot. 1993;80:239–243. doi: 10.1002/j.1537-2197.1993.tb13796.x. DOI
The Importance of the Red-Edge in Agriculture Satellite Imagery. [(accessed on 4 April 2024)]. Available online: https://agrio.app/Red-Edge-reflectance-monitoring-for-early-plant-stress-detection/
Peñuelas J., Piñol J., Ogaya R., Filella I. International Journal of Remote Estimation of plant water concentration by the reflectance Water Index WI (R900/R970) Int. J. Remote. 1997;18:2869–2875. doi: 10.1080/014311697217396. DOI
Penuelas J., Baret F., Filella I. Semi-emphirical indices to assess carotenoids/chlorophyll a ratio from leaf spectral reflectance. Photosynthetica. 1995;31:221–230.
Kureel N., Sarup J., Matin S., Goswami S., Kureel K. Modelling vegetation health and stress using hypersepctral remote sensing data. Model. Earth Syst. Environ. 2022;8:733–748. doi: 10.1007/s40808-021-01113-8. DOI
Gitelson A., Merzlyak M.N. Quantitative estimation of chlorophyll-a using reflectance spectra: Experiments with autumn chestnut and maple leaves. J. Photochem. Photobiol. B Biol. 1994;22:247–252. doi: 10.1016/1011-1344(93)06963-4. DOI
Zarco-Tejada P.J., Berjón A., López-Lozano R., Miller J.R., Martín P., Cachorro V., González M.R., De Frutos A. Assessing vineyard condition with hyperspectral indices: Leaf and canopy reflectance simulation in a row-structured discontinuous canopy. Remote Sens. Environ. 2005;99:271–287. doi: 10.1016/j.rse.2005.09.002. DOI
Gitelson A.A., Merzlyak M.N., Chivkunova O.B. Optical Properties and Nondestructive Estimation of Anthocyanin Content in Plant Leaves. Photochem. Photobiol. 2001;74:38. doi: 10.1562/0031-8655(2001)074<0038:opaneo>2.0.co;2. PubMed DOI
Schulz E., Tohge T., Zuther E., Fernie A.R., Hincha D.K. Natural variation in flavonol and anthocyanin metabolism during cold acclimation in Arabidopsis thaliana accessions. Plant Cell Environ. 2015;38:1658–1672. doi: 10.1111/pce.12518. PubMed DOI
Ubi B.E., Honda C., Bessho H., Kondo S., Wada M., Kobayashi S., Moriguchi T. Expression analysis of anthocyanin biosynthetic genes in apple skin: Effect of UV-B and temperature. Plant Sci. 2006;170:571–578. doi: 10.1016/j.plantsci.2005.10.009. DOI
Castro S., Sanchez-Azofeifa A. Testing of automated photochemical reflectance index sensors as proxy measurements of light use efficiency in an aspen forest. Sensors. 2018;18:3302. doi: 10.3390/s18103302. PubMed DOI PMC
Lednev V.N., Grishin M.Y., Sdvizhenskii P.A., Kurbanov R.K., Litvinov M.A., Gudkov S.V., Pershin S.M. Fluorescence Mapping of Agricultural Fields Utilizing Drone-Based LIDAR. Photonics. 2022;9:963. doi: 10.3390/photonics9120963. DOI
Barna B., Ádám A.L., Király Z. Juvenility and resistance of a superoxide tolerant plant to diseases and other stresses. Naturwissenschaften. 1993;80:420–422. doi: 10.1007/BF01168338. DOI
Laemmli U. Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4. Nature. 1970;227:680–685. doi: 10.1038/227680a0. PubMed DOI
Jurczyk B., Pociecha E., Janowiak F., Dziurka M., Kościk I., Rapacz M. Changes in ethylene, ABA and sugars regulate freezing tolerance under low-temperature waterlogging in Lolium perenne. Int. J. Mol. Sci. 2021;22:6700. doi: 10.3390/ijms22136700. PubMed DOI PMC
Broge N.H., Leblanc E. Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density. Remote Sens. Environ. 2001;76:156–172. doi: 10.1016/S0034-4257(00)00197-8. DOI
Peñuelas J., Gamon J.A., Fredeen A.L., Merino J., Field C.B. Reflectance indices associated with physiological changes in nitrogen- and water-limited sunflower leaves. Remote Sens. Environ. 1994;48:135–146. doi: 10.1016/0034-4257(94)90136-8. DOI
Gitelson A.A., Zur Y., Chivkunova O.B., Merzlyak M.N. Assessing Carotenoid Content in Plant Leaves with Reflectance Spectroscopy. Photochem. Photobiol. 2002;75:272. doi: 10.1562/0031-8655(2002)075<0272:accipl>2.0.co;2. PubMed DOI
Kvasnica M., Oklestkova J., Bazgier V., Rárová L., Korinkova P., Mikulík J., Budesinsky M., Béres T., Berka K., Lu Q., et al. Design, synthesis and biological activities of new brassinosteroid analogues with a phenyl group in the side chain. Org. Biomol. Chem. 2016;14:8691–8701. doi: 10.1039/c6ob01479h. PubMed DOI
Kohout L., Velgová H., Strnad M., Kamínek M. Brassinosteroids with androstane and pregnane skeleton. Collect. Czechoslov. Chem. Commun. 1987;52:476–486. doi: 10.1135/cccc19870476. DOI
Pregnane derivatives in wheat (Triticum aestivum) and their potential role in generative development