Pregnane derivatives in wheat (Triticum aestivum) and their potential role in generative development
Status Publisher Jazyk angličtina Země Japonsko Médium print-electronic
Typ dokumentu časopisecké články
PubMed
39903397
DOI
10.1007/s10265-024-01614-4
PII: 10.1007/s10265-024-01614-4
Knihovny.cz E-zdroje
- Klíčová slova
- Vrn1 expression, 5α-dihydroprogesterone, Cold, Pregnenolone, Vernalisation, Winter wheat,
- Publikační typ
- časopisecké články MeSH
Pregnane derivatives such as pregnenolone or progesterone and many other metabolites are important in mammals where many of them act as hormones including sexual hormones. Much less is known about the presence and functions of pregnane derivatives in plants. The main objectives of this work were (1) to determine the presence of pregnane derivatives in winter wheat (2) verify if there are changes of concentration of pregnane derivatives during wheat growth/development with special attention to vernalisation process (3) to answer the question of whether selected pregnane derivatives are stimulators of wheat development and whether the potential stimulation of this development is accompanied by the expression of the Vrn1 (Vernalisation1) gene. To the best of our knowledge, this is the first report that demonstrates the presence of pregnenolone and 5α-dihydroprogesterone in the leaves and intact crowns of winter wheat. The levels of some of the pregnane derivatives changed during plant growth/development, it was demonstrated that pregnenolone, pregnanolone and 17α-hydroxypregnenolone stimulated wheat development. The changes in the Vrn1 expression are discussed in light of the stimulation of generative development by the pregnane derivatives.
Zobrazit více v PubMed
Akgöz R, Saygin SD, Erpul G, Tel S (2022) Monitoring seasonal and phenological variability of cover management factor for wheat cropping systems under semi-arid climate conditions. Environ Monit Assess 194:395. https://doi.org/10.1007/s10661-022-10064-1 PubMed DOI
An YQ, McDowell JM, Huang SR, McKinney EC, Chambliss S, Meagher RB (1996) Strong, constitutive expression of the Arabidopsis ACT2/ACT8 actin subclass in vegetative tissues. Plant J 10:107–121. https://doi.org/10.1046/j.1365-313X.1996.10010107.x PubMed DOI
Arya P, Munshi M, Kumar P (2023) Diosgenin: Chemistry, extraction, quantification and health benefits. Food Chem Adv 2:100170. https://doi.org/10.1016/j.focha.2022.100170 DOI
Batth R, Nicolle C, Cuciurean IS, Simonsen HT (2020) Biosynthesis and industrial production of androsteroids. Plants-Basel 9:11. https://doi.org/10.3390/plants9091144 DOI
Carroll E, Gopal BR, Raghavan I, Mukherjee M, Wang ZQ (2023) A cytochrome P450 CYP87A4 imparts sterol side-chain cleavage in digoxin biosynthesis. Nat Commun 14:4042. https://doi.org/10.1038/s41467-023-39719-4 PubMed DOI PMC
Carson JD, Jenkins RL, Wilson EM, Howell WM, Moore R (2008) Naturally occurring progesterone in loblolly pine (Pinus taedaL.): a major steroid precursor of environmental androgens. Environ Toxicol Chem 27:1273–1278. https://doi.org/10.1897/07-515.1 PubMed DOI
Cheng J, Chen J, Liu XN, Li XC, Zhang WX, Dai ZB, Lu LN, Zhou X, Cai J, Zhang XL, Jiang HF, Ma YH (2021) The origin and evolution of the diosgenin biosynthetic pathway in yam. Plant Commun 2:9. https://doi.org/10.1016/j.xplc.2020.100079 DOI
Dinan L, Lafont R (2022) Ecdysteroids as defensive chemicals. Adv Insect Physiol 63:107–154. https://doi.org/10.1016/bs.aiip.2022.09.001 DOI
Dumlupinar R, Genisel M, Erdal S, Korkut T, Taspinar MS, Taskin M (2011) Effects of progesterone, β-estradiol and androsterone on the changes of inorganic element content in barley leaves. Biol Trace Elem Res 143:1740–1745. https://doi.org/10.1007/s12011-011-8980-6 PubMed DOI
Filek M, Rudolphi-Skórska E, Sieprawska A, Kvasnica M, Janeczko A (2017) Regulation of the membrane structure by brassinosteroids and progesterone in winter wheat seedlings exposed to low temperature. Steroids 128:37–45. https://doi.org/10.1016/j.steroids.2017.10.002 PubMed DOI
Finsterbusch A, Lindemann P, Grimm R, Eckerskorn C, Luckner M (1999) ∆5– 3β-hydroxysteroid dehydrogenase from Digitalis lanata Ehrh.: a multifunctional enzyme in steroid metabolism? Planta 209:478–486. https://doi.org/10.1007/s004250050751 PubMed DOI
Hartmann S, Lacorn M, Steinhart H (1998) Natural occurrence of steroid hormones in food. Food Chem 62:7–20. https://doi.org/10.1016/s0308-8146(97)00150-7 DOI
Hassan MM, Kanagasabai V, Nandini M, Prabhu K, Rao M, Kalaivannan J, Janaki C (2021) The GC MS analysis of ethyl acetate extract of one herbal plant,‘Justicia Glauca. Nat Vol Essent Oil 8:6837–6845
Horváth I, Glatz A, Nakamoto H, Mishkind ML, Munnik T, Saidi Y, Goloubinoff P, Harwood JL, Vigh L (2012) Heat shock response in photosynthetic organisms: membrane and lipid connections. Prog Lipid Res 51:208–220. https://doi.org/10.1016/j.plipres.2012.02.002 PubMed DOI
Iino M, Nomura T, Tamaki Y, Yamada Y, Yoneyama K, Takeuchi Y, Mori M, Asami T, Nakano T, Yokota T (2007) Progesterone: its occurrence in plants and involvement in plant growth. Phytochemistry 68:1664–1673. https://doi.org/10.1016/j.phytochem.2007.04.002 PubMed DOI
Janeczko A (2000) The influence of selected steroids on plant physiological processes – special attention to flowering induction. Dissertation, Agricultural University in Krakow (in Polish)
Janeczko A (2012) The presence and activity of progesterone in the plant kingdom. Steroids 77:169–173. https://doi.org/10.1016/j.steroids.2011.10.012 PubMed DOI
Janeczko A, Filek W (2002) Stimulation of generative development in partly vernalized winter wheat by animal sex hormones. Acta Physiol Plant 24:291–295. https://doi.org/10.1007/s11738-002-0054-0 DOI
Janeczko A, Skoczowski A (2005) Mammalian sex hormones in plants. Folia Histochem Cytobiol 43:71–79 PubMed
Janeczko A, Filek W, Biesaga-Koscielniak J, Marcinska I, Janeczko Z (2003) The influence of animal sex hormones on the induction of flowering in Arabidopsis thaliana: comparison with the effect of 24-epibrassinolide. Plant Cell Tissue Organ Cult 72:147–151. https://doi.org/10.1023/a:1022291718398 DOI
Janeczko A, Budziszewska B, Skoczowski A, Dybala M (2008) Specific binding sites for progesterone and 17β-estradiol in cells of Triticum aestivum L. Acta Biochim Pol 55:707–711 PubMed DOI
Janeczko A, Oklest’ková J, Siwek A, Dziurka M, Pociecha E, Kocurek M, Novák O (2013) Endogenous progesterone and its cellular binding sites in wheat exposed to drought stress. J Steroid Biochem Mol Biol 138:384–394. https://doi.org/10.1016/j.jsbmb.2013.07.014 PubMed DOI
Janeczko A, Oklestkova J, Novak O, Sniegowska-Swierk K, Snaczke Z, Pociecha E (2015) Disturbances in production of progesterone and their implications in plant studies. Steroids 96:153–163. https://doi.org/10.1016/j.steroids.2015.01.025 PubMed DOI
Janeczko A, Biesaga-Kościelniak J, Dziurka M, Filek M, Hura K, Jurczyk B, Kula M, Oklestkova J, Novak O, Rudolphi-Skórska E, Skoczowski A (2018) Biochemical and physicochemical background of mammalian androgen activity in winter wheat exposed to low temperature. J Plant Growth Regul 37:199–219. https://doi.org/10.1007/s00344-017-9719-1 DOI
Jurczyk B, Rapacz M, Budzisz K, Barcik W, Sasal M (2012) The effects of cold, light and time of day during low-temperature shift on the expression of CBF6, FpCor14b and LOS2 in Festuca pratensis. Plant Sci 183:143–148. https://doi.org/10.1016/j.plantsci.2011.08.004 PubMed DOI
Jurczyk B, Pociecha E, Janowiak F, Dziurka M, Kościk I, Rapacz M (2021) Changes in ethylene, ABA and sugars regulate freezing tolerance under low-temperature waterlogging in Lolium perenne. Int J Mol Sci 2210.3390/ijms22136700
Juřena O (2013) Preparation of polyclonal antibodies against progesterone and their use in the immunoaffinity chromatography. Dissertation, Palacký University (in Czech)
Klein J (2024) Progesterone metabolism in digitalis and other plants– 60 years of research and recent results. Plant Cell Physiol:16. https://doi.org/10.1093/pcp/pcae006 DOI
Kopylov AT, Malsagova KA, Stepanov AA, Kaysheva AL (2021) Diversity of plant sterols metabolism: the impact on human health, sport and accumulation of contaminating sterols. Nutrients 13:1623. https://doi.org/10.3390/nu13051623 PubMed DOI PMC
Kreis W, Müller-Uri F (2013) Cardenolide aglycone formation in Digitalis. In: Bach T, Rohmer M (eds) Isoprenoid synthesis in plants and microorganisms. Springer, New York, NY, pp 425–438
Kunert M, Langley C, Lucier R, Ploss K, López CER, Guerrero DAS, Rothe E, O’Connor SE, Sonawane PD (2023) Promiscuous CYP87A enzyme activity initiates cardenolide biosynthesis in plants. Nat Plants 9:1607–1617. https://doi.org/10.1038/s41477-023-01515-9 PubMed DOI PMC
Kuperman F (1965) Biological observations in agriculture. PWRiL, Warsaw. (in Polish)
Li YT, Xiong HC, Guo HJ, Zhou CY, Xie YD, Zhao LS, Gu JY, Zhao SR, Ding YP, Liu LX (2020) Identification of the vernalization gene VRN-B1 responsible for heading date variation by QTL mapping using a RIL population in wheat. BMC Plant Biol 20:331. https://doi.org/10.1186/s12870-020-02539-5 PubMed DOI PMC
Li H, Chen LL, Chen HY, Xue RL, Wang YX, Song JB (2022) The role of plant progesterone in regulating growth, development, and biotic/abiotic stress responses. Int J Mol Sci 23:10945. https://doi.org/10.3390/ijms231810945 PubMed DOI PMC
Lindemann P (2015) Steroidogenesis in plants - biosynthesis and conversions of progesterone and other pregnane derivatives. Steroids 103:145–152. https://doi.org/10.1016/j.steroids.2015.08.007 PubMed DOI
Lindemann P, Luckner M (1997) Biosynthesis of pregnane derivatives in somatic embryos of Digitalis lanata. Phytochemistry 46:507–513. https://doi.org/10.1016/s0031-9422(97)00315-4 DOI
Livingston D, Premakumar R, Tallury SP (2005) Carbohydrate concentrations in crown fractions from winter oat during hardening at sub-zero temperatures. Ann Bot 96:331–335. https://doi.org/10.1093/aob/mci167 PubMed DOI PMC
Manghwar H, Hussain A, Ali Q, Liu F (2022) Brassinosteroids (BRs) role in plant development and coping with different stresses. Int J Mol Sci 23:1012. https://doi.org/10.3390/ijms23031012 PubMed DOI PMC
Manual of producer https://assets.thermofisher.com/TFS-Assets/LSG/manuals/MAN0018747_RelativeQuantificatAnalysisModule_QSDASWv2_UG.pdf
Meitinger N, Geiger D, Augusto TW, de Pádua RM, Kreis W (2015) Purification of ∆ PubMed DOI
Miao R, Russinova E, Rodriguez PL (2022) Tripartite hormonal regulation of plasma membrane H PubMed DOI
Milec Z, Strejcková B, Safár J (2023) Contemplation on wheat vernalization. Front Plant Sci 13:11. https://doi.org/10.3389/fpls.2022.1093792 DOI
Munkert J, Ernst M, Müller-Uri F, Kreis W (2014) Identification and stress-induced expression of three 3β-hydroxysteroid dehydrogenases from Erysimum Crepidifolium Rchb. And their putative role in cardenolide biosynthesis. Phytochemistry 100:26–33. https://doi.org/10.1016/j.phytochem.2014.01.006 PubMed DOI
Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x DOI
Neunzig J, Sánchez-Guijo A, Mosa A, Hartmann MF, Geyer J, Wudy SA, Bernhardt R (2014) A steroidogenic pathway for sulfonated steroids: the metabolism of pregnenolone sulfate. J Steroid Biochem Mol Biol 144:324–333. https://doi.org/10.1016/j.jsbmb.2014.07.005 PubMed DOI
Oklestkova J, Tarkowska D, Eyer L, Elbert T, Marek A, Smrzova Z, Novak O, Franek M, Zhabinskii VN, Strnad M (2017) Immunoaffinity chromatography combined with tandem mass spectrometry: a new tool for the selective capture and analysis of brassinosteroid plant hormones. Talanta 170:432–440. https://doi.org/10.1016/j.talanta.2017.04.044 PubMed DOI
Pauli GF, Friesen JB, Gödecke T, Farnsworth NR, Glodny B (2010) Occurrence of progesterone and related animal steroids in two higher plants. J Nat Prod 73:338–345. https://doi.org/10.1021/np9007415 PubMed DOI
Pilgrim H (1972) Cholesterol side-chain cleaving enzyme’ Aktivität in Keimlingen und in vitro kultivierten Geweben Von Digitalis purpurea. Phytochemistry 11:1725–1728 DOI
Planas-Riverola A, Gupta A, Betegón-Putze I, Bosch N, Ibañes M, Caño-Delgado AI (2019) Brassinosteroid signaling in plant development and adaptation to stress. Development 146:151894. https://doi.org/10.1242/dev.151894 DOI
Shiko G, Paulmann MJ, Feistel F, Ntefidou M, Hermann-Ene V, Vetter W, Kost B, Kunert G, Zedler JAZ, Reichelt M, Oelmüller R, Klein J (2023) Occurrence and conversion of progestogens and androgens are conserved in land plants. New Phytol 240:318–337. https://doi.org/10.1111/nph.19163 PubMed DOI
Simerský R, Novák O, Morris DA, Pouzar V, Strnad M (2009) Identification and quantification of several mammalian steroid hormones in plants by UPLC-MS/MS. J Plant Growth Regul 28:125–136. https://doi.org/10.1007/s00344-009-9081-z DOI
Skoczowski A (1999) The influence of cold on selected physiological processes of winter wheat with a special attention to vernalisation. Department of Plant Physiology, PAS, Krakow, Poland. (in Polish)
Snape JW, Butterworth K, Whitechurch E, Worland AJ (2001) Waiting for fine times: genetics of flowering time in wheat. Euphytica 119:185–190. https://doi.org/10.1023/a:1017594422176 DOI
Stachurska J, Sadura I, Jurczyk B, Rudolphi-Szydlo E, Dyba B, Pociecha E, Ostrowska A, Rys M, Kvasnica M, Oklestkova J, Janeczko A (2024) Cold acclimation and deacclimation of winter oilseed rape with special attention being paid to role of brassinosteroids. Int J Mol Sci 25:6010. https://doi.org/10.3390/ijms25116010 PubMed DOI PMC
Vallée M (2016) Neurosteroids and potential therapeutics: focus on pregnenolone. J Steroid Biochem Mol Biol 160:78–87. https://doi.org/10.1016/j.jsbmb.2015.09.030 PubMed DOI
Weng JH, Chung BC (2016) Nongenomic actions of neurosteroid pregnenolone and its metabolites. Steroids 111:54–59. https://doi.org/10.1016/j.steroids.2016.01.017 PubMed DOI
Yang XH, Xu ZH, Xue HW (2005) Arabidopsis membrane steroid binding protein 1 is involved in inhibition of cell elongation. Plant Cell 17:116–131. https://doi.org/10.1105/tpc.104.028381 PubMed DOI PMC
Younkin GC, Alani ML, Páez-Capador A, Fischer HD, Mirzaei M, Hastings AP, Agrawal AA, Jander G (2024) Cardiac glycosides protect wormseed wallflower (Erysimum cheiranthoides) against some, but not all, glucosinolate-adapted herbivores. New Phytol 242:2719–2733. https://doi.org/10.1111/nph.19534 PubMed DOI
Zahari N, Said IM (2013) Steroidal compounds from the roots of Holarrhena Curtisii. Malaysian J Anal Sci 17:281–285
Zhang XX, Zhang Y, Guo YT, Xue PY, Xue ZW, Zhang Y, Zhang H, Ito Y, Dou JW, Guo ZJ (2023) Research progress of diosgenin extraction from Dioscorea zingiberensis C. H. Wright: Inspiration of novel method with environmental protection and efficient characteristics. Steroids 192:109181. https://doi.org/10.1016/j.steroids.2023.109181