Synthesis and Biological Activity of Brassinosteroid Analogues with a Nitrogen-Containing Side Chain

. 2020 Dec 25 ; 22 (1) : . [epub] 20201225

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33375728

Grantová podpora
GA19-01383S Grant Agency of the Czech Republic
CZ.02.1.01/0.0/0.0/16_019/0000827 European Regional Development Fund

Brassinosteroids are a class of plant hormones that regulate a broad range of physiological processes such as plant growth, development and immunity, including the suppression of biotic and abiotic stresses. In this paper, we report the synthesis of new brassinosteroid analogues with a nitrogen-containing side chain and their biological activity on Arabidopis thaliana. Based on molecular docking experiments, two groups of brassinosteroid analogues were prepared with short and long side chains in order to study the impact of side chain length on plants. The derivatives with a short side chain were prepared with amide, amine and ammonium functional groups. The derivatives with a long side chain were synthesized using amide and ammonium functional groups. A total of 25 new brassinosteroid analogues were prepared. All 25 compounds were tested in an Arabidopsis root sensitivity bioassay and cytotoxicity screening. The synthesized substances showed no significant inhibitory activity compared to natural 24-epibrassinolide. In contrast, in low concentration, several compounds (8a, 8b, 8e, 16e, 22a and 22e) showed interesting growth-promoting activity. The cytotoxicity assay showed no toxicity of the prepared compounds on cancer and normal cell lines.

Zobrazit více v PubMed

Coll Y., Coll F., Amoros A., Pujol M. Brassinosteroids roles and applications: An update. Biologia. 2015;70:726–732. doi: 10.1515/biolog-2015-0085. DOI

Bajguz A. Brassinosteroids-occurrence and chemical structures in plants. In: Hayat S., Ahmad A., editors. Brassinosteroids: A Class of Plant Hormone. Springer; New York, NY, USA: 2011. pp. 1–27.

Oklestkova J., Rárová L., Kvasnica M., Strnad M. Brassinosteroids: Synthesis and biological activities. Phytochem. Rev. 2015;14:1053–1072. doi: 10.1007/s11101-015-9446-9. DOI

Fariduddin Q., Yusuf M., Ahmad I., Ahmad A. Brassinosteroids and their role in response of plants to abiotic stresses. Biol. Plant. 2014;58:9–17. doi: 10.1007/s10535-013-0374-5. DOI

Bajguz A., Hayat S. Effects of Brassinosteroids on the plant responses to environmental stresses. Plant. Physiol. Biochem. 2009;47:1–8. doi: 10.1016/j.plaphy.2008.10.002. PubMed DOI

Li J., Chory J. A putative leucine-rich repeat receptor kinase involved in Brassinosteroid signal transduction. Cell. 1997;90:929–938. doi: 10.1016/S0092-8674(00)80357-8. PubMed DOI

Kinoshita T., Canodelgado A.I., Seto H., Hiranuma S., Fujioka S., Yoshida S., Chory J. Binding of Brassinosteroids to the extracellular domain of plant receptor kinase BRI1. Nat. Cell Biol. 2005;433:167–171. doi: 10.1038/nature03227. PubMed DOI

Hothorn M., Belkhadir Y., Dreux M., Dabi T., Noel J.P., Wilson I.A., Chory J. Structural basis of steroid hormone perception by the receptor kinase BRI1. Nat. Cell Biol. 2011;474:467–471. doi: 10.1038/nature10153. PubMed DOI PMC

She J., Han Z., Zhou B., Chai J. Structural basis for differential recognition of brassinolide by its receptors. Protein Cell. 2013;4:475–482. doi: 10.1007/s13238-013-3027-8. PubMed DOI PMC

She J., Han Z., Kim T.-W., Wang J., Cheng W., Chang J., Shi S., Wang J., Yang M., Wang Z.-Y., et al. Structural insight into Brassinosteroid perception by BRI1. Nat. Cell Biol. 2011;474:472–476. doi: 10.1038/nature10178. PubMed DOI PMC

Wachsman M.B., Ramirez J.A., Galagovsky L.R., Coto C.E. Antiviral activity of Brassinosteroids derivatives against measles virus in cell cultures. Antivir. Chem. Chemother. 2002;13:61–66. doi: 10.1177/095632020201300105. PubMed DOI

Wachsman M.B., Castilla V., Talarico L.B., Ramírez J.A., Galagovsky L.R., Coto C.E. Antiherpetic mode of action of (22S,23S)-3β-bromo-5α,22,23-trihydroxystigmastan-6-one in vitro. Int. J. Antimicrob. Agents. 2004;23:524–526. doi: 10.1016/j.ijantimicag.2003.10.002. PubMed DOI

Michelini F.M., Berra A., Alché L.E. The in vitro immunomodulatory activity of a synthetic Brassinosteroid analogue would account for the improvement of herpetic stromal keratitis in mice. J. Steroid Biochem. Mol. Biol. 2008;108:164–170. doi: 10.1016/j.jsbmb.2007.10.002. PubMed DOI

Michelini F.M., Zorrilla P., Robello C., Alché L.E. Immunomodulatory activity of an anti-HSV-1 synthetic stigmastane analog. Bioorg. Med. Chem. 2013;21:560–568. doi: 10.1016/j.bmc.2012.10.054. PubMed DOI

Carange J., Longpré F., Daoust B., Martinoli M.-G. 24-epibrassinolide, a phytosterol from the Brassinosteroid family, protects dopaminergic cells against MPP+-induced oxidative stress and apoptosis. J. Toxicol. 2011;2011:1–13. doi: 10.1155/2011/392859. PubMed DOI PMC

Rárová L., Steigerová J., Kvasnica M., Bartunek P., Křížová K., Chodounska H., Kolar Z., Sedlak D., Oklestkova J., Strnad M. Structure activity relationship studies on cytotoxicity and the effects on steroid receptors of AB-functionalized cholestanes. J. Steroid Biochem. Mol. Biol. 2016;159:154–169. doi: 10.1016/j.jsbmb.2016.03.017. PubMed DOI

Steigerová J., Oklestkova J., Levková M., Rárová L., Kolar Z., Strnad M. Brassinosteroids cause cell cycle arrest and apoptosis of human breast cancer cells. Chem. Interact. 2010;188:487–496. doi: 10.1016/j.cbi.2010.09.006. PubMed DOI

Steigerová J., Rárová L., Oklešt’ková J., Křížová K., Levková M., Šváchová M., Kolář Z., Strnad M. Mechanisms of natural Brassinosteroid-induced apoptosis of prostate cancer cells. Food Chem. Toxicol. 2012;50:4068–4076. doi: 10.1016/j.fct.2012.08.031. PubMed DOI

Kvasnica M., Buchtova K., Budesinsky M., Beres T., Rarova L., Strnad M. Synthesis, characterization and antiproliferative activity of seco analogues of Brassinosteroids. Steroids. 2019;146:1–13. doi: 10.1016/j.steroids.2019.03.004. PubMed DOI

Huskova Z., Steigerová J., Oklešťková J., Rárová L., Kolář Z., Strnad M. Molecular mechanisms of plant steroids and study of their interaction with nuclear receptors in prostate cancer cells. Food Chem. Toxicol. 2020;137:111164. doi: 10.1016/j.fct.2020.111164. PubMed DOI

Watanabe B., Yamamoto S., Yokoi T., Sugiura A., Horoiwa S., Aoki T., Miyagawa H., Nakagawa Y. Brassinolide-like activity of castasterone analogs with varied side chains against rice lamina inclination. Bioorg. Med. Chem. 2017;25:4566–4578. doi: 10.1016/j.bmc.2017.06.012. PubMed DOI

Tsubuki M., Keino K., Honda T. Stereoselective synthesis of plant-growth-regulating steroids: Brassinolide, castasterone, and their 24,25-substituted analogues. J. Chem. Soc. Perkin Trans. 1992;1:2643–2649. doi: 10.1039/p19920002643. DOI

Eignerová B., Slavíková B., Buděšínský M., Dračínský M., Klepetářová B., Šťastná E., Kotora M. Synthesis of fluorinated brassinosteroids based on alkene cross-metathesis and preliminary biological assessment. J. Med. Chem. 2009;52:5753–5757. doi: 10.1021/jm900495f. PubMed DOI

Khripach V., Zhabinskii V., Antonchick A., Litvinovskaya R., Drach S., Sviridov O., Pryadko A., Novik T., Matveentsev V., Schneider B. A new type of modified Brassinosteroids for enzyme-linked immunosorbent Assay. Nat. Prod. Commun. 2008;3:735–748. doi: 10.1177/1934578X0800300513. DOI

Wendeborn S., Lachia M., Jung P.M.J., Leipner J., Brocklehurst D., De Mesmaeker A., Gaus K., Mondière R. Biological activity of Brassinosteroids-direct comparison of known and new analogs in planta. Helv. Chim. Acta. 2017;100:e1600305. doi: 10.1002/hlca.201600305. DOI

Kvasnica M., Oklestkova J., Bazgier V., Rárová L., Berka K., Strnad M. Biological activities of new monohydroxylated Brassinosteroid analogues with a carboxylic group in the side chain. Steroids. 2014;85:58–64. doi: 10.1016/j.steroids.2014.04.007. PubMed DOI

Kvasnica M., Oklestkova J., Bazgier V., Rárová L., Mikulík J., Béres T., Berka K., Russinova E., Strnad M., Korinkova P., et al. Design, synthesis and biological activities of new Brassinosteroid analogues with a phenyl group in the side chain. Org. Biomol. Chem. 2016;14:8691–8701. doi: 10.1039/C6OB01479H. PubMed DOI

Korinkova P., Bazgier V., Oklestkova J., Rarova L., Strnad M., Kvasnica M. Synthesis of novel aryl Brassinosteroids through alkene cross-metathesis and preliminary biological study. Steroids. 2017;127:46–55. doi: 10.1016/j.steroids.2017.08.010. PubMed DOI

Back T.G., Janzen L., Nakajima S.K., Pharis R.P. Synthesis and biological activity of 25-methoxy-, 25-fluoro-, and 25-azabrassinolide and 25-fluorocastasterone: Surprising effects of heteroatom substituents at C-25. J. Org. Chem. 1999;64:5494–5498. doi: 10.1021/jo990312o. PubMed DOI

Back T.G., Minksztym K. Synthesis of novel Azidocastasterone derivative as a potential photoaffinity label for the Brassinosteroid receptor. Synlett. 1999;1999:201–203. doi: 10.1055/s-1999-2585. DOI

Litvinovskaya R.P., Raiman M.E., Khripach V.A. Synthesis of 28-homobrassinosteroids modified in the 26-position. Chem. Nat. Compd. 2009;45:647–652. doi: 10.1007/s10600-009-9439-2. DOI

Malachowska-Ugarte M., Sperduto C., Ermolovich Y.V., Sauchuk A.L., Jurášek M., Litvinovskaya R.P., Straltsova D., Smolich I.I., Zhabinskii V.N., Drašar P., et al. Brassinosteroid-BODIPY conjugates: Design, synthesis, and properties. Steroids. 2015;102:53–59. doi: 10.1016/j.steroids.2015.07.002. PubMed DOI

Blickenstaff R.T. The Synthesis of 20-Methyl-5-pregnen-3β-ol. J. Am. Chem. Soc. 2005;82:3673–3676. doi: 10.1021/ja01499a050. DOI

Kohout L., Chodounská H., Macek T., Strnad M. Synthesis of (20S)-2α,3α-Dihydroxy-6-oxo-7-oxa-7a-homo-5α-pregnane-20-carboxylic acid as a Brassinosteroid part of ligands for binding to affinity chromatography carriers. Collect. Czechoslov. Chem. Commun. 2000;65:1754–1761. doi: 10.1135/cccc20001754. DOI

Yamamoto S., Watanabe B., Otsuki J., Nakagawa Y., Akamatsu M., Miyagawa H. Synthesis of 26,27-bisnorcastasterone analogs and analysis of conformation–activity relationship for brassinolide-like activity. Bioorg. Med. Chem. 2006;14:1761–1770. doi: 10.1016/j.bmc.2005.10.024. PubMed DOI

Oklestkova J., Rárová L., Strnad M. Natural Products. Springer Science and Business Media LLC; Berlin/Heidelberg, Germany: 2013. Brassinosteroids and their biological activities; pp. 3851–3871.

Müssig C., Shin G.-H., Altmann T. Brassinosteroids promote root growth in arabidopsis. Plant. Physiol. 2003;133:1261–1271. doi: 10.1104/pp.103.028662. PubMed DOI PMC

Li L., Xu J., Xu Z.-H., Xue H. Brassinosteroids stimulate plant tropisms through modulation of polar auxin transport in Brassica and Arabidopsis. Plant. Cell. 2005;17:2738–2753. doi: 10.1105/tpc.105.034397. PubMed DOI PMC

Kim T.-W., Lee S.M., Joo S.-H., Yun H.S., Lee Y., Kaufman P.B., Kirakosyan A., Kim S.-H., Nam K.H., Lee J.S., et al. Elongation and gravitropic responses of Arabidopsis roots are regulated by brassinolide and IAA. Plant Cell Environ. 2007;30:679–689. doi: 10.1111/j.1365-3040.2007.01659.x. PubMed DOI

Liu J., Zhang D., Sun X., Ding T., Lei B., Zhang C.-L. Structure-activity relationship of Brassinosteroids and their agricultural practical usages. Steroids. 2017;124:1–17. doi: 10.1016/j.steroids.2017.05.005. PubMed DOI

Back T.G., Pharis R.P. Structure? Activity studies of Brassinosteroids and the search for novel analogues and mimetics with improved bioactivity. J. Plant. Growth Regul. 2003;22:350–361. doi: 10.1007/s00344-003-0057-0. PubMed DOI

Malíková J., Swaczynová J., Kolář Z., Strnad M. Anticancer and antiproliferative activity of natural Brassinosteroids. Phytochemistry. 2008;69:418–426. doi: 10.1016/j.phytochem.2007.07.028. PubMed DOI

Eignerova B., Tichý M., Krasulova J., Kvasnica M., Rárová L., Christova R., Urban M., Bednarczyk-Cwynar B., Hajduch M., Sarek J. Synthesis and antiproliferative properties of new hydrophilic esters of triterpenic acids. Eur. J. Med. Chem. 2017;140:403–420. doi: 10.1016/j.ejmech.2017.09.041. PubMed DOI

Trott O., Olson A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010;31:455–461. doi: 10.1002/jcc.21334. PubMed DOI PMC

Morris G.M., Huey R., Lindstrom W., Sanner M.F., Belew R.K., Goodsell D.S., Olson A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 2009;30:2785–2791. doi: 10.1002/jcc.21256. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...