Synthesis and Biological Activity of Brassinosteroid Analogues with a Nitrogen-Containing Side Chain
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
GA19-01383S
Grant Agency of the Czech Republic
CZ.02.1.01/0.0/0.0/16_019/0000827
European Regional Development Fund
PubMed
33375728
PubMed Central
PMC7795425
DOI
10.3390/ijms22010155
PII: ijms22010155
Knihovny.cz E-zdroje
- Klíčová slova
- brassinosteroid, cytotoxicity, nitrogen-containing steroid, organic synthesis, plant bioassay,
- MeSH
- Arabidopsis účinky léků růst a vývoj MeSH
- brassinosteroidy chemická syntéza chemie farmakologie MeSH
- dusík chemie MeSH
- molekulární struktura MeSH
- techniky syntetické chemie * MeSH
- vývoj rostlin účinky léků MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- brassinosteroidy MeSH
- dusík MeSH
Brassinosteroids are a class of plant hormones that regulate a broad range of physiological processes such as plant growth, development and immunity, including the suppression of biotic and abiotic stresses. In this paper, we report the synthesis of new brassinosteroid analogues with a nitrogen-containing side chain and their biological activity on Arabidopis thaliana. Based on molecular docking experiments, two groups of brassinosteroid analogues were prepared with short and long side chains in order to study the impact of side chain length on plants. The derivatives with a short side chain were prepared with amide, amine and ammonium functional groups. The derivatives with a long side chain were synthesized using amide and ammonium functional groups. A total of 25 new brassinosteroid analogues were prepared. All 25 compounds were tested in an Arabidopsis root sensitivity bioassay and cytotoxicity screening. The synthesized substances showed no significant inhibitory activity compared to natural 24-epibrassinolide. In contrast, in low concentration, several compounds (8a, 8b, 8e, 16e, 22a and 22e) showed interesting growth-promoting activity. The cytotoxicity assay showed no toxicity of the prepared compounds on cancer and normal cell lines.
Zobrazit více v PubMed
Coll Y., Coll F., Amoros A., Pujol M. Brassinosteroids roles and applications: An update. Biologia. 2015;70:726–732. doi: 10.1515/biolog-2015-0085. DOI
Bajguz A. Brassinosteroids-occurrence and chemical structures in plants. In: Hayat S., Ahmad A., editors. Brassinosteroids: A Class of Plant Hormone. Springer; New York, NY, USA: 2011. pp. 1–27.
Oklestkova J., Rárová L., Kvasnica M., Strnad M. Brassinosteroids: Synthesis and biological activities. Phytochem. Rev. 2015;14:1053–1072. doi: 10.1007/s11101-015-9446-9. DOI
Fariduddin Q., Yusuf M., Ahmad I., Ahmad A. Brassinosteroids and their role in response of plants to abiotic stresses. Biol. Plant. 2014;58:9–17. doi: 10.1007/s10535-013-0374-5. DOI
Bajguz A., Hayat S. Effects of Brassinosteroids on the plant responses to environmental stresses. Plant. Physiol. Biochem. 2009;47:1–8. doi: 10.1016/j.plaphy.2008.10.002. PubMed DOI
Li J., Chory J. A putative leucine-rich repeat receptor kinase involved in Brassinosteroid signal transduction. Cell. 1997;90:929–938. doi: 10.1016/S0092-8674(00)80357-8. PubMed DOI
Kinoshita T., Canodelgado A.I., Seto H., Hiranuma S., Fujioka S., Yoshida S., Chory J. Binding of Brassinosteroids to the extracellular domain of plant receptor kinase BRI1. Nat. Cell Biol. 2005;433:167–171. doi: 10.1038/nature03227. PubMed DOI
Hothorn M., Belkhadir Y., Dreux M., Dabi T., Noel J.P., Wilson I.A., Chory J. Structural basis of steroid hormone perception by the receptor kinase BRI1. Nat. Cell Biol. 2011;474:467–471. doi: 10.1038/nature10153. PubMed DOI PMC
She J., Han Z., Zhou B., Chai J. Structural basis for differential recognition of brassinolide by its receptors. Protein Cell. 2013;4:475–482. doi: 10.1007/s13238-013-3027-8. PubMed DOI PMC
She J., Han Z., Kim T.-W., Wang J., Cheng W., Chang J., Shi S., Wang J., Yang M., Wang Z.-Y., et al. Structural insight into Brassinosteroid perception by BRI1. Nat. Cell Biol. 2011;474:472–476. doi: 10.1038/nature10178. PubMed DOI PMC
Wachsman M.B., Ramirez J.A., Galagovsky L.R., Coto C.E. Antiviral activity of Brassinosteroids derivatives against measles virus in cell cultures. Antivir. Chem. Chemother. 2002;13:61–66. doi: 10.1177/095632020201300105. PubMed DOI
Wachsman M.B., Castilla V., Talarico L.B., Ramírez J.A., Galagovsky L.R., Coto C.E. Antiherpetic mode of action of (22S,23S)-3β-bromo-5α,22,23-trihydroxystigmastan-6-one in vitro. Int. J. Antimicrob. Agents. 2004;23:524–526. doi: 10.1016/j.ijantimicag.2003.10.002. PubMed DOI
Michelini F.M., Berra A., Alché L.E. The in vitro immunomodulatory activity of a synthetic Brassinosteroid analogue would account for the improvement of herpetic stromal keratitis in mice. J. Steroid Biochem. Mol. Biol. 2008;108:164–170. doi: 10.1016/j.jsbmb.2007.10.002. PubMed DOI
Michelini F.M., Zorrilla P., Robello C., Alché L.E. Immunomodulatory activity of an anti-HSV-1 synthetic stigmastane analog. Bioorg. Med. Chem. 2013;21:560–568. doi: 10.1016/j.bmc.2012.10.054. PubMed DOI
Carange J., Longpré F., Daoust B., Martinoli M.-G. 24-epibrassinolide, a phytosterol from the Brassinosteroid family, protects dopaminergic cells against MPP+-induced oxidative stress and apoptosis. J. Toxicol. 2011;2011:1–13. doi: 10.1155/2011/392859. PubMed DOI PMC
Rárová L., Steigerová J., Kvasnica M., Bartunek P., Křížová K., Chodounska H., Kolar Z., Sedlak D., Oklestkova J., Strnad M. Structure activity relationship studies on cytotoxicity and the effects on steroid receptors of AB-functionalized cholestanes. J. Steroid Biochem. Mol. Biol. 2016;159:154–169. doi: 10.1016/j.jsbmb.2016.03.017. PubMed DOI
Steigerová J., Oklestkova J., Levková M., Rárová L., Kolar Z., Strnad M. Brassinosteroids cause cell cycle arrest and apoptosis of human breast cancer cells. Chem. Interact. 2010;188:487–496. doi: 10.1016/j.cbi.2010.09.006. PubMed DOI
Steigerová J., Rárová L., Oklešt’ková J., Křížová K., Levková M., Šváchová M., Kolář Z., Strnad M. Mechanisms of natural Brassinosteroid-induced apoptosis of prostate cancer cells. Food Chem. Toxicol. 2012;50:4068–4076. doi: 10.1016/j.fct.2012.08.031. PubMed DOI
Kvasnica M., Buchtova K., Budesinsky M., Beres T., Rarova L., Strnad M. Synthesis, characterization and antiproliferative activity of seco analogues of Brassinosteroids. Steroids. 2019;146:1–13. doi: 10.1016/j.steroids.2019.03.004. PubMed DOI
Huskova Z., Steigerová J., Oklešťková J., Rárová L., Kolář Z., Strnad M. Molecular mechanisms of plant steroids and study of their interaction with nuclear receptors in prostate cancer cells. Food Chem. Toxicol. 2020;137:111164. doi: 10.1016/j.fct.2020.111164. PubMed DOI
Watanabe B., Yamamoto S., Yokoi T., Sugiura A., Horoiwa S., Aoki T., Miyagawa H., Nakagawa Y. Brassinolide-like activity of castasterone analogs with varied side chains against rice lamina inclination. Bioorg. Med. Chem. 2017;25:4566–4578. doi: 10.1016/j.bmc.2017.06.012. PubMed DOI
Tsubuki M., Keino K., Honda T. Stereoselective synthesis of plant-growth-regulating steroids: Brassinolide, castasterone, and their 24,25-substituted analogues. J. Chem. Soc. Perkin Trans. 1992;1:2643–2649. doi: 10.1039/p19920002643. DOI
Eignerová B., Slavíková B., Buděšínský M., Dračínský M., Klepetářová B., Šťastná E., Kotora M. Synthesis of fluorinated brassinosteroids based on alkene cross-metathesis and preliminary biological assessment. J. Med. Chem. 2009;52:5753–5757. doi: 10.1021/jm900495f. PubMed DOI
Khripach V., Zhabinskii V., Antonchick A., Litvinovskaya R., Drach S., Sviridov O., Pryadko A., Novik T., Matveentsev V., Schneider B. A new type of modified Brassinosteroids for enzyme-linked immunosorbent Assay. Nat. Prod. Commun. 2008;3:735–748. doi: 10.1177/1934578X0800300513. DOI
Wendeborn S., Lachia M., Jung P.M.J., Leipner J., Brocklehurst D., De Mesmaeker A., Gaus K., Mondière R. Biological activity of Brassinosteroids-direct comparison of known and new analogs in planta. Helv. Chim. Acta. 2017;100:e1600305. doi: 10.1002/hlca.201600305. DOI
Kvasnica M., Oklestkova J., Bazgier V., Rárová L., Berka K., Strnad M. Biological activities of new monohydroxylated Brassinosteroid analogues with a carboxylic group in the side chain. Steroids. 2014;85:58–64. doi: 10.1016/j.steroids.2014.04.007. PubMed DOI
Kvasnica M., Oklestkova J., Bazgier V., Rárová L., Mikulík J., Béres T., Berka K., Russinova E., Strnad M., Korinkova P., et al. Design, synthesis and biological activities of new Brassinosteroid analogues with a phenyl group in the side chain. Org. Biomol. Chem. 2016;14:8691–8701. doi: 10.1039/C6OB01479H. PubMed DOI
Korinkova P., Bazgier V., Oklestkova J., Rarova L., Strnad M., Kvasnica M. Synthesis of novel aryl Brassinosteroids through alkene cross-metathesis and preliminary biological study. Steroids. 2017;127:46–55. doi: 10.1016/j.steroids.2017.08.010. PubMed DOI
Back T.G., Janzen L., Nakajima S.K., Pharis R.P. Synthesis and biological activity of 25-methoxy-, 25-fluoro-, and 25-azabrassinolide and 25-fluorocastasterone: Surprising effects of heteroatom substituents at C-25. J. Org. Chem. 1999;64:5494–5498. doi: 10.1021/jo990312o. PubMed DOI
Back T.G., Minksztym K. Synthesis of novel Azidocastasterone derivative as a potential photoaffinity label for the Brassinosteroid receptor. Synlett. 1999;1999:201–203. doi: 10.1055/s-1999-2585. DOI
Litvinovskaya R.P., Raiman M.E., Khripach V.A. Synthesis of 28-homobrassinosteroids modified in the 26-position. Chem. Nat. Compd. 2009;45:647–652. doi: 10.1007/s10600-009-9439-2. DOI
Malachowska-Ugarte M., Sperduto C., Ermolovich Y.V., Sauchuk A.L., Jurášek M., Litvinovskaya R.P., Straltsova D., Smolich I.I., Zhabinskii V.N., Drašar P., et al. Brassinosteroid-BODIPY conjugates: Design, synthesis, and properties. Steroids. 2015;102:53–59. doi: 10.1016/j.steroids.2015.07.002. PubMed DOI
Blickenstaff R.T. The Synthesis of 20-Methyl-5-pregnen-3β-ol. J. Am. Chem. Soc. 2005;82:3673–3676. doi: 10.1021/ja01499a050. DOI
Kohout L., Chodounská H., Macek T., Strnad M. Synthesis of (20S)-2α,3α-Dihydroxy-6-oxo-7-oxa-7a-homo-5α-pregnane-20-carboxylic acid as a Brassinosteroid part of ligands for binding to affinity chromatography carriers. Collect. Czechoslov. Chem. Commun. 2000;65:1754–1761. doi: 10.1135/cccc20001754. DOI
Yamamoto S., Watanabe B., Otsuki J., Nakagawa Y., Akamatsu M., Miyagawa H. Synthesis of 26,27-bisnorcastasterone analogs and analysis of conformation–activity relationship for brassinolide-like activity. Bioorg. Med. Chem. 2006;14:1761–1770. doi: 10.1016/j.bmc.2005.10.024. PubMed DOI
Oklestkova J., Rárová L., Strnad M. Natural Products. Springer Science and Business Media LLC; Berlin/Heidelberg, Germany: 2013. Brassinosteroids and their biological activities; pp. 3851–3871.
Müssig C., Shin G.-H., Altmann T. Brassinosteroids promote root growth in arabidopsis. Plant. Physiol. 2003;133:1261–1271. doi: 10.1104/pp.103.028662. PubMed DOI PMC
Li L., Xu J., Xu Z.-H., Xue H. Brassinosteroids stimulate plant tropisms through modulation of polar auxin transport in Brassica and Arabidopsis. Plant. Cell. 2005;17:2738–2753. doi: 10.1105/tpc.105.034397. PubMed DOI PMC
Kim T.-W., Lee S.M., Joo S.-H., Yun H.S., Lee Y., Kaufman P.B., Kirakosyan A., Kim S.-H., Nam K.H., Lee J.S., et al. Elongation and gravitropic responses of Arabidopsis roots are regulated by brassinolide and IAA. Plant Cell Environ. 2007;30:679–689. doi: 10.1111/j.1365-3040.2007.01659.x. PubMed DOI
Liu J., Zhang D., Sun X., Ding T., Lei B., Zhang C.-L. Structure-activity relationship of Brassinosteroids and their agricultural practical usages. Steroids. 2017;124:1–17. doi: 10.1016/j.steroids.2017.05.005. PubMed DOI
Back T.G., Pharis R.P. Structure? Activity studies of Brassinosteroids and the search for novel analogues and mimetics with improved bioactivity. J. Plant. Growth Regul. 2003;22:350–361. doi: 10.1007/s00344-003-0057-0. PubMed DOI
Malíková J., Swaczynová J., Kolář Z., Strnad M. Anticancer and antiproliferative activity of natural Brassinosteroids. Phytochemistry. 2008;69:418–426. doi: 10.1016/j.phytochem.2007.07.028. PubMed DOI
Eignerova B., Tichý M., Krasulova J., Kvasnica M., Rárová L., Christova R., Urban M., Bednarczyk-Cwynar B., Hajduch M., Sarek J. Synthesis and antiproliferative properties of new hydrophilic esters of triterpenic acids. Eur. J. Med. Chem. 2017;140:403–420. doi: 10.1016/j.ejmech.2017.09.041. PubMed DOI
Trott O., Olson A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010;31:455–461. doi: 10.1002/jcc.21334. PubMed DOI PMC
Morris G.M., Huey R., Lindstrom W., Sanner M.F., Belew R.K., Goodsell D.S., Olson A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 2009;30:2785–2791. doi: 10.1002/jcc.21256. PubMed DOI PMC