Engineered drought tolerance in tomato plants is reflected in chlorophyll fluorescence emission
Jazyk angličtina Země Irsko Médium print-electronic
Typ dokumentu srovnávací studie, časopisecké články, práce podpořená grantem
PubMed
22118618
DOI
10.1016/j.plantsci.2011.03.022
PII: S0168-9452(11)00099-9
Knihovny.cz E-zdroje
- MeSH
- chlorofyl metabolismus MeSH
- dehydratace genetika MeSH
- fyziologická adaptace MeSH
- fyziologický stres genetika MeSH
- genetická transkripce MeSH
- genetická variace MeSH
- geneticky modifikované rostliny MeSH
- listy rostlin růst a vývoj MeSH
- období sucha * MeSH
- průduchy rostlin fyziologie MeSH
- regulace genové exprese u rostlin MeSH
- rostlinné geny MeSH
- Solanum lycopersicum genetika růst a vývoj metabolismus MeSH
- technika přenosu genů MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
- Názvy látek
- chlorofyl MeSH
Drought stress is one of the most important factors that limit crop productivity worldwide. In order to obtain tomato plants with enhanced drought tolerance, we inserted the transcription factor gene ATHB-7 into the tomato genome. This gene was demonstrated earlier to be up-regulated during drought stress in Arabidopsis thaliana thus acting as a negative regulator of growth. We compared the performance of wild type and transgenic tomato line DTL-20, carrying ATHB-7 gene, under well-irrigated and water limited conditions. We found that transgenic plants had reduced stomatal density and stomatal pore size and exhibited an enhanced resistance to soil water deficit. We used the transgenic plants to investigate the potential of chlorophyll fluorescence to report drought tolerance in a simulated high-throughput screening procedure. Wild type and transgenic tomato plants were exposed to drought stress lasting 18 days. The stress was then terminated by rehydration after which recovery was studied for another 2 days. Plant growth, leaf water potential, and chlorophyll fluorescence were measured during the entire experimental period. We found that water potential in wild type and drought tolerant transgenic plants diverged around day 11 of induced drought stress. The chlorophyll fluorescence parameters: the non-photochemical quenching, effective quantum efficiency of PSII, and the maximum quantum yield of PSII photochemistry yielded a good contrast between wild type and transgenic plants from day 7, day 12, and day 14 of induced stress, respectively. We propose that chlorophyll fluorescence emission reports well on the level of water stress and, thus, can be used to identify elevated drought tolerance in high-throughput screens for selection of resistant genotypes.
Citace poskytuje Crossref.org
Ectopic overexpression of the cell wall invertase gene CIN1 leads to dehydration avoidance in tomato