• This record comes from PubMed

Specific phosphorylation of microtubule-associated protein 2c by extracellular signal-regulated kinase reduces interactions at its Pro-rich regions

. 2022 Oct ; 298 (10) : 102384. [epub] 20220817

Language English Country United States Media print-electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Links

PubMed 35987383
PubMed Central PMC9520037
DOI 10.1016/j.jbc.2022.102384
PII: S0021-9258(22)00827-4
Knihovny.cz E-resources

Microtubule-associated protein 2 (MAP2) is an important neuronal target of extracellular signal-regulated kinase 2 (ERK2) involved in Raf signaling pathways, but mechanistic details of MAP2 phosphorylation are unclear. Here, we used NMR spectroscopy to quantitatively describe the kinetics of phosphorylation of individual serines and threonines in the embryonic MAP2 variant MAP2c. We carried out real-time monitoring of phosphorylation to discover major phosphorylation sites that were not identified in previous studies relying on specific antibodies. Our comparison with the phosphorylation of MAP2c by a model cyclin-dependent kinase CDK2 and with phosphorylation of the MAP2c homolog Tau revealed differences in phosphorylation profiles that explain specificity of regulation of biological functions of MAP2c and Tau. To probe the molecular basis of the regulatory effect of ERK2, we investigated the interactions of phosphorylated and unphosphorylated MAP2c by NMR with single-residue resolution. As ERK2 phosphorylates mostly outside the regions binding microtubules, we studied the binding of proteins other than tubulin, namely regulatory subunit RIIα of cAMP-dependent PKA, adapter protein Grb2, Src homology domain 3 of tyrosine kinases Fyn and Abl, and ERK2 itself. We found ERK2 phosphorylation interfered mostly with binding to proline-rich regions of MAP2c. Furthermore, our NMR experiments in SH-SY5Y neuroblastoma cell lysates showed that the kinetics of dephosphorylation are compatible with in-cell NMR studies and that residues targeted by ERK2 and PKA are efficiently phosphorylated in the cell lysates. Taken together, our results provide a deeper characterization of MAP2c phosphorylation and its effects on interactions with other proteins.

See more in PubMed

Gamblin T.C., Nachmanoff K., Halpain S., Williams R.C. Recombinant microtubule-associated protein 2c reduces the dynamic instability of individual mi-crotubules. Biochemistry. 1996;35:12576–12586. PubMed

Jalava N.S., Lopez-Picon F.R., Kukko-Lukjanov T.K., Holopainen I.E. Changes in microtubule-associated protein-2 (MAP2) expression during development and after status epilepticus in the immature rat hippocampus. Int. J. Dev. Neurosci. 2007;25:121–131. PubMed

Dunker A.K., Obradovic Z., Romero P., Garner E.C., Brown C.J. Intrinsic protein disorder in complete genomes, genome informatics. Workshop Genome Inform. 2000;11:161–171. PubMed

Dunker A.K., Oldfield C.J., Meng J., Romero P., Yang J.Y., Chen J.W., et al. The unfoldomics decade: an update on intrinsically disordered proteins. BMC Genomics. 2008;9:S1. PubMed PMC

Dyson H.J., Wright P.E. Intrinsically unstructured proteins and their functions. Nat. Rev. Mol. Cell Biol. 2005;6:197–208. PubMed

Tompa P. The interplay between structure and function in intrinsically unstructured proteins. FEBS Lett. 2005;579:3346–3354. PubMed

Fink A.L. Natively unfolded proteins. Curr. Opin. Struct. Biol. 2005;15:35–41. PubMed

Melkova K., Zapletal V., Jansen S., Nomilner E., Zachrdla M., Hritz J., et al. Functionally specific binding regions of microtubule-associated protein 2c exhibit distinct conformations and dynamics. J. Biol. Chem. 2018;293:13297–13309. PubMed PMC

Dehmelt L., Halpain S. The MAP2/Tau family of microtubule-associated proteins. Genome Biol. 2005;6:204. PubMed PMC

Viereck C., Tucker R.P., Matus A. The adult rat olfactory system expresses microtubule-associated proteins found in the developing brain. J. Neurosci. 1989;9:3547–3557. PubMed PMC

Díaz-Nido J., Serrano L., Hernández M.A., Avila J. Phosphorylation of microtubule proteins in rat brain at different developmental stages: comparison with that found in neuronal cultures. J. Neurochem. 1990;54:211–222. PubMed

Sánchez C., Díaz-Nido J., Avila J. Phosphorylation of microtubule-associated protein 2 (MAP2) and its relevance for the regulation of the neuronal cytoskeleton function. Prog. Neurobiol. 2000;61:133–168. PubMed

Vallee R. Structure and phosphorylation of microtubule-associated protein 2 (MAP2) Proc. Natl. Acad. Sci. U. S. A. 1980;77:3206–3210. PubMed PMC

Yamauchi T., Fujisawa H. Disassembly of microtubules by the action of calmodulin-dependent protein kinase (kinase II) which occurs only in the brain tissues. Biochem. Biophys. Res. Commun. 1983;110:287–291. PubMed

Burns R.G., Islam K., Chapman R. The multiple phosphorylation of the microtubule-associated protein MAP2 controls the MAP2:tubulin interaction. Eur. J. Biochem. 1984;141:609–615. PubMed

Hoshi M., Akiyama T., Shinohara Y., Miyata Y., Ogawara H., Nishida E., et al. Protein-kinase-C-catalyzed phosphorylation of the microtubule-binding domain of microtubule-associated protein 2 inhibits its ability to induce tubulin polymerization. Eur. J. Biochem. 1988;174:225–230. PubMed

Ainsztein A.M., Purich D.L. Stimulation of tubulin polymerization by MAP-2. Control by protein kinase C-mediated phosphorylation at specific sites in the microtubule-binding region. J. Biol. Chem. 1994;269:28465–28471. PubMed

Illenberger S., Drewes G., Trinczek B., Biernat J., Meyer H.E., Olmsted J.B., et al. Phosphorylation of microtubule-associated proteins MAP2 and MAP4 by the protein kinase p110mark. Phosphorylation sites and regulation of microtubule dynamics. J. Biol. Chem. 1996;271:10834–10843. PubMed

Drewes G., Ebneth A., Mandelkow E.M. MAPs, MARKs and microtubule dynamics. Trends Biochem. Sci. 1998;23:307–311. PubMed

Lim R., Halpain S. Regulated association of microtubule-associated protein 2 (MAP2) with Src and Grb2: evidence for MAP2 as a scaffolding protein. J. Biol. Chem. 2000;275:20578–20587. PubMed

Jansen S., Melková K., Trošanová Z., Hanáková K., Zachrdla M., Nováček J., et al. Quantitative mapping of microtubule-associated protein 2c (MAP2c) phosphorylation and regulatory protein 14-3-3ζ-binding sites reveals key differences between MAP2c and its homolog Tau. J. Biol. Chem. 2017;292:6715–6727. PubMed PMC

Illenberger S., Zheng-Fischhöfer Q., Preuss U., Stamer K., Baumann K., Trinczek B., et al. The endogenous and cell cycle-dependent phosphorylation of tau protein in living cells: implications for Alzheimer’s disease. Mol. Biol. Cell. 1998;9:1495–1512. PubMed PMC

Avila J., Domínguez J., Díaz-Nido J. Regulation of microtubule dynamics by microtubule-associated protein expression and phosphorylation during neuronal development. Int. J. Dev. Biol. 1994;38:13–25. PubMed

Drewes G., Ebneth A., Preuss U., Mandelkow E.-M., Mandelkow E. MARK, a novel family of protein kinases that phosphorylate microtubule-associated proteins and trigger microtubule disruption. Cell. 1997;89:297–308. PubMed

Brandt R., Lee G., Teplow D.B., Shalloway D., Abdel-Ghany M. Differential effect of phosphorylation and substrate modulation on tau’s ability to promote microtubule growth and nucleation. J. Biol. Chem. 1994;269:11776–11782. PubMed

Itoh T.J., Hisanaga S., Hosoi T., Kishimoto T., Hotani H. Phosphorylation states of microtubule-associated protein 2 (MAP2) determine the regulatory role of MAP2 in microtubule dynamics. Biochemistry. 1997;36:12574–12582. PubMed

Landrieu I., Lacosse L., Leroy A., Wieruszeski J.M., Trivelli X., Sillen A., et al. NMR analysis of a Tau phosphorylation pattern. J. Am. Chem. Soc. 2006;128:3575–3583. PubMed

Drewes G., Lichtenberg-Kraag B., Döring F., Mandelkow E.M., Biernat J., Goris J., et al. Mitogen activated protein (MAP) kinase transforms tau protein into an Alzheimer-like state. EMBO J. 1992;11:2131–2138. PubMed PMC

Baumann K., Mandelkow E.-M., Biernat J., Piwnica-Worms H., Mandelkow E. Abnormal alzheimer-like phosphorylation of tau-protein by cyclin-dependent kinases cdk2 and cdk5. FEBS Lett. 1993;336:417–424. PubMed

Biernat J., Mandelkow E.M., Schröter C., Lichtenberg-Kraag B., Steiner B., Berling B., et al. The switch of tau protein to an Alzheimer-like state includes the phosphorylation of two serine-proline motifs upstream of the microtubule binding region. EMBO J. 1992;11:1593–1597. PubMed PMC

Bielska A.A., Zondlo N.J. Hyperphosphorylation of tau induces local polyproline II helix. Biochemistry. 2006;45:5527–5537. PubMed

Gandhi N.S., Landrieu I., Byrne C., Kukic P., Amniai L., Cantrelle F.-X., et al. A phosphorylation-induced turn defines the Alzheimer’s disease AT8 antibody epitope on the tau protein. Angew. Chem. Int. Ed. Engl. 2015;54:6819–6823. PubMed

Despres C., Byrne C., Qi H., Cantrelle F.-X., Huvent I., Chambraud B., et al. Identification of the Tau phosphorylation pattern that drives its aggregation. Proc. Natl. Acad. Sci. U. S. A. 2017;114:9080–9085. PubMed PMC

Qi H., Prabakaran S., Cantrelle F.-X., Chambraud B., Gunawardena J., Lippens G., et al. Characterization of neuronal tau protein as a target of extracellular signal-regulated kinase. J. Biol. Chem. 2016;291:7742–7753. PubMed PMC

Amniai L., Barbier P., Sillen A., Wieruszeski J.-M., Peyrot V., Lippens G., et al. Alzheimer disease specific phosphoepitopes of Tau interfere with as-sembly of tubulin but not binding to microtubules. FASEB J. 2009;23:1146–1152. PubMed

Berling B., Wille H., Röll B., Mandelkow E.M., Garner C., Mandelkow E. Phosphorylation of microtubule-associated proteins MAP2a,b and MAP2c at Ser136 by proline-directed kinases in vivo and in vitro. Eur. J. Cell Biol. 1994;64:120–130. PubMed

Hoshi M., Ohta K., Gotoh Y., Mori A., Murofushi H., Sakai H., et al. Mitogen-activated-protein-kinase-catalyzed phosphorylation of microtubule-associated proteins, microtubule-associated protein 2 and microtubule-associated protein 4, induces an alteration in their function. Eur. J. Biochem. 1992;203:43–52. PubMed

Ozer R.S., Halpain S. Phosphorylation-dependent localization of microtubule-associated protein MAP2c to the actin cytoskeleton. Mol. Biol. Cell. 2000;11:3573–3587. PubMed PMC

Theillet F.-X., Smet-Nocca C., Liokatis S., Thongwichian R., Kosten J., Yoon M.-K., et al. Cell signaling, post-translational protein modifications and nmr spectroscopy. J. Biomol. NMR. 2012;54:217–236. PubMed PMC

Theillet F.-X., Rose H.M., Liokatis S., Binolfi A., Thongwichian R., Stuiver M., et al. Site-specific NMR mapping and time-resolved monitoring of serine and threonine phosphorylation in reconstituted kinase reactions and mammalian cell extracts. Nat. Protoc. 2013;8:1416–1432. PubMed

Rose H.M., Stuiver M., Thongwichian R., Theillet F.-X., Feller S.M., Selenko P. Quantitative nmr analysis of erk activity and inhibition by u0126 in a panel of patient-derived colorectal cancer cell lines. Biochim. Biophys. Acta. 2013;1834:1396–1401. PubMed

Bardwell A.J., Bardwell L. Two hydrophobic residues can determine the specificity of mitogen-activated protein kinase docking interactions. J. Biol. Chem. 2015;290:26661–26674. PubMed PMC

Melková K., Zapletal V., Narasimhan S., Jansen S., Hritz J., Škrabana R., et al. Structure and func-tions of microtubule associated proteins tau and MAP2c: similarities and differ-ences. Biomolecules. 2019;9:105. PubMed PMC

Lesovoy D.M., Georgoulia P.S., Diercks T., Matečko-Burmann I., Burmann B.M., Bocharov E.V., et al. Unambiguous tracking of protein phosphorylation by fast high-resolution FOSY NMR. Angew. Chem. Int. Ed. Engl. 2021;60:23540–23544. PubMed PMC

Alderson T.R., Benesch J.L.P., Baldwin A.J. Proline isomerization in the C-terminal region of HSP27. Cell Stress Chaperones. 2017;22:639–651. PubMed PMC

Kadavath H., Hofele R.V., Biernat J., Kumar S., Tepper K., Urlaub H., et al. Tau stabilizes microtubules by binding at the interface between tubulin heterodimers. Proc. Natl. Acad. Sci. U. S. A. 2015;112:7501–7506. PubMed PMC

Schwalbe M., Kadavath H., Biernat J., Ozenne V., Blackledge M., Mandelkow E., et al. Structural impact of tau phosphorylation at threonine 231. Structure. 2015;23:1448–1458. PubMed

Li T., Paudel H.K. Glycogen synthase kinase 3β phosphorylates Alzheimer’s disease-specific Ser396 of microtubule-associated protein tau by a sequential mechanism. Biochemistry. 2006;45:3125–3133. PubMed

Sandhu P., Naeem M.M., Lu C., Kumarathasan P., Gomes J., Basak A. Ser 422 phosphorylation blocks human Tau cleavage by caspase-3: biochemical implications to Alzheimer’s disease. Bioorg. Med. Chem. Lett. 2017;27:642–652. PubMed

Fifre A., Sponne I., Koziel V., Kriem B., Potin F.T.Y., Bihain B.E., et al. Microtubule-associated protein MAP1A, MAP1B, and MAP2 proteolysis during soluble amyloid β-peptide-induced neuronal apoptosis: synergistic involvement of calpain and caspase-3. J. Biol. Chem. 2006;281:229–240. PubMed

Berry R.W., Abraha A., Lagalwar S., LaPointe N., Gamblin T.C., Cryns V.L., et al. Inhibition of tau polymerization by its carboxy-terminal caspase cleavage fragment. Biochemistry. 2003;42:8325–8331. PubMed

Safaei J., Maňuch J., Gupta A., Stacho L., Pelech S. Prediction of 492 human protein kinase substrate specificities. Proteome Sci. 2011;9:1–13. PubMed PMC

Hashiguchi M., Hashiguchi T. Kinase-kinase interaction and modulation of tau phosphorylation. Int. Rev. Cell Mol. Biol. 2013;300:121–160. PubMed

Rubino H.M., Dammerman B., Shafit-Zagardo B., J E. Localization and characterization of the binding site for the regulatory subunit of type II cAMP-dependent protein kinase on MAP2. Neuron. 1998;3:631–638. PubMed

Ren R., Mayer B.J., Cicchetti P., Baltimore D. Identification of a ten-amino acid proline-rich SH3 binding site. Science. 1993;259:1157–1161. PubMed

Chardin P., Cussac D., Maignan S., Ducruix A. The Grb2 adaptor. FEBS Lett. 1995;369:47–51. PubMed

Alexa A., Schmidt G., Tompa P., Ogueta S., Vázquez J., Kulcsár P., et al. The phosphorylation state of threonine-220, a uniquely phosphatase-sensitive protein kinase A site in microtubule-associated pro-tein MAP2c, regulates microtubule binding and stability. Biochemistry. 1992;41:12427–12435. PubMed

Reszka A.A., Seger R., Diltz C.D., Krebs E.G., Fischer E.H. Association of mitogen-activated protein kinase with the microtubule cytoskeleton. Proc. Natl. Acad. Sci. U. S. A. 1995;92:8881–8885. PubMed PMC

Pei J.-J., Braak H., An W.-L., Winblad B., Cowburn R.F., Iqbal K., et al. Up-regulation of mitogen-activated protein kinases ERK1/2 and MEK1/2 is associated with the progression of neurofibrillary degeneration in Alzheimer’s disease. Brain Res. Mol. Brain Res. 2002;109:45–55. PubMed

Bhat K. Cell-cell signaling during neurogenesis: some answers and many ques-tions. Int. J. Dev. Biol. 1998;42:127–139. PubMed

Edbauer D., Cheng D., Batterton M.N., Wang C.-F., Duong D.M., Yaffe M.B., et al. Identification and characterization of neuronal mitogen-activated protein kinase substrates using a specific phosphomotif antibody. Mol. Cell. Proteomics. 2009;8:681–695. PubMed PMC

Sibille N., Huvent I., Fauquant C., Verdegem D., Amniai L., Leroy A., et al. Structural characterization by nuclear magnetic resonance of the impact of phosphorylation in the proline-rich region of the disordered tau protein. Proteins: Struct. Funct. Bioinform. 2012;80:454–462. PubMed

Sánchez C., Tompa P., Szücs K., Friedrich P., Avila J. Phosphorylation and dephosphorylation in the proline-rich c-terminal domain of microtubule-associated protein 2. Eur. J. Biochem. 1996;241:765–771. PubMed

Lu P.J., Wulf G., Zhou X.Z., Davies P., Lu K.P. The prolyl isomerase Pin1 restores the function of Alzheimer-associated phosphorylated tau protein. Nature. 1999;399:784–788. PubMed

Vincent I., Rosado M., Davies P. Mitotic mechanisms in Alzheimer’s disease? J. Cell Biol. 1996;132:413–425. PubMed PMC

Jicha G.A., Lane E., Vincent I., Otvos L., Jr., Hoffmann R., Davies P. A conformation- and phosphorylation-dependent antibody recognizing the paired he-lical filaments of Alzheimer’s disease. J. Neurochem. 1997;69:2087–2095. PubMed

Ebneth A., Drewes G., Mandelkow E.M., Mandelkow E. Phosphorylation of MAP2c and MAP4 by MARK kinases leads to the destabilization of microtubules in cells. Cell Motil. Cytoskeleton. 1999;44:209–224. PubMed

Sánchez C., Pérez M., Avila J. GSK3 beta-mediated phosphorylation of the microtubule-associated protein 2C (MAP2C) prevents microtubule bundling. Eur. J. Cell Biol. 2000;79:252–260. PubMed

Philpot B.D., Lim J.H., Halpain S., Brunjes P.C. Experience-dependent modifications in MAP2 phosphorylation in rat olfactory bulb. J. Neurosci. 1997;17:9596–9604. PubMed PMC

Woolf N.J., Zinnerman M.D., Johnson G.V.W. Hippocampal microtubule-associated protein-2 alterations with contextual memory. Brain Res. 1999;821:241–249. PubMed

Kim Y., Jang Y.-N., Kim J.-Y., Kim N., Noh S., Kim H., et al. Microtubule-associated protein 2 mediates induction of long-term potentiation in hippocampal neurons. FASEB J. 2020;34:6965–6983. PubMed

Díaz-Hernández M., Gómez-Ramos A., Rubio A., Gómez-Villafuertes R., Naranjo J.R., Miras-Portugal M.T., et al. Tissue-nonspecific alkaline phos-phatase promotes the neurotoxicity effect of extracellular tau. J. Biol. Chem. 2010;285:32539–32548. PubMed PMC

Cotter D., Kerwin R., Doshi B., Martin C.S., Everall I.P. Alterations in hippocampal non-phosphorylated MAP2 protein expression in schizophrenia. Brain Res. 1997;765:238–246. PubMed

Grubisha M.J., Sun X., MacDonald M.L., Garver M., Sun Z., Paris K.A., et al. MAP2 is differentially phosphorylated in schizophrenia, altering its function. Mol. Psych. 2021;26:5371–5388. PubMed PMC

Richter-Landsberg C. The cytoskeleton in oligodendrocytes. J. Mol. Neurosci. 2008;35:55–63. PubMed

Zamora-Leon S.P., Lee G., Davies P., Shafit-Zagardo B. Binding of Fyn to MAP-2c through an SH3 binding domain. Regulation of the interaction by ERK2. J. Biol. Chem. 2001;276:39950–39958. PubMed

Jones S.B., Lu H.Y., Lu Q. Abl tyrosine kinase promotes dendrogenesis by inducing actin cytoskeletal rearrangements in cooperation with rho family small gtpases in hippocampal neurons. J. Neurosci. 2004;24:8510–8521. PubMed PMC

Pisabarro M.T., Serrano L., Wilmanns M. Crystal structure of the Abl-SH3 domain complexed with a designed high-affinity peptide ligand: implications for SH3-ligand interactions. J. Mol. Biol. 1998;281:513–521. PubMed

Zamora-Leon S.P., Bresnick A., Backer J.M., Shafit-Zagardo B. Fyn phos-phorylates human map-2c on tyrosine 67. J. Biol. Chem. 2005;280:1962–1970. PubMed

Zheng L., Baumann U., Reymond J.-L. An efficient one-step site-directed and site-saturation mutagenesis protocol. Nucl. Acids Res. 2004;32:e115. PubMed PMC

Houtman J.C.D., Yamaguchi H., Barda-Saad M., Braiman A., Bowden B., Ap-pella E., et al. Oligomerization of signaling complexes by the multipoint binding of GRB2 to both LAT and SOS1. Nat. Struct. Mol. Biol. 2006;13:798–805. PubMed

Yuzawa S., Yokochi M., Hatanaka H., Ogura K., Kataoka M., Miura K.-i., et al. Solution structure of Grb2 reveals extensive flexibility necessary for target recognition. J. Mol. Biol. 2001;306:527–537. PubMed

Wenzel J., Sanzenbacher R., Ghadimi M., Lewitzky M., Zhou Q., Kaplan D.R., et al. Multiple interactions of the cytosolic polyproline region of the CD95 ligand: hints for the reverse signal transduction capacity of a death factor. FEBS Lett. 2001;509:255–262. PubMed

Mariotti A., Kedeshian P.A., Dans M., Curatola A.M., Gagnoux-Palacios L., Giancotti F.G. Egf-r signaling through fyn kinase disrupts the function of integrin α6β4 at hemidesmosomes: role in epithelial cell migration and carcinoma invasion. J. Cell Biol. 2001;155:447–458. PubMed PMC

Nováček J., Janda L., Dopitová R., Žídek L., Sklenář V. Efficient protocol for backbone and side-chain assignments of large, intrinsically disordered proteins: transient secondary structure analysis of 49.2 kDa microtubule associated protein 2c. J. Biomol. NMR. 2013;56:291–301. PubMed

Qi H., Despres C., Prabakaran S., Cantrelle F.-X., Chambraud B., Gunawardena J., et al. The study of posttranslational mod-ifications of tau protein by nuclear magnetic resonance spectroscopy: phospho-rylation of tau protein by ERK2 recombinant kinase and rat brain extract, and acetylation by recombinant creb-binding protein. Met. Mol. Biol. 2017;1523:179–213. PubMed

Welburn J., Endicott J. Methods for preparation of proteins and protein complexes that regulate the eukaryotic cell cycle for structural studies. Met. Mol. Biol. 2005;296:219–235. PubMed

Kazimierczuk K., Zawadzka A., Koźmiński W. Optimization of random time domain sampling in multidimensional NMR. J. Magn. Reson. 2008;192:123–130. PubMed

Bodenhausen G., Ruben D.J. Natural abundance nitrogen-15 NMR by enhanced heteronuclear spectroscopy. Chem. Phys. Lett. 1980;69:185–189.

Sklenar V., Piotto M., Leppik R., Saudek V. Gradient-tailored water suppres-sion for 1H-15N HSQC experiments optimized to retain full sensitivity. J. Magn. Reson. 1993;102:241–245.

Schanda P., Brutscher B. Very fast two-dimensional NMR spectroscopy for real-time investigation of dynamic events in proteins on the time scale of second. J. Am. Chem. Soc. 2005;127:8014–8015. PubMed

Kay L.E., Ikura M., Tschudin R., Bax A. Three-dimensional triple-resonance NMR spectroscopy of isotopically enriched proteins. J. Magn. Reson. 1990;89:496–514. PubMed

Grzesiek S., Bax A. Correlating backbone amide and side chain resonances in larger proteins by multiple relayed triple resonance NMR. J. Am. Chem. Soc. 1992;114:6291–6293.

Delaglio F., Grzesiek S., Vuister G.W., Zhu G., Pfeifer J., Bax A. NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J. Biomol. NMR. 1995;6:277–293. PubMed

Stanek J., Koźmiński W. Iterative algorithm of discrete Fourier transform for processing randomly sampled NMR data sets. J. Biomol. NMR. 2010;47:65–77. PubMed

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...