Functionally specific binding regions of microtubule-associated protein 2c exhibit distinct conformations and dynamics
Language English Country United States Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
29925592
PubMed Central
PMC6109934
DOI
10.1074/jbc.ra118.001769
PII: S0021-9258(20)31036-X
Knihovny.cz E-resources
- Keywords
- NMR relaxation, Tau protein (Tau), microtubule-associated protein (MAP), nuclear magnetic resonance (NMR), paramagnetic relaxation enhancement (PRE), protein conformation, small-angle X-ray scattering (SAXS),
- MeSH
- X-Ray Diffraction MeSH
- Phosphorylation MeSH
- Protein Conformation * MeSH
- Humans MeSH
- Scattering, Small Angle MeSH
- Plectin chemistry metabolism MeSH
- Microtubule-Associated Proteins chemistry metabolism MeSH
- src Homology Domains MeSH
- Protein Binding MeSH
- Binding Sites MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- MAP2 protein, human MeSH Browser
- PLEC protein, human MeSH Browser
- Plectin MeSH
- Microtubule-Associated Proteins MeSH
Microtubule-associated protein 2c (MAP2c) is a 49-kDa intrinsically disordered protein regulating the dynamics of microtubules in developing neurons. MAP2c differs from its sequence homologue Tau in the pattern and kinetics of phosphorylation by cAMP-dependent protein kinase (PKA). Moreover, the mechanisms through which MAP2c interacts with its binding partners and the conformational changes and dynamics associated with these interactions remain unclear. Here, we used NMR relaxation and paramagnetic relaxation enhancement techniques to determine the dynamics and long-range interactions within MAP2c. The relaxation rates revealed large differences in flexibility of individual regions of MAP2c, with the lowest flexibility observed in the known and proposed binding sites. Quantitative conformational analyses of chemical shifts, small-angle X-ray scattering (SAXS), and paramagnetic relaxation enhancement measurements disclosed that MAP2c regions interacting with important protein partners, including Fyn tyrosine kinase, plectin, and PKA, adopt specific conformations. High populations of polyproline II and α-helices were found in Fyn- and plectin-binding sites of MAP2c, respectively. The region binding the regulatory subunit of PKA consists of two helical motifs bridged by a more extended conformation. Of note, although MAP2c and Tau did not differ substantially in their conformations in regions of high sequence identity, we found that they differ significantly in long-range interactions, dynamics, and local conformation motifs in their N-terminal domains. These results highlight that the N-terminal regions of MAP2c provide important specificity to its regulatory roles and indicate a close relationship between MAP2c's biological functions and conformational behavior.
See more in PubMed
Jalava N. S., Lopez-Picon F. R., Kukko-Lukjanov T. K., and Holopainen I. E. (2007) Changes in microtubule-associated protein-2 (MAP2) expression during development and after status epilepticus in the immature rat hippocampus, Int. J. Dev. Neurosci. 25, 121–131 10.1016/j.ijdevneu.2006.12.001 PubMed DOI
Wang Y., and Mandelkow E. (2016) Tau in physiology and pathology. Nat. Rev. Neurosci. 17, 5–21 10.1038/nrg.2015.11 PubMed DOI
Sündermann F., Fernandez M. P., and Morgan R. O. (2016) An evolutionary roadmap to the microtubule-associated protein MAP tau. BMC Genomics 17, 264 10.1186/s12864-016-2590-9 PubMed DOI PMC
Viereck C., Tucker R. P., and Matus A. (1989) The adult rat olfactory system expresses microtubule-associated proteins found in the developing brain. J. Neurosci. 9, 3547–3557 10.1523/JNEUROSCI.09-10-03547.1989 PubMed DOI PMC
Dehmelt L., and Halpain S. (2005) The MAP2/Tau family of microtubule-associated proteins. Genome Biol. 6, 204 PubMed PMC
Brugg B., and Matus A. (1991) Phosphorylation determines the binding of microtubule-associated protein 2 (MAP2) to microtubules in living cells. J. Cell Biol. 114, 735–743 10.1083/jcb.114.4.735 PubMed DOI PMC
Brandt R., Lee G., Teplow D. B., Shalloway D., and Abdel-Ghany M. (1994) Differential effect of phosphorylation and substrate modulation on tau's ability to promote microtubule growth and nucleation. J. Biol. Chem. 269, 11776–11782 PubMed
Illenberger S., Drewes G., Trinczek B., Biernat J., Meyer H. E., Olmsted J. B., Mandelkow E. M., and Mandelkow E. (1996) Phosphorylation of microtubule-associated proteins MAP2 and MAP4 by the protein kinase p110mark: phosphorylation sites and regulation of microtubule dynamics. J. Biol. Chem. 271, 10834–10843 10.1074/jbc.271.18.10834 PubMed DOI
Sánchez C., Díaz-Nido J., and Avila J. (2000) Phosphorylation of microtubule-associated protein 2 (MAP2) and its relevance for the regulation of the neuronal cytoskeleton function. Prog. Neurobiol. 61, 133–168 10.1016/S0301-0082(99)00046-5 PubMed DOI
Alexa A., Schmidt G., Tompa P., Ogueta S., Vázquez J., Kulcsár P., Kovács J., Dombrádi V., and Friedrich P. (2002) The phosphorylation state of threonine-220, a uniquely phosphatase-sensitive protein kinase A site in microtubule-associated protein MAP2c, regulates microtubule binding and stability. Biochemistry 41, 12427–12435 10.1021/bi025916s PubMed DOI
Landrieu I., Lacosse L., Leroy A., Wieruszeski J. M., Trivelli X., Sillen A., Sibille N., Schwalbe H., Saxena K., Langer T., and Lippens G. (2006) NMR analysis of a Tau phosphorylation pattern. J. Am. Chem. Soc. 128, 3575–3583 10.1021/ja054656+ PubMed DOI
Martin L., Latypova X., Wilson C. M., Magnaudeix A., Perrin M.-L., Yardin C., and Terro F. (2013) Tau protein kinases: involvement in Alzheimer's disease. Ageing Res. Rev. 12, 289–309 10.1016/j.arr.2012.06.003 PubMed DOI
Jansen S., Melková K., Trošanová Z., Hanáková K., Zachrdla M., Nováček J., Župa E., Zdráhal Z., Hritz J., and Žídek L. (2017) Quantitative mapping of microtubule-associated protein 2c (MAP2c) phosphorylation and regulatory protein 14-3-3ζ-binding sites reveals key differences between MAP2c and its homolog Tau. J. Biol. Chem. 292, 6715–6727 10.1074/jbc.M116.771097 PubMed DOI PMC
Xie C., Soeda Y., Shinzaki Y., In Y., Tomoo K., Ihara Y., and Miyasaka T. (2015) Identification of key amino acids responsible for the distinct aggregation properties of microtubule-associated protein 2 and tau. J. Neurochem. 135, 19–26 10.1111/jnc.13228 PubMed DOI PMC
Bibow S., Mukrasch M. D., Chinnathambi S., Biernat J., Griesinger C., Mandelkow E., and Zweckstetter M. (2011) The dynamic structure of filamentous Tau. Angew. Chem. Int. Ed. Engl. 50, 11520–11524 10.1002/anie.201105493 PubMed DOI
Dunker A. K., Obradovic Z., Romero P., Garner E. C., and Brown C. J. (2000) Intrinsic protein disorder in complete genomes. Genome Inform. Ser. Workshop Genome Inform. 11, 161–171 PubMed
Dunker A. K., Oldfield C. J., Meng J., Romero P., Yang J. Y., Chen J. W., Vacic V., Obradovic Z., and Uversky V. N. (2008) The unfoldomics decade: an update on intrinsically disordered proteins. BMC Genomics 9, Suppl. 2, S1 10.1186/1471-2164-9-S2-S1 PubMed DOI PMC
Dyson H. J., and Wright P. E. (2005) Intrinsically unstructured proteins and their functions. Nat. Rev. Mol. Cell Biol. 6, 197–208 10.1038/nrm1589 PubMed DOI
Tompa P. (2005) The interplay between structure and function in intrinsically unstructured proteins. FEBS Lett. 579, 3346–3354 10.1016/j.febslet.2005.03.072 PubMed DOI
Fink A. L. (2005) Natively unfolded proteins. Curr. Opin. Struct. Biol. 15, 35–41 10.1016/j.sbi.2005.01.002 PubMed DOI
Mukrasch M. D., Biernat J., von Bergen M., Griesinger C., Mandelkow E., and Zweckstetter M. (2005) Sites of tau important for aggregation populate β-structure and bind to microtubules and polyanions. J. Biol. Chem. 280, 24978–24986 10.1074/jbc.M501565200 PubMed DOI
Mukrasch M. D., von Bergen M., Biernat J., Fischer D., Griesinger C., Mandelkow E., and Zweckstetter M. (2007) The “jaws” of the tau-microtubule interaction. J. Biol. Chem. 282, 12230–12239 10.1074/jbc.M607159200 PubMed DOI
Mukrasch M. D., Bibow S., Korukottu J., Jeganathan S., Biernat J., Griesinger C., Mandelkow E., and Zweckstetter M. (2009) Structural polymorphism of 441-residue tau at single residue resolution. PLoS Biol. 7, e34 PubMed PMC
Sibille N., Huvent I., Fauquant C., Verdegem D., Amniai L., Leroy A., Wieruszeski J.-M., Lippens G., and Landrieu I. (2012) Structural characterization by nuclear magnetic resonance of the impact of phosphorylation in the proline-rich region of the disordered tau protein. Proteins 80, 454–462 10.1002/prot.23210 PubMed DOI
Nováček J., Janda L., Dopitová R., Žídek L., and Sklenář V. (2013) Efficient protocol for backbone and side-chain assignments of large, intrinsically disordered proteins: transient secondary structure analysis of 49.2 kDa microtubule associated protein 2c. J. Biomol. NMR 56, 291–301 10.1007/s10858-013-9761-7 PubMed DOI
Schwalbe M., Ozenne V., Bibow S., Jaremko M., Jaremko L., Gajda M., Jensen M. R., Biernat J., Becker S., Mandelkow E., Zweckstetter M., and Blackledge M. (2014) Predictive atomic resolution descriptions of intrinsically disordered hTau40 and α-synuclein in solution from NMR and small angle scattering. Structure 22, 238–249 10.1016/j.str.2013.10.020 PubMed DOI
Zamora-Leon S. P., Lee G., Davies P., and Shafit-Zagardo B. (2001) Binding of Fyn to MAP-2c through an SH3 binding domain. J. Biol. Chem. 276, 39950–39958 10.1074/jbc.M107807200 PubMed DOI
Reynolds J. G., McCalmon S. A., Donaghey J. A., and Naya F. (2008) Deregulated protein kinase A signaling and myospryn expression in muscular dystrophy. J. Biol. Chem. 283, 8070–8074 10.1074/jbc.C700221200 PubMed DOI PMC
Ortega E., Buey R. M., Sonnenberg A., and de Pereda J. M. (2011) The structure of the plakin domain of plectin reveals non-canonical SH3 domain interacting with its fourth spectrin repeat. J. Biol. Chem. 286, 12429–12438 10.1074/jbc.M110.197467 PubMed DOI PMC
Valencia R. G., Walko G., Janda L., Novacek J., Mihailovska E., Reipert S., Andrä-Marobela K., and Wiche G. (2013) Intermediate filament-associated cytolinker plectin 1c destabilizes microtubules in keratinocytes. Mol. Biol. Cell 24, 768–784 10.1091/mbc.e12-06-0488 PubMed DOI PMC
Malmendal A., Halpain S., and Chazin W. J. (2003) Nascent structure in the kinase anchoring domain of microtubule-associated protein 2. Biochem. Biophys. Res. Commun. 301, 136–142 10.1016/S0006-291X(02)02989-3 PubMed DOI
Gillespie J. R., and Shortle D. (1997) Characterization of long-range structure in the denatured state of staphylococcal nuclease. I. Paramagnetic relaxation enhancement by nitroxide spin labels. J. Mol. Biol. 268, 158–169 10.1006/jmbi.1997.0954 PubMed DOI
Wille H., Mandelkow E. M., and Mandelkow E. (1992) The juvenile microtubule-associated protein MAP2c is a rod-like molecule that forms antiparallel dimer. J. Biol. Chem. 267, 10737–10742 PubMed
Nodet G., Salmon L., Ozenne V., Meier S., Jensen M. R., and Blackledge M. (2009) Quantitative description of backbone conformational sampling of unfolded proteins at amino acid resolution from NMR residual dipolar couplings. J. Am. Chem. Soc. 131, 17908–17918 10.1021/ja9069024 PubMed DOI
Marsh J. A., Singh V. K., Jia Z., and Forman-Kay J. D. (2006) Sensitivity of secondary structure propensities to sequence differences between α- and γ-synuclein: implications for fibrillation. Protein Sci. 15, 2795–2804 10.1110/ps.062465306 PubMed DOI PMC
Shen Y., and Bax A. (2007) Protein backbone chemical shifts predicted from searching a database for torsion angle and sequence homology. J. Biomol. NMR 38, 289–302 10.1007/s10858-007-9166-6 PubMed DOI
Ozenne V., Schneider R., Yao M., Huang J.-R., Salmon L., Zweckstetter M., Jensen M. R., and Blackledge M. (2012) Mapping the potential energy landscape of intrinsically disordered proteins at amino acid resolution. J. Am. Chem. Soc. 134, 15138–15148 10.1021/ja306905s PubMed DOI
Obar R. A., Dingus J., Bayley H., and Vallee R. B. (1989) The RII subunit of cAMP-dependent protein kinase binds to a common amino-terminal domain in microtubule-associated proteins 2A, 2B, and 2C. Neuron 3, 639–645 10.1016/0896-6273(89)90274-2 PubMed DOI
Srb P., Nováček J., Kadeřávek P., Rabatinová A., Krásný L., Žídková, Bobálová J. J., Sklenář V., and Žídek L. (2017) Triple resonance 15N NMR relaxation experiments for studies of intrinsically disordered proteins. J. Biomol. NMR 69, 133–146 10.1007/s10858-017-0138-1 PubMed DOI
Ferrage F. (2012) Protein dynamics by 15N nuclear magnetic relaxation. Methods Mol. Biol. 831, 141–163 10.1007/978-1-61779-480-3_9 PubMed DOI
Wangsness R., and Bloch F. (1953) The dynamical theory of nuclear induction. Phys. Rev. Lett. 89, 728–739
Abragam A. (1961) The Principles of Nuclear Magnetism, pp. 264–300, Clarendon Press, Oxford
Redfield A. G. (1965) The theory of relaxation processes. Adv. Magn. Reson. 1, 1–32 10.1016/B978-1-4832-3114-3.50007-6 DOI
Cavanagh J., Faibrother W., Palmer A. 3rd, Rance M., and Skelton N. (2007) Protein NMR Spectroscopy: Principles and Practice, 2nd Ed., pp. 334–404, Elsevier Academic Press, Burlington, MA
Kowalewski A., and Mäler L. (2006) Nuclear Spin Relaxation in Liquids: Theory, Experiments, and Applications, pp. 127–157, Taylor & Francis, New York
Kadeřávek P., Zapletal V., Rabatinová A., Krásný L., Sklenář V., and Žídek L. (2014) Spectral density mapping protocols for analysis of molecular motions in disordered proteins. J. Biomol. NMR 58, 193–207 10.1007/s10858-014-9816-4 PubMed DOI
Ishima R., and Nagayama K. (1995) Quasi-spectral-density function analysis for nitrogen-15 nuclei in proteins. J. Magn. Reson. Ser. B 108, 73–76 10.1006/jmrb.1995.1104 DOI
Ishima R., and Nagayama K. (1995) Protein backbone dynamics revealed by quasi spectral density function analysis of amide N-15 nuclei. Biochemistry 34, 3162–3171 10.1021/bi00010a005 PubMed DOI
Lefevre J. F., Dayie K. T., Peng J. W., and Wagner G. (1996) Internal mobility in the partially folded DNA binding and dimerization domains of GAL4: NMR analysis of the N-H spectral density functions. Biochemistry 35, 2674–2686 10.1021/bi9526802 PubMed DOI
Barthe P., Chiche L., Declerck N., Delsuc M. A., Lefèvre J. F., Malliavin T., Mispelter J., Stern M. H., Lhoste J. M., and Roumestand C. (1999) Refined solution structure and backbone dynamics of 15N-labeled C12A-p8MTCP1 studied by NMR relaxation. J. Biomol. NMR 15, 271–288 10.1023/A:1008336418418 PubMed DOI
Krízová H., Zídek L., Stone M. J., Novotny M. V., and Sklenár V. (2004) Temperature-dependent spectral density analysis applied to monitoring backbone dynamics of major urinary protein-I complexed with the pheromone 2-sec-butyl-4,5-dihydrothiazole. J. Biomol. NMR 28, 369–384 10.1023/B:JNMR.0000015404.61574.65 PubMed DOI
Kaneko T., Li L., and Li S. S. (2008) The SH3 domain-A family of versatile peptide- and protein-recognition module, Front. Biosci. 13, 4938–4952 PubMed
Zamora-Leon S. P., Bresnick A., Backer J. M., and Shafit-Zagardo B. (2005) Fyn phosphorylates human MAP-2c on tyrosine 67. J. Biol. Chem. 280, 1962–1970 10.1074/jbc.M411380200 PubMed DOI
Newlon M. G., Roy M., Morikis D., Carr D. W., Westphal R., Scott J. D., and Jennings P. A. (2001) A novel mechanism of PKA anchoring revealed by solution structures of anchoring complexes. EMBO J. 20, 1651–1662 10.1093/emboj/20.7.1651 PubMed DOI PMC
Götz F., Roske Y., Schulz M. S., Autenrieth K., Bertinetti D., Faelber K., Zühlke K., Kreuchwig A., Kennedy E. J., Krause G., Daumke O., Herberg F. W., Heinemann U., and Klussmann E. (2016) AKAP18:PKA-RIIα structure reveals crucial anchor points for recognition of regulatory subunits of PKA. Biochem. J. 473, 1881–1894 10.1042/BCJ20160242 PubMed DOI PMC
Jeganathan S., von Bergen M., Brutlach H., Steinhoff H. J., and Mandelkow E. (2006) Global hairpin folding of tau in solution. Biochemistry 45, 2283–2293 10.1021/bi0521543 PubMed DOI
Laurine E., Lafitte D., Grégoire C., Sérée E., Loret E., Douillard S., Michel B., Briand C., and Verdier J. M. (2003) Specific binding of dehydroepiandrosterone to the N terminus of the microtubule-associated protein MAP2. J. Biol. Chem. 278, 29979–29986 10.1074/jbc.M303242200 PubMed DOI
Goode B. L., Denis P. E., Panda D., Radeke M. J., Miller H. P., Wilson L., and Feinstein S. C. (1997) Functional interactions between the proline-rich and repeat regions of tau enhance microtubule binding and assembly. Mol. Biol. Cell 8, 353–365 10.1091/mbc.8.2.353 PubMed DOI PMC
Guo Y., Gong H. S., Zhang J., Xie W. L., Tian C., Chen C., Shi Q., Wang S. B., Xu Y., Zhang B. Y., and Dong X. P. (2012) Remarkable reduction of MAP2 in the brains of scrapie-infected rodents and human prion disease possibly correlated with the increase of calpain, PLoS One 7, e30163 10.1371/journal.pone.0030163 PubMed DOI PMC
Tie L., Zhang J. Z., Lin Y. H., Su T. H., Li Y. H., Wu H. L., Zhang Y. Y., Yu H. M., and Li X. J. (2008) Epinephrine increases phosphorylation of MAP-2c in rat pheochromocytoma cells (PC12 cells) via a protein kinase C- and mitogen activated protein kinase-dependent mechanism. J. Proteome Res. 7, 1704–1711 10.1021/pr700711s PubMed DOI
Ackmann M., Wiech H., and Mandelkow E. (2000) Nonsaturable binding indicates clustering of tau on the microtubule surface in a paired helical filament-like conformation. J. Biol. Chem. 275, 30335–30343 10.1074/jbc.M002590200 PubMed DOI
Meixner A., Haverkamp S., Wässle H., Führer S., Thalhammer J., Kropf N., Bittner R. E., Lassmann H., Wiche G., and Propst F. (2000) MAP1B is required for axon guidance and is involved in the development of the central and peripheral nervous system. J. Cell Biol. 151, 1169–1178 10.1083/jcb.151.6.1169 PubMed DOI PMC
Liu F., Iqbal K., Grundke-Iqbal I., Rossie S., and Gong C. X. (2005) Dephosphorylation of tau by protein phosphatase 5: impairment in Alzheimer's disease. J. Biol. Chem. 280, 1790–1796 10.1074/jbc.M410775200 PubMed DOI
Ozer R. S., and Halpain S. (2000) Phosphorylation-dependent localization of microtubule-associated protein MAP2c to the actin cytoskeleton. Mol. Biol. Cell 11, 3573–3587 10.1091/mbc.11.10.3573 PubMed DOI PMC
Gamblin T. C., Nachmanoff K., Halpain S., and Williams R. C. (1996) Recombinant microtubule-associated protein 2c reduces the dynamic instability of individual microtubules. Biochemistry 35, 12576–12586 10.1021/bi961135d PubMed DOI
Kazimierczuk K., Zawadzka A., and Koźmiński W. (2008) Optimization of random time domain sampling in multidimensional NMR. J. Magn. Reson. 192, 123–130 10.1016/j.jmr.2008.02.003 PubMed DOI
Kay L. E., Ikura M., Tschudin R., and Bax A. (1990) Three-dimensional triple-resonance NMR spectroscopy of isotopically enriched proteins, J. Magn. Reson. 89, 496–514 PubMed
Nováček J., Žídek L., and Sklenář V. (2014) Toward optimal-resolution NMR of intrinsically disordered proteins. J. Magn. Reson. 241, 41–52 10.1016/j.jmr.2013.12.008 PubMed DOI
Konarev P. V., Volkov V. V., Sokolova A. V., Koch M. H. J., and Svergun D. I. (2003) PRIMUS: a Windows PC-based system for small-angle scattering data analysis. J. Appl. Cryst. 36, 1277–1282 10.1107/S0021889803012779 DOI
Bernadó P., Blanchard L., Timmins P., Marion D., Ruigrok R. W., and Blackledge M. (2005) A structural model for unfolded proteins from residual dipolar couplings and small-angle X-ray scattering. Proc. Natl. Acad. Sci. U.S.A. 102, 17002–17007 10.1073/pnas.0506202102 PubMed DOI PMC
Ozenne V., Bauer F., Salmon L., Huang J. R., Jensen M. R., Segard S., Bernadó P., Charavay C., and Blackledge M. (2012) Flexible-meccano: a tool for the generation of explicit ensemble descriptions of intrinsically disordered proteins and their associated experimental observables. Bioinformatics 28, 1463–1470 10.1093/bioinformatics/bts172 PubMed DOI
Eyal E., Najmanovich R., McConkey B. J., Edelman M., and Sobolev V. (2004) Importance of solvent accessibility and contact surfaces in modeling side-chain conformations in proteins, J. Comput. Chem. 25, 712–724 10.1002/jcc.10420 PubMed DOI
Bernadó P., and Blackledge M. (2009) A self-consistent description of the conformational behavior of chemically denatured proteins from NMR and small angle scattering. Biophys. J. 97, 2839–2845 10.1016/j.bpj.2009.08.044 PubMed DOI PMC
Svergun D., Barberato C., and Koch M. H. J. (1995) CRYSOL: a program to evaluate X-ray solution scattering of biological macromolecules from atomic coordinates. J. Appl. Cryst. 28, 768–773 10.1107/S0021889895007047 DOI
Wells M., Tidow H., Rutherford T. J., Markwick P., Jensen M. R., Mylonas E., Svergun D. I., Blackledge M., and Fersht A. R. (2008) Structure of tumor suppressor p53 and its intrinsically disordered N-terminal transactivation domain. Proc. Natl. Acad. Sci. U.S.A. 105, 5762–5767 10.1073/pnas.0801353105 PubMed DOI PMC
Salmon L., Nodet G., Ozenne V., Yin G., Jensen M. R., Zweckstetter M., and Blackledge M. (2010) NMR characterization of long-range order in intrinsically disordered proteins. J. Am. Chem. Soc. 132, 8407–8418 10.1021/ja101645g PubMed DOI
Marsh J. A., Baker J. M. R., Tollinger M., and Forman-Kay J. D. (2008) Calculation of residual dipolar couplings from disordered state ensembles using local alignment. J. Am. Chem. Soc. 130, 7804–7805 10.1021/ja802220c PubMed DOI
Ward J. J., McGuffin L. J., Bryson K., Buxton B. F., and Jones D. T. (2004) The DISOPRED server for the prediction of protein disorder. Bioinformatics 20, 2138–2139 10.1093/bioinformatics/bth195 PubMed DOI
Medina M. W., Gao F., Naidoo D., Rudel L. L., Temel R. E., McDaniel A. L., Marshall S. M., and Krauss R. M. (2011) Coordinately regulated alternative splicing of genes involved in cholesterol biosynthesis and uptake. PLoS One 6, e19420 10.1371/journal.pone.0019420 PubMed DOI PMC
Dosztányi Z., Csizmok V., Tompa P., and Simon I. (2005) IUPred: web server for the prediction of intrinsically unstructured regions of proteins based on estimated energy content. Bioinformatics 21, 3433–3434 10.1093/bioinformatics/bti541 PubMed DOI
Kozlowski L. P., and Bujnicki J. M. (2012) MetaDisorder: a meta-server for the prediction of intrinsic disorder in proteins. BMC Bioinformatics 13, 111 10.1186/1471-2105-13-111 PubMed DOI PMC
Ishida T., and Kinoshita K. (2007) PrDOS: prediction of disordered protein regions from amino acid sequence. Nucleic Acids Res. 35, W460–W464 10.1093/nar/gkm363 PubMed DOI PMC
Yang Z. R., Thomson R., McNeil P., and Esnouf R. M. (2005) RONN: the bio-basis function neural network technique applied to the detection of natively disordered regions in proteins. Bioinformatics 21, 3369–3376 10.1093/bioinformatics/bti534 PubMed DOI
Vullo A., Bortolami O., Pollastri G., and Tosatto S. (2006) Spritz: a server for the prediction of intrinsically disordered regions in protein sequences using kernel machines. Nucleic Acids Res. 34, W164–W168 10.1093/nar/gkl166 PubMed DOI PMC
Kyte J., and Doolittle R. (1982) A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 157, 105–132 10.1016/0022-2836(82)90515-0 PubMed DOI
Choice of Force Field for Proteins Containing Structured and Intrinsically Disordered Regions