Triple resonance ¹⁵Ν NMR relaxation experiments for studies of intrinsically disordered proteins
Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články
PubMed
29071460
DOI
10.1007/s10858-017-0138-1
PII: 10.1007/s10858-017-0138-1
Knihovny.cz E-zdroje
- Klíčová slova
- Intrinsically disordered proteins, Non-uniform sampling, Nuclear magnetic resonance, Relaxation,
- MeSH
- Bacillus subtilis enzymologie MeSH
- DNA řízené RNA-polymerasy chemie MeSH
- izotopy dusíku MeSH
- izotopy uhlíku MeSH
- nukleární magnetická rezonance biomolekulární metody MeSH
- vnitřně neuspořádané proteiny chemie MeSH
- vodík MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- Carbon-13 MeSH Prohlížeč
- DNA řízené RNA-polymerasy MeSH
- izotopy dusíku MeSH
- izotopy uhlíku MeSH
- Nitrogen-15 MeSH Prohlížeč
- vnitřně neuspořádané proteiny MeSH
- vodík MeSH
Description of protein dynamics is known to be essential in understanding their function. Studies based on a well established [Formula: see text] NMR relaxation methodology have been applied to a large number of systems. However, the low dispersion of [Formula: see text] chemical shifts very often observed within intrinsically disordered proteins complicates utilization of standard 2D HN correlated spectra because a limited number of amino acids can be characterized. Here we present a suite of triple resonance HNCO-type NMR experiments for measurements of five [Formula: see text] relaxation parameters ([Formula: see text], [Formula: see text], NOE, cross-correlated relaxation rates [Formula: see text] and [Formula: see text]) in doubly [Formula: see text],[Formula: see text]-labeled proteins. We show that the third spectral dimension combined with non-uniform sampling provides relaxation rates for almost all residues of a protein with extremely poor chemical shift dispersion, the C terminal domain of [Formula: see text]-subunit of RNA polymerase from Bacillus subtilis. Comparison with data obtained using a sample labeled by [Formula: see text] only showed that the presence of [Formula: see text] has a negligible effect on [Formula: see text], [Formula: see text], and on the cross-relaxation rate (calculated from NOE and [Formula: see text]), and that these relaxation rates can be used to calculate accurate spectral density values. Partially [Formula: see text]-labeled sample was used to test if the observed increase of [Formula: see text] [Formula: see text] in the presence of [Formula: see text] corresponds to the [Formula: see text] dipole-dipole interactions in the [Formula: see text],[Formula: see text]-labeled sample.
Zobrazit více v PubMed
Angew Chem Int Ed Engl. 2013 Apr 2;52(14):3911-5 PubMed
J Biomol NMR. 2013 Aug;56(4):291-301 PubMed
Anal Chem. 2010 Jun 1;82(11):4648-51 PubMed
J Biomol NMR. 1995 Sep;6(2):153-62 PubMed
J Magn Reson. 1998 May;132(1):25-33 PubMed
J Magn Reson. 1998 Dec;135(2):487-99 PubMed
J Magn Reson. 2010 Dec;207(2):294-303 PubMed
J Biomol NMR. 1995 Nov;6(3):277-93 PubMed
Angew Chem Int Ed Engl. 2013 Apr 22;52(17):4604-6 PubMed
Chembiochem. 2013 Sep 23;14(14):1772-9 PubMed
J Am Chem Soc. 2002 Mar 6;124(9):1852-3 PubMed
J Biomol NMR. 2010 May;47(1):65-77 PubMed
Genome Inform Ser Workshop Genome Inform. 2000;11:161-71 PubMed
J Magn Reson. 2003 Apr;161(2):258-64 PubMed
FEBS Lett. 2005 Jun 13;579(15):3346-54 PubMed
Methods Mol Biol. 2012;895:127-38 PubMed
Biophys J. 2008 Jun;94(12):4847-66 PubMed
J Biomol NMR. 2004 Nov;30(3):347-52 PubMed
Methods Mol Biol. 2012;831:141-63 PubMed
J Mol Biol. 1995 Sep 15;252(2):189-202 PubMed
J Am Chem Soc. 2014 May 14;136(19):6987-94 PubMed
Methods Mol Biol. 2012;895:167-96 PubMed
J Phys Chem Lett. 2012 May 17;3(10):1409-13 PubMed
Nucleic Acids Res. 2005 Apr 11;33(7):2061-77 PubMed
J Magn Reson. 1998 Dec;135(2):368-72 PubMed
J Biomol NMR. 1993 Mar;3(2):185-204 PubMed
Biochemistry. 1989 Nov 14;28(23):8972-9 PubMed
J Biomol Struct Dyn. 2005 Oct;23(2):113-24 PubMed
Q Rev Biophys. 2011 Nov;44(4):467-518 PubMed
J Mol Biol. 2007 Sep 21;372(3):708-22 PubMed
FEBS Lett. 2013 Jun 27;587(13):1891-901 PubMed
J Biomol NMR. 2014 Mar;58(3):193-207 PubMed
J Biomol NMR. 2008 Feb;40(2):121-33 PubMed
J Biomol NMR. 2010 Nov;48(3):169-77 PubMed
Biochem Soc Trans. 2012 Oct;40(5):955-62 PubMed
J Magn Reson. 2011 Dec;213(2):423-41 PubMed
J Biomol NMR. 2006 Nov;36(3):157-68 PubMed
Biochemistry. 2001 Mar 6;40(9):2743-53 PubMed
J Magn Reson. 2014 Apr;241:41-52 PubMed
J Biomol NMR. 2006 Oct;36(2):123-36 PubMed
PLoS One. 2012;7(9):e44913 PubMed
J Am Chem Soc. 2006 Aug 30;128(34):11072-8 PubMed
J Magn Reson. 2007 Oct;188(2):344-56 PubMed
Biochemistry. 2006 Jun 6;45(22):6873-88 PubMed
J Chem Phys. 2007 Apr 7;126(13):134508 PubMed
J Struct Biol. 2014 Aug;187(2):174-186 PubMed
Rapid Commun Mass Spectrom. 2008;22(6):905-8 PubMed
J Biomol NMR. 2007 Nov;39(3):239-45 PubMed
J Biomol NMR. 2008 Feb;40(2):107-19 PubMed
Chem Rev. 2006 May;106(5):1624-71 PubMed
Nat Rev Mol Cell Biol. 2005 Mar;6(3):197-208 PubMed
J Am Chem Soc. 2008 Dec 17;130(50):16873-9 PubMed
J Biomol NMR. 2012 Jul;53(3):209-21 PubMed
BMC Bioinformatics. 2008 Oct 20;9:446 PubMed
Convergent views on disordered protein dynamics from NMR and computational approaches
Choice of Force Field for Proteins Containing Structured and Intrinsically Disordered Regions