• This record comes from PubMed

Temperature-dependent spectral density analysis applied to monitoring backbone dynamics of major urinary protein-I complexed with the pheromone 2- sec-butyl-4,5-dihydrothiazole

. 2004 Apr ; 28 (4) : 369-84.

Language English Country Netherlands Media print

Document type Journal Article, Research Support, Non-U.S. Gov't, Research Support, U.S. Gov't, Non-P.H.S., Research Support, U.S. Gov't, P.H.S.

Grant support
DC 02418 NIDCD NIH HHS - United States

Backbone dynamics of mouse major urinary protein I (MUP-I) was studied by (15)N NMR relaxation. Data were collected at multiple temperatures for a complex of MUP-I with its natural pheromonal ligand, 2- sec -4,5-dihydrothiazole, and for the free protein. The measured relaxation rates were analyzed using the reduced spectral density mapping. Graphical analysis of the spectral density values provided an unbiased qualitative picture of the internal motions. Varying temperature greatly increased the range of analyzed spectral density values and therefore improved reliability of the analysis. Quantitative parameters describing the dynamics on picosecond to nanosecond time scale were obtained using a novel method of simultaneous data fitting at multiple temperatures. Both methods showed that the backbone flexibility on the fast time scale is slightly increased upon pheromone binding, in accordance with the previously reported results. Zero-frequency spectral density values revealed conformational changes on the microsecond to millisecond time scale. Measurements at different temperatures allowed to monitor temperature dependence of the motional parameters.

See more in PubMed

Biochemistry. 1996 Feb 27;35(8):2674-86 PubMed

J Biomol NMR. 1999 Dec;15(4):271-88 PubMed

J Biomol NMR. 1995 Sep;6(2):153-62 PubMed

Nature. 1992 Nov 12;360(6400):186-8 PubMed

Biochemistry. 1994 May 17;33(19):5984-6003 PubMed

Biochemistry. 1996 Dec 17;35(50):16036-47 PubMed

Proteins. 2000 Oct 1;41(1):75-85 PubMed

J Biomol NMR. 1995 Nov;6(3):277-93 PubMed

J Biomol NMR. 2002 Jun;23(2):139-50 PubMed

J Mol Biol. 2003 Mar 28;327(3):719-34 PubMed

J Biomol NMR. 2001 Sep;21(1):1-9 PubMed

Biochemistry. 2003 May 27;42(20):6302-9 PubMed

Proc Biol Sci. 1999 Oct 7;266(1432):2017-22 PubMed

Biochemistry. 1995 Jan 24;34(3):868-78 PubMed

J Biol Chem. 2003 May 16;278(20):18581-7 PubMed

Biochemistry. 1997 Sep 9;36(36):10975-86 PubMed

Experientia. 1995 Jul 14;51(7):738-43 PubMed

J Magn Reson B. 1994 Nov;105(3):211-24 PubMed

J Biomol NMR. 2003 Jan;25(1):25-39 PubMed

J Biomol NMR. 1992 Nov;2(6):661-5 PubMed

Protein Sci. 2002 Sep;11(9):2247-56 PubMed

J Mol Biol. 2002 Feb 22;316(3):611-27 PubMed

J Mol Biol. 1999 Feb 5;285(5):2133-46 PubMed

Protein Sci. 2000 Jun;9(6):1177-93 PubMed

Acta Crystallogr D Biol Crystallogr. 2001 Dec;57(Pt 12):1863-9 PubMed

Biochemistry. 1999 Aug 3;38(31):9850-61 PubMed

Nature. 2001 Dec 6;414(6864):631-4 PubMed

Biochemistry. 2001 Oct 23;40(42):12541-51 PubMed

Biochemistry. 1995 Dec 26;34(51):16733-52 PubMed

J Mol Biol. 1999 Jun 11;289(3):603-17 PubMed

J Chem Ecol. 2002 Jul;28(7):1429-46 PubMed

Protein Sci. 2001 Feb;10(2):411-7 PubMed

Biochemistry. 1996 Dec 17;35(50):16009-23 PubMed

Acc Chem Res. 2001 May;34(5):379-88 PubMed

Protein Sci. 2001 May;10(5):997-1004 PubMed

J Mol Biol. 1995 Feb 10;246(1):144-63 PubMed

Biochem J. 1996 Aug 15;318 ( Pt 1):1-14 PubMed

Nat Struct Biol. 1999 Dec;6(12):1118-21 PubMed

J Magn Reson. 2003 Mar;161(1):118-25 PubMed

Eur J Biochem. 1999 Dec;266(3):1210-8 PubMed

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...