Modern Perspective of Lactate Metabolism

. 2024 Aug 31 ; 73 (4) : 499-514.

Jazyk angličtina Země Česko Médium print

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid39264074

Once considered a metabolic waste product, today it is considered an important signaling molecule continuously forming under aerobic conditions. Lactate, a molecule primarily known as a byproduct of glycolysis, has gained importance in recent years due to its multifaceted role in various biological processes. Misconceptions surrounding lactate have persisted for centuries, especially the belief that elevated lactate levels were solely a result of low oxygen levels shaped early understanding. However, current research challenges this view and expands our comprehension of lactate's various roles. Unfortunately, despite all of the mentioned above lactate is rooted in modern society as a deterrent word and many people do not know its value in the human body, let alone clinical implementations or physical performance. The main goal of this review is to refresh current knowledge regarding lactate research and spread the overall information among a professional society. Key words: Lactate, Lactate metabolism, Lactic acid, Disease metabolism, Lactate shuttle.

Zobrazit více v PubMed

Fletcher WM, Hopkins FG. Lactic acid in amphibian muscle1. J Physiol. 1907;35(4):247–309. doi: 10.1113/jphysiol.1907.sp001194. PubMed DOI PMC

Hill AV, Lupton H. Muscular Exercise, Lactic Acid, and the Supply and Utilization of Oxygen. QJM. 1923;os-16(62):135–171. doi: 10.1093/qjmed/os-16.62.135. DOI

Gladden LB. Lactate metabolism: a new paradigm for the third millennium. J Physiol. 2004;558(1):5–30. doi: 10.1113/jphysiol.2003.058701. PubMed DOI PMC

Benninga H. A history of lactic acid making: a chapter in the history of biotechnology. Br J Hist Sci. 1991;24(4):474–475. doi: 10.1017/S0007087400027692. DOI

Brooks GA. Lactate shuttles in Nature. Biochem Soc Trans. 2002;30(2):258–264. doi: 10.1042/bst0300258. PubMed DOI

Brooks GA. Cell-cell and intracellular lactate shuttles: Lactate: Darth Vader or Jedi Knight of exercise physiology? J Physiol. 2009;587(23):5591–5600. doi: 10.1113/jphysiol.2009.178350. PubMed DOI PMC

Ferguson BS, Rogatzki MJ, Goodwin ML, Kane DA, Rightmire Z, Gladden LB. Lactate metabolism: historical context, prior misinterpretations, and current understanding. Eur J Appl Physiol. 2018;118(4):691–728. doi: 10.1007/s00421-017-3795-6. PubMed DOI

Rabinowitz JD, Enerbäck S. Lactate: the ugly duckling of energy metabolism. Nat Metab. 2020;2(7):566–571. doi: 10.1038/s42255-020-0243-4. PubMed DOI PMC

Kraut JA, Madias NE. Lactic Acidosis. N Engl J Med. 2014;371(24):2309–2319. doi: 10.1056/NEJMra1309483. PubMed DOI

Rogatzki MJ, Ferguson BS, Goodwin ML, Gladden LB. Lactate is always the end product of glycolysis. Front Neurosci. 2015:9. doi: 10.3389/fnins.2015.00022. PubMed DOI PMC

Brooks GA. The science and translation of lactate shuttle theory. Cell Metab. 2018;27(4):757–785. doi: 10.1016/j.cmet.2018.03.008. PubMed DOI

Manosalva C, Quiroga J, Hidalgo AI, et al. Role of lactate in inflammatory processes: friend or foe. Front Immunol. 2022;12:808799. doi: 10.3389/fimmu.2021.808799. PubMed DOI PMC

Brooks GA. Lactate as a fulcrum of metabolism. Redox Biol. 2020;35:101454. doi: 10.1016/j.redox.2020.101454. PubMed DOI PMC

Doherty JR, Cleveland JL. Targeting lactate metabolism for cancer therapeutics. J Clin Invest. 2013;123(9):3685–3692. doi: 10.1172/JCI69741. PubMed DOI PMC

Bergman BC, Wolfel EE, Butterfield GE, et al. Active muscle and whole body lactate kinetics after endurance training in men. J Appl Physiol. 1999;87(5):1684–1696. doi: 10.1152/jappl.1999.87.5.1684. PubMed DOI

Bergman BC, Horning MA, Casazza GA, Wolfel EE, Butterfield GE, Brooks GA. Endurance training increases gluconeogenesis during rest and exercise in men. Am J Physiol - Endocrinol Metab. 2000;278(241–2):E244–E251. doi: 10.1152/ajpendo.2000.278.2.E244. PubMed DOI

Brooks GA, Arevalo JA, Osmond AD, Leija RG, Curl CC, Tovar AP. Lactate in contemporary biology: a phoenix risen. J Physiol. 2022;600(5):1229–1251. doi: 10.1113/JP280955. PubMed DOI PMC

Emhoff CAW, Messonnier LA, Horning MA, Fattor JA, Carlson TJ, Brooks GA. Gluconeogenesis and hepatic glycogenolysis during exercise at the lactate threshold. J Appl Physiol. 2013;114(3):297–306. doi: 10.1152/japplphysiol.01202.2012. PubMed DOI PMC

Hashimoto T, Hussien R, Oommen S, Gohil K, Brooks GA. Lactate sensitive transcription factor network in L6 cells: activation of MCT1 and mitochondrial biogenesis. FASEB J. 2007;21(10):2602–2612. doi: 10.1096/fj.07-8174com. PubMed DOI

Liu C, Wu J, Zhu J, et al. Lactate inhibits lipolysis in fat cells through activation of an orphan g-protein-coupled receptor GPR81. J Biol Chem. 2009;284(5):2811–2822. doi: 10.1074/jbc.M806409200. PubMed DOI

Pedersen MGB, Rittig N, Søndergaard E, Gormsen LC, Møller N. 1660-P: Lactate Inhibits Lipolysis in Healthy Males-A Randomized Crossover Trial. Diabetes. 2023;72(Supplement_1):1660-P. doi: 10.2337/db23-1660-P. DOI

Takeuchi N, Higashida K, Nakai N. Inhibition of the mitochondrial respiratory chain reduces catecholamine-stimulated lipolysis via increasing lactate production in 3T3-L1 adipocytes. Mol Med Rep. 2023;28(6):1–6. doi: 10.3892/mmr.2023.13116. PubMed DOI

Brooks GA, Osmond AD, Arevalo JA, et al. Lactate as a myokine and exerkine: drivers and signals of physiology and metabolism. J Appl Physiol Bethesda Md 1985. 2023;134(3):529–548. doi: 10.1152/japplphysiol.00497.2022. PubMed DOI PMC

San-Millán I, Brooks GA. Assessment of metabolic flexibility by means of measuring blood lactate, fat, and carbohydrate oxidation responses to exercise in professional endurance athletes and less-fit individuals. Sports Med. 2018;48(2):467–479. doi: 10.1007/s40279-017-0751-x. PubMed DOI

Hashimoto T, Hussien R, Brooks GA. Colocalization of MCT1, CD147, and LDH in mitochondrial inner membrane of L6 muscle cells: evidence of a mitochondrial lactate oxidation complex. Am J Physiol-Endocrinol Metab. 2006;290(6):E1237–E1244. doi: 10.1152/ajpendo.00594.2005. PubMed DOI

Hashimoto T, Brooks GA. Mitochondrial lactate oxidation complex and an adaptive role for lactate production. Med Sci Sports Exerc. 2008;40(3):486. doi: 10.1249/MSS.0b013e31815fcb04. PubMed DOI

Li X, Yang Y, Zhang B, et al. Lactate metabolism in human health and disease. Signal Transduct Target Ther. 2022;7(1):1–22. doi: 10.1038/s41392-022-01151-3. PubMed DOI PMC

Bélanger M, Allaman I, Magistretti PJ. Brain energy metabolism: focus on astrocyte-neuron metabolic cooperation. Cell Metab. 2011;14(6):724–738. doi: 10.1016/j.cmet.2011.08.016. PubMed DOI

Pellerin L, Pellegri G, Bittar PG, et al. Evidence Supporting the Existence of an Activity-Dependent Astrocyte-Neuron Lactate Shuttle. Dev Neurosci. 1998;20(4–5):291–299. doi: 10.1159/000017324. PubMed DOI

Bouzier-Sore AK, Voisin P, Bouchaud V, Bezancon E, Franconi JM, Pellerin L. Competition between glucose and lactate as oxidative energy substrates in both neurons and astrocytes: a comparative NMR study. Eur J Neurosci. 2006;24(6):1687–1694. doi: 10.1111/j.1460-9568.2006.05056.x. PubMed DOI

Wyss MT, Jolivet R, Buck A, Magistretti PJ, Weber B. In Vivo evidence for lactate as a neuronal energy source. J Neurosci. 2011;31(20):7477–7485. doi: 10.1523/JNEUROSCI.0415-11.2011. PubMed DOI PMC

Dienel GA. Brain lactate metabolism: the discoveries and the controversies. J Cereb Blood Flow Metab. 2012;32(7):1107–1138. doi: 10.1038/jcbfm.2011.175. PubMed DOI PMC

Simpson IA, Carruthers A, Vannucci SJ. Supply and demand in cerebral energy metabolism: the role of nutrient transporters. J Cereb Blood Flow Metab. 2007;27(11):1766–1791. doi: 10.1038/sj.jcbfm.9600521. PubMed DOI PMC

Tang BL. Brain activity-induced neuronal glucose uptake/glycolysis: Is the lactate shuttle not required? Brain Res Bull. 2018;137:225–228. doi: 10.1016/j.brainresbull.2017.12.010. PubMed DOI

Brown MA, Brooks GA. Trans-stimulation of lactate transport from rat sarcolemmal membrane vesicles. Arch Biochem Biophys. 1994;313(1):22–28. doi: 10.1006/abbi.1994.1353. PubMed DOI

Garcia CK, Goldstein JL, Pathak RK, Anderson RGW, Brown MS. Molecular characterization of a membrane transporter for lactate, pyruvate, and other monocarboxylates: Implications for the Cori cycle. Cell. 1994;76(5):865–873. doi: 10.1016/0092-8674(94)90361-1. PubMed DOI

Sonveaux P, Végran F, Schroeder T, et al. Targeting lactate-fueled respiration selectively kills hypoxic tumor cells in mice. J Clin Invest. 2008;118(12):3930–3942. doi: 10.1172/JCI36843. PubMed DOI PMC

Halestrap AP, Wilson MC. The monocarboxylate transporter family--role and regulation. IUBMB Life. 2012;64(2):109–119. doi: 10.1002/iub.572. PubMed DOI

Bergersen LH. Lactate transport and signaling in the brain: potential therapeutic targets and roles in body-brain interaction. J Cereb Blood Flow Metab. 2015;35(2):176–185. doi: 10.1038/jcbfm.2014.206. PubMed DOI PMC

Hering GO, Hennig EM, Riehle HJ, Stepan J. A lactate kinetics method for assessing the maximal lactate steady state workload. Front Physiol. 2018;9:310. doi: 10.3389/fphys.2018.00310. PubMed DOI PMC

Pucino V, Certo M, Bulusu V, et al. Lactate buildup at the site of chronic inflammation promotes disease by inducing CD4+ T Cell metabolic rewiring. Cell Metab. 2019;30(6):1055–1074.e8. doi: 10.1016/j.cmet.2019.10.004. PubMed DOI PMC

Haas R, Smith J, Rocher-Ros V, et al. Lactate regulates metabolic and pro-inflammatory circuits in control of T cell migration and effector functions. PLOS Biol. 2015;13(7):e1002202. doi: 10.1371/journal.pbio.1002202. PubMed DOI PMC

Hirschhaeuser F, Sattler UGA, Mueller-Klieser W. Lactate: A metabolic key player in cancer. Cancer Res. 2011;71(22):6921–6925. doi: 10.1158/0008-5472.CAN-11-1457. PubMed DOI

Pucino V, Bombardieri M, Pitzalis C, Mauro C. Lactate at the crossroads of metabolism, inflammation, and autoimmunity. Eur J Immunol. 2017;47(1):14–21. doi: 10.1002/eji.201646477. PubMed DOI

Warburg O, Wind F, Negelein E. The metabolism of tumors in the body. J Gen Physiol. 1927;8(6):519–530. doi: 10.1085/jgp.8.6.519. PubMed DOI PMC

Goodwin ML, Gladden LB, Nijsten MWN, Jones KB. Lactate and Cancer: Revisiting the Warburg effect in an era of lactate shuttling. Front Nutr. 2015:1. doi: 10.3389/fnut.2014.00027. PubMed DOI PMC

Hui S, Ghergurovich JM, Morscher RJ, et al. Glucose feeds the TCA cycle via circulating lactate. Nature. 2017;551(7678):115–118. doi: 10.1038/nature24057. PubMed DOI PMC

San-Millán I, Brooks GA. Reexamining cancer metabolism: Lactate production for carcinogenesis could be the purpose and explanation of the Warburg Effect. Carcinogenesis. 2017;38(2):119–133. doi: 10.1093/carcin/bgw127. PubMed DOI PMC

Glancy B, Kane DA, Kavazis AN, Goodwin ML, Willis WT, Gladden LB. Mitochondrial lactate metabolism: history and implications for exercise and disease. J Physiol. 2021;599(3):863–888. doi: 10.1113/JP278930. PubMed DOI PMC

Doherty JR, Yang C, Scott KEN, et al. Blocking lactate export by inhibiting the myc target MCT1 disables glycolysis and glutathione synthesis. Cancer Res. 2014;74(3):908–920. doi: 10.1158/0008-5472.CAN-13-2034. PubMed DOI PMC

Draoui N, Feron O. Lactate shuttles at a glance: from physiological paradigms to anti-cancer treatments. Dis Model Mech. 2011;4(6):727–732. doi: 10.1242/dmm.007724. PubMed DOI PMC

Gobelet C, Gerster JC. Synovial fluid lactate levels in septic and non-septic arthritides. Ann Rheum Dis. 1984;43(5):742–745. doi: 10.1136/ard.43.5.742. PubMed DOI PMC

Vincent JL, Quintairos e Silva A, Couto L, Taccone FS. The value of blood lactate kinetics in critically ill patients: a systematic review. Crit Care. 2016;20:257. doi: 10.1186/s13054-016-1403-5. PubMed DOI PMC

Baysan M, Baroni GD, van Boekel AM, Steyerberg EW, Arbous MS, van der Bom JG. The added value of lactate and lactate clearance in prediction of in-hospital mortality in critically ill patients with sepsis. Crit Care Explor. 2020;2(3):e0087. doi: 10.1097/CCE.0000000000000087. PubMed DOI PMC

Garcia-Alvarez M, Marik P, Bellomo R. Sepsis-associated hyperlactatemia. Crit Care. 2014;18(5):503. doi: 10.1186/s13054-014-0503-3. PubMed DOI PMC

Glenn TC, Martin NA, Horning MA, et al. Lactate: Brain fuel in human traumatic brain injury: a comparison with normal healthy control subjects. J Neurotrauma. 2015;32(11):820–832. doi: 10.1089/neu.2014.3483. PubMed DOI PMC

Robinson MM, Dasari S, Konopka AR, et al. Enhanced protein translation underlies improved metabolic and physical adaptations to different exercise training modes in young and old humans. Cell Metab. 2017;25(3):581–592. doi: 10.1016/j.cmet.2017.02.009. PubMed DOI PMC

Marik P, Bellomo R. Lactate clearance as a target of therapy in sepsis: A flawed paradigm. OA Crit Care. 2013;1(1) doi: 10.13172/2052-9309-1-1-431. DOI

Marik P, Bellomo R. A rational approach to fluid therapy in sepsis. Br J Anaesth. 2016;116(3):339–349. doi: 10.1093/bja/aev349. PubMed DOI

Nalos M, Leverve XM, Huang SJ, et al. Half-molar sodium lactate infusion improves cardiac performance in acute heart failure: a pilot randomised controlled clinical trial. Crit Care. 2014;18(2):R48. doi: 10.1186/cc13793. PubMed DOI PMC

Brooks GA, Martin NA. Cerebral metabolism following traumatic brain injury: new discoveries with implications for treatment. Front Neurosci. 2015:8. doi: 10.3389/fnins.2014.00408. PubMed DOI PMC

Henderson GC, Horning MA, Wallis GA, Brooks GA. Letter to the editor. Am J Physiol-Endocrinol Metab. 2007;292(1):E366–E366. doi: 10.1152/ajpendo.00363.2006. PubMed DOI

Passarella S, De Bari L, Valenti D, Pizzuto R, Paventi G, Atlante A. Mitochondria and l -lactate metabolism. FEBS Lett. 2008;582(25–26):3569–3576. doi: 10.1016/j.febslet.2008.09.042. PubMed DOI

Saddik M, Gamble J, Witters LA, Lopaschuk GD. Acetyl-CoA carboxylase regulation of fatty acid oxidation in the heart. J Biol Chem. 1993;268(34):25836–25845. doi: 10.1016/S0021-9258(19)74465-2. PubMed DOI

Miller BF, Fattor JA, Jacobs KA, et al. Lactate and glucose interactions during rest and exercise in men: Effect of exogenous lactate infusion. J Physiol. 2002;544(3):963–975. doi: 10.1113/jphysiol.2002.027128. PubMed DOI PMC

Bergman BC, Tsvetkova T, Lowes B, Wolfel EE. Myocardial glucose and lactate metabolism during rest and atrial pacing in humans. J Physiol. 2009;587(9):2087–2099. doi: 10.1113/jphysiol.2008.168286. PubMed DOI PMC

Gertz EW, Wisneski JA, Neese R, Bristow JD, Searle GL, Hanlon JT. Myocardial lactate metabolism: Evidence of lactate release during net chemical extraction in man. Circulation. 1981;63(6 I):1273–1279. doi: 10.1161/01.CIR.63.6.1273. PubMed DOI

Stanley WC, Gertz EW, Wisneski JA, Neese RA, Morris DL, Brooks GA. Lactate extraction during net lactate release in legs of humans during exercise. J Appl Physiol. 1986;60(4):1116–1120. doi: 10.1152/jappl.1986.60.4.1116. PubMed DOI

Wolahan SM, Hirt D, Braas D, Glenn TC. Role of metabolomics in traumatic brain injury research. Neurosurg Clin N Am. 2016;27(4):465–472. doi: 10.1016/j.nec.2016.05.006. PubMed DOI PMC

Wolahan SM, Mao HC, Real C, Vespa PM, Glenn TC. Lactate supplementation in severe traumatic brain injured adults by primed constant infusion of sodium L-lactate. J Neurosci Res. 2018;96(4):688–695. doi: 10.1002/jnr.24085. PubMed DOI PMC

de Melo Pereira GV, de Oliveira Coelho B, Magalhães AI, Júnior, Thomaz-Soccol V, Soccol CR. How to select a probiotic? A review and update of methods and criteria. Biotechnol Adv. 2018;36(8):2060–2076. doi: 10.1016/j.biotechadv.2018.09.003. PubMed DOI

Hussien R, Brooks GA. Mitochondrial and plasma membrane lactate transporter and lactate dehydrogenase isoform expression in breast cancer cell lines. Physiol Genomics. 2011;43(5):255–264. doi: 10.1152/physiolgenomics.00177.2010. PubMed DOI PMC

Le Floch R, Chiche J, Marchiq I, et al. CD147 subunit of lactate/H+ symporters MCT1 and hypoxia-inducible MCT4 is critical for energetics and growth of glycolytic tumors. Proc Natl Acad Sci U S A. 2011;108(40):16663–16668. doi: 10.1073/pnas.1106123108. PubMed DOI PMC

Xie Y, Hu H, Liu M, et al. The role and mechanism of histone lactylation in health and diseases. Front Genet. 2022;13:949252. doi: 10.3389/fgene.2022.949252. PubMed DOI PMC

Jiang J, Huang D, Jiang Y, et al. Lactate modulates cellular metabolism through histone lactylation-mediated gene expression in non-small cell lung cancer. Front Oncol. 2021;11:647559. doi: 10.3389/fonc.2021.647559. PubMed DOI PMC

Zhang D, Tang Z, Huang H, et al. Metabolic regulation of gene expression by histone lactylation. Nature. 2019;574(7779):575–580. doi: 10.1038/s41586-019-1678-1. PubMed DOI PMC

Hashimoto T, Tsukamoto H, Takenaka S, et al. Maintained exercise-enhanced brain executive function related to cerebral lactate metabolism in men. FASEB J. 2018;32(3):1417–1427. doi: 10.1096/fj.201700381RR. PubMed DOI

van Hall G, Stømstad M, Rasmussen P, et al. Blood lactate is an important energy source for the human brain. J Cereb Blood Flow Metab. 2009;29(6):1121–1129. doi: 10.1038/jcbfm.2009.35. PubMed DOI

Oddo M, Levine JM, Frangos S, et al. Brain lactate metabolism in humans with subarachnoid hemorrhage. Stroke. 2012;43(5):1418–1421. doi: 10.1161/STROKEAHA.111.648568. PubMed DOI

Patet C, Suys T, Carteron L, Oddo M. Cerebral lactate metabolism after traumatic brain injury. Curr Neurol Neurosci Rep. 2016;16(4):31. doi: 10.1007/s11910-016-0638-5. PubMed DOI

Mächler P, Wyss MT, Elsayed M, et al. In Vivo Evidence for a Lactate Gradient from Astrocytes to Neurons. Cell Metab. 2016;23(1):94–102. doi: 10.1016/j.cmet.2015.10.010. PubMed DOI

Hoque R, Farooq A, Ghani A, Gorelick F, Mehal WZ. Lactate reduces liver and pancreatic injury in toll-like receptor- and inflammasome-mediated inflammation via GPR81-mediated suppression of innate immunity. Gastroenterology. 2014;146(7):1763–1774. doi: 10.1053/j.gastro.2014.03.014. PubMed DOI PMC

Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett CM, Knight R, Gordon JI. The human microbiome project. Nature. 2007;449(7164):804–810. doi: 10.1038/nature06244. PubMed DOI PMC

Iraporda C, Romanin DE, Rumbo M, Garrote GL, Abraham AG. The role of lactate on the immunemodulatory properties of the nonbacterial fraction of kefir. Food Res Int. 2014;62:247–253. doi: 10.1016/j.foodres.2014.03.003. DOI

Iraporda C, Errea A, Romanin DE, et al. Lactate and short chain fatty acids produced by microbial fermentation downregulate proinflammatory responses in intestinal epithelial cells and myeloid cells. Immunobiology. 2015;220(10):1161–1169. doi: 10.1016/j.imbio.2015.06.004. PubMed DOI

Iraporda C, Romanin DE, Bengoa AA, et al. Local treatment with lactate prevents intestinal inflammation in the TNBS-induced colitis model. Front Immunol. 2016;7(DEC) doi: 10.3389/fimmu.2016.00651. PubMed DOI PMC

Hill C, Guarner F, Reid G, et al. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol. 2014;11(8):506–514. doi: 10.1038/nrgastro.2014.66. PubMed DOI

Galland L. The gut microbiome and the brain. J Med Food. 2014;17(12):1261–1272. doi: 10.1089/jmf.2014.7000. PubMed DOI PMC

Matejovic M, Radermacher P, Fontaine E. Lactate in shock: a high-octane fuel for the heart? Intensive Care Med. 2007;33(3):406–408. doi: 10.1007/s00134-006-0524-8. PubMed DOI

Leverve X, Mustafa I, Novak I, et al. Lactate metabolism in acute uremia. J Ren Nutr. 2005;15(1):58–62. doi: 10.1053/j.jrn.2004.09.023. PubMed DOI

van Gemert LA, de Galan BE, Wevers RA, ter Heine R, Willemsen MA. Lactate infusion as therapeutical intervention: a scoping review. Eur J Pediatr. 2022;181:2227–2235. doi: 10.1007/s00431-022-04446-3. PubMed DOI PMC

Koňaříková E, Marković A, Korandová Z, Houštěk J, Mráček T. Current progress in the therapeutic options for mitochondrial disorders. Physiol Res. 2020;69(6):967–994. doi: 10.33549/physiolres.934529. PubMed DOI PMC

Chow LS, Gerszten RE, Taylor JM, et al. Exerkines in health, resilience and disease. Nat Rev Endocrinol. 2022;18(5):273–289. doi: 10.1038/s41574-022-00641-2. PubMed DOI PMC

Heo J, Noble EE, Call JA. The role of exerkines on brain mitochondria: a mini-review. J Appl Physiol. 2023;134(1):28–35. doi: 10.1152/japplphysiol.00565.2022. PubMed DOI PMC

Severinsen MCK, Pedersen BK. Muscle-organ crosstalk: the emerging roles of myokines. Endocr Rev. 2020;41(4):594–609. doi: 10.1210/endrev/bnaa016. PubMed DOI PMC

Takahashi H, Alves CRR, Stanford KI, et al. TGF-β2 is an exercise-induced adipokine that regulates glucose and fatty acid metabolism. Nat Metab. 2019;1(2):291–303. doi: 10.1038/s42255-018-0030-7. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...