Simple size-controlled synthesis of Au nanoparticles and their size-dependent catalytic activity
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.
PubMed
29545580
PubMed Central
PMC5854582
DOI
10.1038/s41598-018-22976-5
PII: 10.1038/s41598-018-22976-5
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
The controlled preparation of Au nanoparticles (NPs) in the size range of 6 to 22 nm is explored in this study. The Au NPs were prepared by the reduction of tetrachloroauric acid using maltose in the presence of nonionic surfactant Tween 80 at various concentrations to control the size of the resulting Au NPs. With increasing concentration of Tween 80 a decrease in the size of produced Au NPs was observed, along with a significant decrease in their size distribution. The size-dependent catalytic activity of the synthesized Au NPs was tested in the reduction of 4-nitrophenol with sodium borohydride, resulting in increasing catalytic activity with decreasing size of the prepared nanoparticles. Eley-Rideal catalytic mechanism emerges as the more probable, in contrary to the Langmuir-Hinshelwood mechanism reported for other noble metal nanocatalysts.
Zobrazit více v PubMed
Sattarahmady N, Movahedpour A, Heli H, Hatam GR. Gold nanoparticles-based biosensing of Leishmania major kDNA genome: Visual and spectrophotometric detections. Sensors Actuators B Chem. 2016;235:723–731. doi: 10.1016/j.snb.2016.05.023. DOI
Kacanovska A, Rong Z, Schmidt M, Russell PSJ, Vadgama P. Bio-sensing using recessed gold-filled capillary amperometric electrodes. Anal. Bioanal. Chem. 2010;398:1687–94. doi: 10.1007/s00216-010-3891-5. PubMed DOI
Liu Y, et al. Development of gold nanoparticle-sheathed glass capillary nanoelectrodes for sensitive detection of cerebral dopamine. Biosens. Bioelectron. 2014;63:262–268. doi: 10.1016/j.bios.2014.07.040. PubMed DOI
Chen Q, et al. Targeted CT/MR dual mode imaging of tumors using multifunctional dendrimer-entrapped gold nanoparticles. Biomaterials. 2013;34:5200–9. doi: 10.1016/j.biomaterials.2013.03.009. PubMed DOI
Bian P, Zhou J, Liu Y, Ma Z. One-step fabrication of intense red fluorescent gold nanoclusters and their application in cancer cell imaging. Nanoscale. 2013;5:6161–6. doi: 10.1039/c3nr01282d. PubMed DOI
Cortes Vega FD, et al. Gold nanoparticle SERS substrates sustainable at extremely high temperatures. J. Mater. Chem. C. 2017;5:4959–4966. doi: 10.1039/C7TC00527J. DOI
Li Y, Qi X, Lei C, Yue Q, Zhang S. Simultaneous SERS detection and imaging of two biomarkers on the cancer cell surface by self-assembly of branched DNA-gold nanoaggregates. Chem. Commun. (Camb). 2014;50:9907–9. doi: 10.1039/C4CC05226A. PubMed DOI
Du Y, et al. Enhanced light–matter interaction of graphene–gold nanoparticle hybrid films for high-performance SERS detection. J. Mater. Chem. C. 2014;2:4683. doi: 10.1039/C4TC00353E. DOI
Kong D, et al. A gold nanoparticle-based semi-quantitative and quantitative ultrasensitive paper sensor for the detection of twenty mycotoxins. Nanoscale. 2016;8:5245–5253. doi: 10.1039/C5NR09171C. PubMed DOI
Campbell, C. T. The Active Site in Nanoparticle Gold Catalysis. PubMed
Hu W, et al. Sensitive detection of multiple mycotoxins by SPRi with gold nanoparticles as signal amplification tags. J. Colloid Interface Sci. 2014;431:71–6. doi: 10.1016/j.jcis.2014.06.007. PubMed DOI
Guo Y, et al. Label-Free Colorimetric Detection of Cadmium Ions in Rice Samples Using Gold Nanoparticles. Anal. Chem. 2014;86:8530–8534. doi: 10.1021/ac502461r. PubMed DOI
Marie-Christine, D. & Astruc, D. Gold Nanoparticles: Assembly, Supramolecular Chemistry, Quantum-Size-Related Properties, and Applications toward Biology, Catalysis, and Nanotechnology, 10.1021/CR030698+ (2003). PubMed
Corma A, et al. Supported gold nanoparticles as catalysts for organic reactions. Chem. Soc. Rev. 2008;37:2096. doi: 10.1039/b707314n. PubMed DOI
Méndez-Cruz M, Ramírez-Solís J, Zanella R. CO oxidation on gold nanoparticles supported over titanium oxide nanotubes. Catal. Today. 2011;166:172–179. doi: 10.1016/j.cattod.2010.06.014. DOI
Haruta M. Size- and support-dependency in the catalysis of gold. Catal. Today. 1997;36:153–166. doi: 10.1016/S0920-5861(96)00208-8. DOI
Valden M. Onset of Catalytic Activity of Gold Clusters on Titania with the Appearance of Nonmetallic Properties. Science (80-.). 1998;281:1647–1650. doi: 10.1126/science.281.5383.1647. PubMed DOI
Ide MS, Davis RJ. The important role of hydroxyl on oxidation catalysis by gold nanoparticles. Acc. Chem. Res. 2014;47:825–33. doi: 10.1021/ar4001907. PubMed DOI
Liu W, Yang X, Xie L. Size-controlled gold nanocolloids on polymer microsphere-stabilizer via interaction between functional groups and gold nanocolloids. J. Colloid Interface Sci. 2007;313:494–502. doi: 10.1016/j.jcis.2007.04.055. PubMed DOI
Huang X, Liao X, Shi B. Synthesis of highly active and reusable supported gold nanoparticles and their catalytic applications to 4-nitrophenol reduction. Green Chem. 2011;13:2801. doi: 10.1039/c1gc15873b. DOI
Rahman Zur, et al. Preparation and characterization of magnetic gold shells using different sizes of gold nanoseeds and their corresponding effects on catalysis. RSC Adv. 2014;4:5012. doi: 10.1039/c3ra44434a. DOI
Sinha AK, Seelan S, Tsubota S, Haruta M. Catalysis by Gold Nanoparticles: Epoxidation of Propene. Top. Catal. 2004;29:95–102. doi: 10.1023/B:TOCA.0000029791.69935.53. DOI
Lee S, et al. Angew. Chemie - Int. Ed. 2009. Selective propene epoxidation on immobilized Au6-10 clusters: The effect of hydrogen and water on activity and selectivity; pp. 1467–1471. PubMed
Takale BS, Bao M, Yamamoto Y. Gold nanoparticle (AuNPs) and gold nanopore (AuNPore) catalysts in organic synthesis. Org. Biomol. Chem. 2014;12:2005–27. doi: 10.1039/c3ob42207k. PubMed DOI
Taketoshi A, Haruta M. Size- and Structure-specificity in Catalysis by Gold Clusters. Chem. Lett. 2014;43:380–387. doi: 10.1246/cl.131232. DOI
Tsunoyama H, Sakurai H, Tsukuda T. Size effect on the catalysis of gold clusters dispersed in water for aerobic oxidation of alcohol. Chem. Phys. Lett. 2006;429:528–532. doi: 10.1016/j.cplett.2006.08.066. DOI
Jawale DV, et al. Size effect of gold nanoparticles supported on carbon nanotube as catalysts in selected organic reactions. Tetrahedron. 2014;70:6140–6145. doi: 10.1016/j.tet.2014.04.038. DOI
Yang M-Q, Pan X, Zhang N, Xu Y-J. A facile one-step way to anchor noble metal (Au, Ag, Pd) nanoparticles on a reduced graphene oxide mat with catalytic activity for selective reduction of nitroaromatic compounds. CrystEngComm. 2013;15:6819. doi: 10.1039/c3ce40694f. DOI
Aromal SA, Babu KVD, Philip D. Characterization and catalytic activity of gold nanoparticles synthesized using ayurvedic arishtams. Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 2012;96:1025–30. doi: 10.1016/j.saa.2012.08.010. PubMed DOI
Wunder S, Polzer F, Lu Y, Mei Y, Ballauff M. Kinetic Analysis of Catalytic Reduction of 4-Nitrophenol by Metallic Nanoparticles Immobilized in Spherical Polyelectrolyte Brushes. J. Phys. Chem. C. 2010;114:8814–8820. doi: 10.1021/jp101125j. DOI
Lin S-Y, et al. The protease-mediated nucleus shuttles of subnanometer gold quantum dots for real-time monitoring of apoptotic cell death. J. Am. Chem. Soc. 2010;132:8309–15. doi: 10.1021/ja100561k. PubMed DOI
Lin C, Tao K, Hua D, Ma Z, Zhou S. Size effect of gold nanoparticles in catalytic reduction of p-nitrophenol with NaBH4. Molecules. 2013;18:12609–20. doi: 10.3390/molecules181012609. PubMed DOI PMC
Wang Y-G, Mei D, Glezakou V-A, Li J, Rousseau R. Dynamic formation of single-atom catalytic active sites on ceria-supported gold nanoparticles. Nat. Commun. 2015;6:6511. doi: 10.1038/ncomms7511. PubMed DOI PMC
Herzing AA, Kiely CJ, Carley AF, Landon P, Hutchings GJ. Identification of Active Gold Nanoclusters on Iron Oxide Supports for CO Oxidation. Science (80-.). 2008;321:1331–1335. doi: 10.1126/science.1159639. PubMed DOI
Boronat M, Leyva-Pérez A, Corma A. Theoretical and Experimental Insights into the Origin of the Catalytic Activity of Subnanometric Gold Clusters: Attempts to Predict Reactivity with Clusters and Nanoparticles of Gold. Acc. Chem. Res. 2014;47:834–844. doi: 10.1021/ar400068w. PubMed DOI
Turkevich J. Colloidal gold. Part I. Gold Bull. 1985;18:86–91. doi: 10.1007/BF03214690. DOI
Martin MN, Basham JI, Chando P, Eah S-K. Charged Gold Nanoparticles in Non-Polar Solvents: 10-min Synthesis and 2D Self-Assembly. Langmuir. 2010;26:7410–7417. doi: 10.1021/la100591h. PubMed DOI
Chen H, Wang YY, Dong S, Wang E. One-step preparation and characterization of PDDA-protected gold nanoparticles. Polymer (Guildf). 2006;47:763–766. doi: 10.1016/j.polymer.2005.11.034. DOI
Li M-D, Cheng T-L, Tseng W-L. Nonionic surfactant-capped gold nanoparticles for selective enrichment of aminothiols prior to CE with UV absorption detection. Electrophoresis. 2009;30:388–95. doi: 10.1002/elps.200800364. PubMed DOI
Lee KY, Hwang J, Lee YW, Kim J, Han SW. One-step synthesis of gold nanoparticles using azacryptand and their applications in SERS and catalysis. J. Colloid Interface Sci. 2007;316:476–81. doi: 10.1016/j.jcis.2007.07.076. PubMed DOI
Briñas RP, Hu M, Qian L, Lymar ES, Hainfeld JF. Gold nanoparticle size controlled by polymeric Au(I) thiolate precursor size. J. Am. Chem. Soc. 2008;130:975–82. doi: 10.1021/ja076333e. PubMed DOI PMC
Piella J, Bastús NG, Puntes V. Size-Controlled Synthesis of Sub-10-nanometer Citrate-Stabilized Gold Nanoparticles and Related Optical Properties. Chem. Mater. 2016;28:1066–1075. doi: 10.1021/acs.chemmater.5b04406. DOI
Ohyama J, Hitomi Y, Higuchi Y, Tanaka T. Size Controlled Synthesis of Gold Nanoparticles by Porphyrin with Four Sulfur Atoms. Top. Catal. 2009;52:852–859. doi: 10.1007/s11244-009-9229-x. DOI
Song J, Kim D, Lee D. Size control in the synthesis of 1-6 nm gold nanoparticles via solvent-controlled nucleation. Langmuir. 2011;27:13854–60. doi: 10.1021/la203113r. PubMed DOI
Jun H, et al. Understanding of the size control of biocompatible gold nanoparticles in millifluidic channels. Langmuir. 2012;28:15966–74. doi: 10.1021/la303439f. PubMed DOI
Akamatsu K, et al. Synthesis of pH-responsive nanocomposite microgels with size-controlled gold nanoparticles from ion-doped, lightly cross-linked poly(vinylpyridine) Langmuir. 2010;26:1254–9. doi: 10.1021/la902450c. PubMed DOI
Ziegler C, Eychmüller A. Seeded Growth Synthesis of Uniform Gold Nanoparticles with Diameters of 15−300 nm. J. Phys. Chem. C. 2011;115:4502–4506. doi: 10.1021/jp1106982. DOI
Rance GA, Marsh DH, Khlobystov AN. Extinction coefficient analysis of small alkanethiolate-stabilised gold nanoparticles. Chem. Phys. Lett. 2008;460:230–236. doi: 10.1016/j.cplett.2008.06.010. DOI
Zuber A, et al. Detection of gold nanoparticles with different sizes using absorption and fluorescence based method. Sensors Actuators B Chem. 2016;227:117–127. doi: 10.1016/j.snb.2015.12.044. DOI
Jensen TR, et al. Nanosphere Lithography: Effect of the External Dielectric Medium on the Surface Plasmon Resonance Spectrum of a Periodic Array of Silver Nanoparticles. J. Phys. Chem. B. 1999;103:9846–9853. doi: 10.1021/jp9926802. DOI
Kelly KL, et al. The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment. J. Phys. Chem. B. 2003;107:668–677. doi: 10.1021/jp026731y. DOI
Loginov E, et al. Photoabsorption of AgN(N∼6–6000) Nanoclusters Formed in Helium Droplets: Transition from Compact to Multicenter Aggregation. Phys. Rev. Lett. 2011;106:233401. doi: 10.1103/PhysRevLett.106.233401. PubMed DOI
Jia H, et al. Siloxane surfactant induced self-assembly of gold nanoparticles and their application to SERS. CrystEngComm. 2011;13:6179. doi: 10.1039/c1ce05715d. DOI
Zhou H, Zheng L, Jia H. Facile control of the self-assembly of gold nanoparticles by changing the capping agent structures. Colloids Surfaces A Physicochem. Eng. Asp. 2014;450:9–14. doi: 10.1016/j.colsurfa.2014.03.013. DOI
Polte J, et al. Mechanism of Gold Nanoparticle Formation in the Classical Citrate Synthesis Method Derived from Coupled In Situ XANES and SAXS Evaluation. J. Am. Chem. Soc. 2010;132:1296–1301. doi: 10.1021/ja906506j. PubMed DOI
Panacek A, et al. Polyacrylate-Assisted Size Control of Silver Nanoparticles and Their Catalytic Activity. Chem. Mater. 2014;26:1332–1339. doi: 10.1021/cm400635z. DOI
Atkins, P. & Paula, J. De.
Hervés P, et al. Catalysis by metallic nanoparticles in aqueous solution: model reactions. Chem. Soc. Rev. 2012;41:5577–87. doi: 10.1039/c2cs35029g. PubMed DOI
Logan, S. R.
Wunder S, Lu Y, Albrecht M, Ballauff M. Catalytic Activity of Faceted Gold Nanoparticles Studied by a Model Reaction: Evidence for Substrate-Induced Surface Restructuring. ACS Catal. 2011;1:908–916. doi: 10.1021/cs200208a. DOI
Fenger R, Fertitta E, Kirmse H, Thünemann AF, Rademann K. Size dependent catalysis with CTAB-stabilized gold nanoparticles. Phys. Chem. Chem. Phys. 2012;14:9343–9. doi: 10.1039/c2cp40792b. PubMed DOI
Ikhsan NI, Rameshkumar P, Huang NM. Controlled synthesis of reduced graphene oxide supported silver nanoparticles for selective and sensitive electrochemical detection of 4-nitrophenol. Electrochim. Acta. 2016;192:392–399. doi: 10.1016/j.electacta.2016.02.005. DOI
Luo L, Zou X, Ding Y, Wu Q. sheng. Derivative voltammetric direct simultaneous determination of nitrophenol isomers at a carbon nanotube modified electrode. Sensors Actuators, B Chem. 2008;135:61–65. doi: 10.1016/j.snb.2008.07.019. DOI
Liu Z, et al. Electrochemical sensor for detection of p-nitrophenol based on nanoporous gold. Electrochem. commun. 2009;11:1365–1368. doi: 10.1016/j.elecom.2009.05.004. DOI