Charge reservoir as a design concept for plasmonic antennas

. 2025 Dec ; 14 (25) : 4637-4645. [epub] 20251209

Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid41424869

Plasmonic antennas exploit localized surface plasmons to shape, confine, and enhance electromagnetic fields with subwavelength resolution. The field enhancement is contributed to by various effects, such as the inherent surface localization of plasmons or the plasmonic lightning-rod effect. Inspired by nanofocusing observed for propagating plasmons, we test the hypothesis that plasmonic antennas with a large cross-section represent a large charge reservoir, enabling large induced charge and field enhancement. Our study reveals that a large charge reservoir is accompanied by large radiative losses, which are the dominant factor, resulting in a low field enhancement.

Zobrazit více v PubMed

Novotny L., van Hulst N. Antennas for light. Nat. Photonics . 2011;5(2):83–90. doi: 10.1038/nphoton.2010.237. DOI

Kinkhabwala A., Yu Z., Fan S., Avlasevich Y., Müllen K., Moerner W. E. Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna. Nat. Photonics . 2009;3(11):654. doi: 10.1038/nphoton.2009.187. DOI

Pfeiffer M., et al. Enhancing the optical excitation efficiency of a single self-assembled quantum dot with a plasmonic nanoantenna. Nano Lett. . 2010;10(11):4555–4558. doi: 10.1021/nl102548t. PubMed DOI

Wang X., Huang S.-C., Hu S., Yan S., Ren B. Fundamental understanding and applications of plasmon-enhanced Raman spectroscopy. Nat. Rev. Phys. . 2020;2(5):253–271. doi: 10.1038/s42254-020-0171-y. DOI

Han X. X., Rodriguez R. S., Haynes C. L., Ozaki Y., Zhao B. Surface-enhanced Raman spectroscopy. Nat. Rev. Methods Primers . 2022;1(1):87. doi: 10.1038/s43586-021-00083-6. DOI

Tesi L., et al. Plasmonic metasurface resonators to enhance terahertz magnetic fields for high-frequency electron paramagnetic resonance. Small Methods . 2021;5(9):2100376. doi: 10.1002/smtd.202100376. PubMed DOI

Boriskina S. V., Ghasemi H., Chen G. Plasmonic materials for energy: From physics to applications. Mater. Today . 2013;16(10):375–386. doi: 10.1016/j.mattod.2013.09.003. DOI

Fofang N. T., Grady N. K., Fan Z., Govorov A. O., Halas N. J. Plexciton dynamics: Exciton-plasmon coupling in a j-aggregate-Au nanoshell complex provides a mechanism for nonlinearity. Nano Lett. . 2011;11(4):1556–1560. doi: 10.1021/nl104352j. PubMed DOI

Bitton O., et al. Vacuum Rabi splitting of a dark plasmonic cavity mode revealed by fast electrons. Nat. Commun. . 2020;11(1):487. doi: 10.1038/s41467-020-14364-3. PubMed DOI PMC

Willets K. A., Van Duyne R. P. Localized surface plasmon resonance spectroscopy and sensing. Annu. Rev. Phys. Chem. 2007;58:267–297. doi: 10.1146/annurev.physchem.58.032806.104607. PubMed DOI

Riley J. A., Horák M., Křápek V., Healy N., Pacheco-Peña V. Plasmonic sensing using Babinet’s principle. Nanophotonics . 2023;12(20):3895–3909. doi: 10.1515/nanoph-2023-0317. PubMed DOI PMC

Mejía-Salazar J. R., Oliveira O. N. Plasmonic biosensing. Chem. Rev. . 2018;118(20):10617–10625. doi: 10.1021/acs.chemrev.8b00359. PubMed DOI

Engheta N., Salandrino A., Alù A. Circuit elements at optical frequencies: Nanoinductors, nanocapacitors, and nanoresistors. Phys. Rev. Lett. . 2005;95(9):095504. doi: 10.1103/physrevlett.95.095504. PubMed DOI

Zhu D., Bosman M., Yang J. K. W. A circuit model for plasmonic resonators. Opt. Express . 2014;22(8):9809–9819. doi: 10.1364/oe.22.009809. PubMed DOI

Benz F., et al. Generalized circuit model for coupled plasmonic systems. Opt. Express . 2015;23(26):33255–33269. doi: 10.1364/oe.23.033255. PubMed DOI

Hughes T. W., Fan S. Plasmonic circuit theory for multiresonant light funneling to a single spatial hot spot. Nano Lett. . 2016;16(9):5764–5769. doi: 10.1021/acs.nanolett.6b02474. PubMed DOI

Fernández-Domínguez A. I., Luo Y., Wiener A., Pendry J. B., Maier S. A. Theory of three-dimensional nanocrescent light harvesters. Nano Lett. . 2012;12(11):5946–5953. doi: 10.1021/nl303377g. PubMed DOI

Alves R. A., Pacheco-Pena V., Navarro-Cía M. Madelung formalism for electron spill-out in nonlocal nanoplasmonics. J. Phys. Chem. C . 2022;126(34):14758–14765. doi: 10.1021/acs.jpcc.2c04828. PubMed DOI PMC

Prodan E., Radloff C., Halas N. J., Nordlander P. A hybridization model for the plasmon response of complex nanostructures. Science . 2003;302(5644):419–422. doi: 10.1126/science.1089171. PubMed DOI

Křápek V., et al. Independent engineering of individual plasmon modes in plasmonic dimers with conductive and capacitive coupling. Nanophotonics . 2020;9(3):623–632. doi: 10.1515/nanoph-2019-0326. DOI

Zentgraf T., et al. Babinet’s principle for optical frequency metamaterials and nanoantennas. Phys. Rev. B . 2007;76(3):033407. doi: 10.1103/physrevb.76.033407. DOI

Hentschel M., Weiss T., Bagheri S., Giessen H. Babinet to the half: Coupling of solid and inverse plasmonic structures. Nano Lett. . 2013;13(9):4428–4433. doi: 10.1021/nl402269h. PubMed DOI

Horák M., et al. Limits of Babinet’s principle for solid and hollow plasmonic antennas. Sci. Rep. . 2019;9(1):4004. doi: 10.1038/s41598-019-40500-1. PubMed DOI PMC

Ortiz J. D., del Risco J. P., Baena J. D., Marqués R. Extension of Babinet’s principle for plasmonic metasurfaces. Appl. Phys. Lett. . 2021;119(16):161103. doi: 10.1063/5.0065724. DOI

Babadjanyan A. J., Margaryan N. L., Nerkararyan K. V. Superfocusing of surface polaritons in the conical structure. J. Appl. Phys. . 2000;87(8):3785–3788. doi: 10.1063/1.372414. DOI

Stockman M. I. Nanofocusing of optical energy in tapered plasmonic waveguides. Phys. Rev. Lett. . 2004;93(13):137404. doi: 10.1103/physrevlett.93.137404. PubMed DOI

Ropers C., Neacsu C. C., Elsaesser T., Albrecht M., Raschke M. B., Lienau C. Grating-coupling of surface plasmons onto metallic tips: A nanoconfined light source. Nano Lett. . 2007;7(9):2784–2788. doi: 10.1021/nl071340m. PubMed DOI

Davoyan A. R., Shadrivov I. V., Zharov A. A., Gramotnev D. K., Kivshar Y. S. Nonlinear nanofocusing in tapered plasmonic waveguides. Phys. Rev. Lett. . 2010;105(11):116804. doi: 10.1103/physrevlett.105.116804. PubMed DOI

Schnell M., et al. Nanofocusing of mid-infrared energy with tapered transmission lines. Nat. Photonics . 2011;5(5):283–287.

Choo H., et al. Nanofocusing in a metal–insulator–metal gap plasmon waveguide with a three-dimensional linear taper. Nat. Photonics . 2012;6(12):838–844. doi: 10.1038/nphoton.2012.277. DOI

Gramotnev D. K., Bozhevolnyi S. I. Nanofocusing of electromagnetic radiation. Nat. Photonics . 2014;8(1):13–22. doi: 10.1038/nphoton.2013.232. DOI

Lu F., Zhang W., Liu M., Zhang L., Mei T. Tip-based plasmonic nanofocusing: Vector field engineering and background elimination. IEEE J. Sel. Top. Quantum Electron. . 2021;27(1):1–12. doi: 10.1109/jstqe.2020.3017348. DOI

García-Etxarri A., Apell P., Käll M., Aizpurua J. A combination of concave/convex surfaces for field-enhancement optimization: The indented nanocone. Opt. Express . 2012;20(23):25201–25212. doi: 10.1364/oe.20.025201. PubMed DOI

Shi L., et al. Self-optimization of plasmonic nanoantennas in strong femtosecond fields. Optica . 2017;4(9):1038–1043. doi: 10.1364/optica.4.001038. DOI

Yang J., Kong F., Li K., Zhao J. Optimizing the bowtie nano-antenna for enhanced Purcell factor and electric field. Prog. Electromagn. Res. Lett. . 2014;44:93–99. doi: 10.2528/pierl13091613. DOI

Rogobete L., Kaminski F., Agio M., Sandoghdar V. Design of plasmonic nanoantennae for enhancing spontaneous emission. Opt. Lett. . 2007;32(12):1623–1625. doi: 10.1364/ol.32.001623. PubMed DOI

Urbieta M., et al. Atomic-scale lightning rod effect in plasmonic picocavities: A classical view to a quantum effect. ACS Nano . 2018;12(1):585–595. doi: 10.1021/acsnano.7b07401. PubMed DOI

Křápek V., Řepa R., Foltýn M., Šikola T., Horák M. Plasmonic lightning-rod effect. . 2024 arXiv:2407.09454.

Biagioni P., Huang J.-S., Hecht B. Nanoantennas for visible and infrared radiation. Rep. Prog. Phys. . 2012;75(2):024402. doi: 10.1088/0034-4885/75/2/024402. PubMed DOI

Crozier K. B., Sundaramurthy A., Kino G. S., Quate C. F. Optical antennas: Resonators for local field enhancement. J. Appl. Phys. . 2003;94(7):4632–4642. doi: 10.1063/1.1602956. DOI

Chen C., Wang G., Peng L., Zhang K. Highly improved, non-localized field enhancement enabled by hybrid plasmon of crescent resonator/graphene in infrared wavelength. Opt. Express . 2017;25(19):23302–23311. doi: 10.1364/oe.25.023302. PubMed DOI

Li T., Schirato A., Suwabe T., Zaccaria R. P., Verma P., Umakoshi T. Comparison of near-field light intensities: Plasmon nanofocusing versus localized plasmon resonance. Opt. Express . 2025;33(13):26930–26938. doi: 10.1364/oe.563279. PubMed DOI

Sederberg S., Elezzabi A. Y. Nanoscale plasmonic contour bowtie antenna operating in the mid-infrared. Opt. Express . 2011;19(16):15532–15537. doi: 10.1364/oe.19.015532. PubMed DOI

Nien L.-W., Lin S.-C., Chao B.-K., Chen M.-J., Li J.-H., Hsueh C.-H. Giant electric field enhancement and localized surface plasmon resonance by optimizing contour bowtie nanoantennas. J. Phys. Chem. C . 2013;117(47):25004–25011. doi: 10.1021/jp408610q. DOI

Sederberg S., Elezzabi A. Sierpiński fractal plasmonic antenna: A fractal abstraction of the plasmonic bowtie antenna. Opt. Express . 2011;19(11):10456–10461. doi: 10.1364/oe.19.010456. PubMed DOI

Horák M., Bukvišová K., Švarc V., Jaskowiec J., Křápek V., Šikola T. Comparative study of plasmonic antennas fabricated by electron beam and focused ion beam lithography. Sci. Rep. . 2018;8(1):9640. doi: 10.1038/s41598-018-28037-1. PubMed DOI PMC

Foltýn M., Patočka M., Řepa R., Šikola T., Horák M. Influence of deposition parameters on the plasmonic properties of gold nanoantennas fabricated by focused ion beam lithography. ACS Omega . 2024;9(35):37408–37416. doi: 10.1021/acsomega.4c06598. PubMed DOI PMC

Hohenester U., Trügler A. MNPBEM – a Matlab toolbox for the simulation of plasmonic nanoparticles. Comput. Phys. Commun. . 2012;183(2):370–381.

Hohenester U. Simulating electron energy loss spectroscopy with the MNPBEM toolbox. Comput. Phys. Commun. . 2014;185(3):1177–1187. doi: 10.1016/j.cpc.2013.12.010. DOI

Waxenegger J., Trügler A., Hohenester U. Plasmonics simulations with the MNPBEM toolbox: Consideration of substrates and layer structures. Comput. Phys. Commun. . 2015;193:138–150. doi: 10.1016/j.cpc.2015.03.023. DOI

García de Abajo F. J., Howie A. Retarded field calculation of electron energy loss in inhomogeneous dielectrics. Phys. Rev. B . 2002;65(11):115418. doi: 10.1103/physrevb.65.115418. DOI

Johnson P. B., Christy R. W. Optical constants of the noble metals. Phys. Rev. B . 1972;6(12):4370–4379. doi: 10.1103/physrevb.6.4370. DOI

Kejík L., Horák M., Šikola T., Křápek V. Structural and optical properties of monocrystalline and polycrystalline gold plasmonic nanorods. Opt. Express . 2020;28(23):34960–34972. doi: 10.1364/oe.409428. PubMed DOI

García de Abajo F. J. Optical excitations in electron microscopy. Rev. Mod. Phys. . 2010;82(1):209–275. doi: 10.1103/revmodphys.82.209. DOI

Kats M. A., Yu N., Genevet P., Gaburro Z., Capasso F. Effect of radiation damping on the spectral response of plasmonic components. Opt. Express . 2011;19(22):21748–21753. doi: 10.1364/oe.19.021748. PubMed DOI

Wang B., et al. High-Q plasmonic resonances: Fundamentals and applications. Adv. Opt. Mater. . 2021;9(7):2001520. doi: 10.1002/adom.202001520. DOI

Sönnichsen C., et al. Drastic reduction of plasmon damping in gold nanorods. Phys. Rev. Lett. . 2002;88(7):077402. doi: 10.1103/physrevlett.88.077402. PubMed DOI

Kolwas K., Derkachova A. Damping rates of surface plasmons for particles of size from nano- to micrometers; reduction of the nonradiative decay. J. Quant. Spectrosc. Radiat. Transf. . 2013;114:45–55. doi: 10.1016/j.jqsrt.2012.08.007. DOI

Devkota T., Brown B. S., Beane G., Yu K., Hartland G. V. Making waves: Radiation damping in metallic nanostructures. J. Chem. Phys. . 2019;151(8):080901. doi: 10.1063/1.5117230. PubMed DOI

Hu H., et al. Spectral exploration of asymmetric bowtie nanoantennas. Micro Nano Eng. . 2022;17:100166. doi: 10.1016/j.mne.2022.100166. DOI

Gramotnev D. K., Vogel M. W., Stockman M. I. Optimized nonadiabatic nanofocusing of plasmons by tapered metal rods. J. Appl. Phys. . 2008;104(3):034311. doi: 10.1063/1.2963699. DOI

Umakoshi T., Tanaka M., Saito Y., Verma P. White nanolight source for optical nanoimaging. Sci. Adv. . 2020;6(23):eaba4179. doi: 10.1126/sciadv.aba4179. PubMed DOI PMC

Ma X., et al. 6 nm super-resolution optical transmission and scattering spectroscopic imaging of carbon nanotubes using a nanometer-scale white light source. Nat. Commun. . 2021;12(1):6868. doi: 10.1038/s41467-021-27216-5. PubMed DOI PMC

Taguchi K., Umakoshi T., Inoue S., Verma P. Broadband plasmon nanofocusing: Comprehensive study of broadband nanoscale light source. J. Phys. Chem. C . 2021;125(11):6378–6386. doi: 10.1021/acs.jpcc.0c11541. DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...