Charge reservoir as a design concept for plasmonic antennas
Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
41424869
PubMed Central
PMC12714058
DOI
10.1515/nanoph-2025-0421
PII: nanoph-2025-0421
Knihovny.cz E-zdroje
- Klíčová slova
- electric near field, plasmonic antenna, plasmonics,
- Publikační typ
- časopisecké články MeSH
Plasmonic antennas exploit localized surface plasmons to shape, confine, and enhance electromagnetic fields with subwavelength resolution. The field enhancement is contributed to by various effects, such as the inherent surface localization of plasmons or the plasmonic lightning-rod effect. Inspired by nanofocusing observed for propagating plasmons, we test the hypothesis that plasmonic antennas with a large cross-section represent a large charge reservoir, enabling large induced charge and field enhancement. Our study reveals that a large charge reservoir is accompanied by large radiative losses, which are the dominant factor, resulting in a low field enhancement.
Zobrazit více v PubMed
Novotny L., van Hulst N. Antennas for light. Nat. Photonics . 2011;5(2):83–90. doi: 10.1038/nphoton.2010.237. DOI
Kinkhabwala A., Yu Z., Fan S., Avlasevich Y., Müllen K., Moerner W. E. Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna. Nat. Photonics . 2009;3(11):654. doi: 10.1038/nphoton.2009.187. DOI
Pfeiffer M., et al. Enhancing the optical excitation efficiency of a single self-assembled quantum dot with a plasmonic nanoantenna. Nano Lett. . 2010;10(11):4555–4558. doi: 10.1021/nl102548t. PubMed DOI
Wang X., Huang S.-C., Hu S., Yan S., Ren B. Fundamental understanding and applications of plasmon-enhanced Raman spectroscopy. Nat. Rev. Phys. . 2020;2(5):253–271. doi: 10.1038/s42254-020-0171-y. DOI
Han X. X., Rodriguez R. S., Haynes C. L., Ozaki Y., Zhao B. Surface-enhanced Raman spectroscopy. Nat. Rev. Methods Primers . 2022;1(1):87. doi: 10.1038/s43586-021-00083-6. DOI
Tesi L., et al. Plasmonic metasurface resonators to enhance terahertz magnetic fields for high-frequency electron paramagnetic resonance. Small Methods . 2021;5(9):2100376. doi: 10.1002/smtd.202100376. PubMed DOI
Boriskina S. V., Ghasemi H., Chen G. Plasmonic materials for energy: From physics to applications. Mater. Today . 2013;16(10):375–386. doi: 10.1016/j.mattod.2013.09.003. DOI
Fofang N. T., Grady N. K., Fan Z., Govorov A. O., Halas N. J. Plexciton dynamics: Exciton-plasmon coupling in a j-aggregate-Au nanoshell complex provides a mechanism for nonlinearity. Nano Lett. . 2011;11(4):1556–1560. doi: 10.1021/nl104352j. PubMed DOI
Bitton O., et al. Vacuum Rabi splitting of a dark plasmonic cavity mode revealed by fast electrons. Nat. Commun. . 2020;11(1):487. doi: 10.1038/s41467-020-14364-3. PubMed DOI PMC
Willets K. A., Van Duyne R. P. Localized surface plasmon resonance spectroscopy and sensing. Annu. Rev. Phys. Chem. 2007;58:267–297. doi: 10.1146/annurev.physchem.58.032806.104607. PubMed DOI
Riley J. A., Horák M., Křápek V., Healy N., Pacheco-Peña V. Plasmonic sensing using Babinet’s principle. Nanophotonics . 2023;12(20):3895–3909. doi: 10.1515/nanoph-2023-0317. PubMed DOI PMC
Mejía-Salazar J. R., Oliveira O. N. Plasmonic biosensing. Chem. Rev. . 2018;118(20):10617–10625. doi: 10.1021/acs.chemrev.8b00359. PubMed DOI
Engheta N., Salandrino A., Alù A. Circuit elements at optical frequencies: Nanoinductors, nanocapacitors, and nanoresistors. Phys. Rev. Lett. . 2005;95(9):095504. doi: 10.1103/physrevlett.95.095504. PubMed DOI
Zhu D., Bosman M., Yang J. K. W. A circuit model for plasmonic resonators. Opt. Express . 2014;22(8):9809–9819. doi: 10.1364/oe.22.009809. PubMed DOI
Benz F., et al. Generalized circuit model for coupled plasmonic systems. Opt. Express . 2015;23(26):33255–33269. doi: 10.1364/oe.23.033255. PubMed DOI
Hughes T. W., Fan S. Plasmonic circuit theory for multiresonant light funneling to a single spatial hot spot. Nano Lett. . 2016;16(9):5764–5769. doi: 10.1021/acs.nanolett.6b02474. PubMed DOI
Fernández-Domínguez A. I., Luo Y., Wiener A., Pendry J. B., Maier S. A. Theory of three-dimensional nanocrescent light harvesters. Nano Lett. . 2012;12(11):5946–5953. doi: 10.1021/nl303377g. PubMed DOI
Alves R. A., Pacheco-Pena V., Navarro-Cía M. Madelung formalism for electron spill-out in nonlocal nanoplasmonics. J. Phys. Chem. C . 2022;126(34):14758–14765. doi: 10.1021/acs.jpcc.2c04828. PubMed DOI PMC
Prodan E., Radloff C., Halas N. J., Nordlander P. A hybridization model for the plasmon response of complex nanostructures. Science . 2003;302(5644):419–422. doi: 10.1126/science.1089171. PubMed DOI
Křápek V., et al. Independent engineering of individual plasmon modes in plasmonic dimers with conductive and capacitive coupling. Nanophotonics . 2020;9(3):623–632. doi: 10.1515/nanoph-2019-0326. DOI
Zentgraf T., et al. Babinet’s principle for optical frequency metamaterials and nanoantennas. Phys. Rev. B . 2007;76(3):033407. doi: 10.1103/physrevb.76.033407. DOI
Hentschel M., Weiss T., Bagheri S., Giessen H. Babinet to the half: Coupling of solid and inverse plasmonic structures. Nano Lett. . 2013;13(9):4428–4433. doi: 10.1021/nl402269h. PubMed DOI
Horák M., et al. Limits of Babinet’s principle for solid and hollow plasmonic antennas. Sci. Rep. . 2019;9(1):4004. doi: 10.1038/s41598-019-40500-1. PubMed DOI PMC
Ortiz J. D., del Risco J. P., Baena J. D., Marqués R. Extension of Babinet’s principle for plasmonic metasurfaces. Appl. Phys. Lett. . 2021;119(16):161103. doi: 10.1063/5.0065724. DOI
Babadjanyan A. J., Margaryan N. L., Nerkararyan K. V. Superfocusing of surface polaritons in the conical structure. J. Appl. Phys. . 2000;87(8):3785–3788. doi: 10.1063/1.372414. DOI
Stockman M. I. Nanofocusing of optical energy in tapered plasmonic waveguides. Phys. Rev. Lett. . 2004;93(13):137404. doi: 10.1103/physrevlett.93.137404. PubMed DOI
Ropers C., Neacsu C. C., Elsaesser T., Albrecht M., Raschke M. B., Lienau C. Grating-coupling of surface plasmons onto metallic tips: A nanoconfined light source. Nano Lett. . 2007;7(9):2784–2788. doi: 10.1021/nl071340m. PubMed DOI
Davoyan A. R., Shadrivov I. V., Zharov A. A., Gramotnev D. K., Kivshar Y. S. Nonlinear nanofocusing in tapered plasmonic waveguides. Phys. Rev. Lett. . 2010;105(11):116804. doi: 10.1103/physrevlett.105.116804. PubMed DOI
Schnell M., et al. Nanofocusing of mid-infrared energy with tapered transmission lines. Nat. Photonics . 2011;5(5):283–287.
Choo H., et al. Nanofocusing in a metal–insulator–metal gap plasmon waveguide with a three-dimensional linear taper. Nat. Photonics . 2012;6(12):838–844. doi: 10.1038/nphoton.2012.277. DOI
Gramotnev D. K., Bozhevolnyi S. I. Nanofocusing of electromagnetic radiation. Nat. Photonics . 2014;8(1):13–22. doi: 10.1038/nphoton.2013.232. DOI
Lu F., Zhang W., Liu M., Zhang L., Mei T. Tip-based plasmonic nanofocusing: Vector field engineering and background elimination. IEEE J. Sel. Top. Quantum Electron. . 2021;27(1):1–12. doi: 10.1109/jstqe.2020.3017348. DOI
García-Etxarri A., Apell P., Käll M., Aizpurua J. A combination of concave/convex surfaces for field-enhancement optimization: The indented nanocone. Opt. Express . 2012;20(23):25201–25212. doi: 10.1364/oe.20.025201. PubMed DOI
Shi L., et al. Self-optimization of plasmonic nanoantennas in strong femtosecond fields. Optica . 2017;4(9):1038–1043. doi: 10.1364/optica.4.001038. DOI
Yang J., Kong F., Li K., Zhao J. Optimizing the bowtie nano-antenna for enhanced Purcell factor and electric field. Prog. Electromagn. Res. Lett. . 2014;44:93–99. doi: 10.2528/pierl13091613. DOI
Rogobete L., Kaminski F., Agio M., Sandoghdar V. Design of plasmonic nanoantennae for enhancing spontaneous emission. Opt. Lett. . 2007;32(12):1623–1625. doi: 10.1364/ol.32.001623. PubMed DOI
Urbieta M., et al. Atomic-scale lightning rod effect in plasmonic picocavities: A classical view to a quantum effect. ACS Nano . 2018;12(1):585–595. doi: 10.1021/acsnano.7b07401. PubMed DOI
Křápek V., Řepa R., Foltýn M., Šikola T., Horák M. Plasmonic lightning-rod effect. . 2024 arXiv:2407.09454.
Biagioni P., Huang J.-S., Hecht B. Nanoantennas for visible and infrared radiation. Rep. Prog. Phys. . 2012;75(2):024402. doi: 10.1088/0034-4885/75/2/024402. PubMed DOI
Crozier K. B., Sundaramurthy A., Kino G. S., Quate C. F. Optical antennas: Resonators for local field enhancement. J. Appl. Phys. . 2003;94(7):4632–4642. doi: 10.1063/1.1602956. DOI
Chen C., Wang G., Peng L., Zhang K. Highly improved, non-localized field enhancement enabled by hybrid plasmon of crescent resonator/graphene in infrared wavelength. Opt. Express . 2017;25(19):23302–23311. doi: 10.1364/oe.25.023302. PubMed DOI
Li T., Schirato A., Suwabe T., Zaccaria R. P., Verma P., Umakoshi T. Comparison of near-field light intensities: Plasmon nanofocusing versus localized plasmon resonance. Opt. Express . 2025;33(13):26930–26938. doi: 10.1364/oe.563279. PubMed DOI
Sederberg S., Elezzabi A. Y. Nanoscale plasmonic contour bowtie antenna operating in the mid-infrared. Opt. Express . 2011;19(16):15532–15537. doi: 10.1364/oe.19.015532. PubMed DOI
Nien L.-W., Lin S.-C., Chao B.-K., Chen M.-J., Li J.-H., Hsueh C.-H. Giant electric field enhancement and localized surface plasmon resonance by optimizing contour bowtie nanoantennas. J. Phys. Chem. C . 2013;117(47):25004–25011. doi: 10.1021/jp408610q. DOI
Sederberg S., Elezzabi A. Sierpiński fractal plasmonic antenna: A fractal abstraction of the plasmonic bowtie antenna. Opt. Express . 2011;19(11):10456–10461. doi: 10.1364/oe.19.010456. PubMed DOI
Horák M., Bukvišová K., Švarc V., Jaskowiec J., Křápek V., Šikola T. Comparative study of plasmonic antennas fabricated by electron beam and focused ion beam lithography. Sci. Rep. . 2018;8(1):9640. doi: 10.1038/s41598-018-28037-1. PubMed DOI PMC
Foltýn M., Patočka M., Řepa R., Šikola T., Horák M. Influence of deposition parameters on the plasmonic properties of gold nanoantennas fabricated by focused ion beam lithography. ACS Omega . 2024;9(35):37408–37416. doi: 10.1021/acsomega.4c06598. PubMed DOI PMC
Hohenester U., Trügler A. MNPBEM – a Matlab toolbox for the simulation of plasmonic nanoparticles. Comput. Phys. Commun. . 2012;183(2):370–381.
Hohenester U. Simulating electron energy loss spectroscopy with the MNPBEM toolbox. Comput. Phys. Commun. . 2014;185(3):1177–1187. doi: 10.1016/j.cpc.2013.12.010. DOI
Waxenegger J., Trügler A., Hohenester U. Plasmonics simulations with the MNPBEM toolbox: Consideration of substrates and layer structures. Comput. Phys. Commun. . 2015;193:138–150. doi: 10.1016/j.cpc.2015.03.023. DOI
García de Abajo F. J., Howie A. Retarded field calculation of electron energy loss in inhomogeneous dielectrics. Phys. Rev. B . 2002;65(11):115418. doi: 10.1103/physrevb.65.115418. DOI
Johnson P. B., Christy R. W. Optical constants of the noble metals. Phys. Rev. B . 1972;6(12):4370–4379. doi: 10.1103/physrevb.6.4370. DOI
Kejík L., Horák M., Šikola T., Křápek V. Structural and optical properties of monocrystalline and polycrystalline gold plasmonic nanorods. Opt. Express . 2020;28(23):34960–34972. doi: 10.1364/oe.409428. PubMed DOI
García de Abajo F. J. Optical excitations in electron microscopy. Rev. Mod. Phys. . 2010;82(1):209–275. doi: 10.1103/revmodphys.82.209. DOI
Kats M. A., Yu N., Genevet P., Gaburro Z., Capasso F. Effect of radiation damping on the spectral response of plasmonic components. Opt. Express . 2011;19(22):21748–21753. doi: 10.1364/oe.19.021748. PubMed DOI
Wang B., et al. High-Q plasmonic resonances: Fundamentals and applications. Adv. Opt. Mater. . 2021;9(7):2001520. doi: 10.1002/adom.202001520. DOI
Sönnichsen C., et al. Drastic reduction of plasmon damping in gold nanorods. Phys. Rev. Lett. . 2002;88(7):077402. doi: 10.1103/physrevlett.88.077402. PubMed DOI
Kolwas K., Derkachova A. Damping rates of surface plasmons for particles of size from nano- to micrometers; reduction of the nonradiative decay. J. Quant. Spectrosc. Radiat. Transf. . 2013;114:45–55. doi: 10.1016/j.jqsrt.2012.08.007. DOI
Devkota T., Brown B. S., Beane G., Yu K., Hartland G. V. Making waves: Radiation damping in metallic nanostructures. J. Chem. Phys. . 2019;151(8):080901. doi: 10.1063/1.5117230. PubMed DOI
Hu H., et al. Spectral exploration of asymmetric bowtie nanoantennas. Micro Nano Eng. . 2022;17:100166. doi: 10.1016/j.mne.2022.100166. DOI
Gramotnev D. K., Vogel M. W., Stockman M. I. Optimized nonadiabatic nanofocusing of plasmons by tapered metal rods. J. Appl. Phys. . 2008;104(3):034311. doi: 10.1063/1.2963699. DOI
Umakoshi T., Tanaka M., Saito Y., Verma P. White nanolight source for optical nanoimaging. Sci. Adv. . 2020;6(23):eaba4179. doi: 10.1126/sciadv.aba4179. PubMed DOI PMC
Ma X., et al. 6 nm super-resolution optical transmission and scattering spectroscopic imaging of carbon nanotubes using a nanometer-scale white light source. Nat. Commun. . 2021;12(1):6868. doi: 10.1038/s41467-021-27216-5. PubMed DOI PMC
Taguchi K., Umakoshi T., Inoue S., Verma P. Broadband plasmon nanofocusing: Comprehensive study of broadband nanoscale light source. J. Phys. Chem. C . 2021;125(11):6378–6386. doi: 10.1021/acs.jpcc.0c11541. DOI