Quantification of Antiviral Drug Tenofovir (TFV) by Surface-Enhanced Raman Spectroscopy (SERS) Using Cumulative Distribution Functions (CDFs)
Status PubMed-not-MEDLINE Language English Country United States Media electronic-ecollection
Document type Journal Article
PubMed
38222633
PubMed Central
PMC10785616
DOI
10.1021/acsomega.3c07641
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
Surface-enhanced Raman spectroscopy (SERS) is an ultrasensitive spectroscopic technique that generates signal-enhanced fingerprint vibrational spectra of small molecules. However, without rigorous control of SERS substrate active sites, geometry, surface area, or surface functionality, SERS is notoriously irreproducible, complicating the consistent quantitative analysis of small molecules. While evaporatively prepared samples yield significant SERS enhancement resulting in lower detection limits, the distribution of these enhancements along the SERS surface is inherently stochastic. Acquiring spatially resolved SERS spectra of these dried surfaces, we have shown that this enhancement is governed by a power law as a function of analyte concentration. Consequently, by definition, there is no true mean of SERS enhancement, requiring an alternative approach to achieve reproducible quantitative results. In this study, we introduce a new method of analysis of SERS data using a cumulative distribution function (CDF). The antiviral drug tenofovir (TFV) in an aqueous matrix was quantified down to a clinically relevant concentration of 25 ng/mL using hydroxylamine-reduced silver colloids evaporated to dryness. The data presented in this study provide a rationale for the benefits of combining a novel statistical approach using CDFs with simple and inexpensive experimental techniques to increase the precision, accuracy, and analytical sensitivity of aqueous TFV quantification by SERS. TFV calibration curves generated using CDF analysis showed higher analytical sensitivity (in the form of a normalized calibration curve average slope increase of 0.25) compared to traditional SERS intensity calculations. A second aliquot of nanoparticles and analyte dried on the SERS surface followed by CDF analysis showed further analytical sensitivity with a normalized calibration curve slope increase of 0.23 and decreased variation among replicates represented by an average standard deviation decrease of 0.02 with a second aliquot. The quantitative analysis of SERS data using CDFs presented here shows promise to be a reproducible method for quantitative analysis of SERS data, a significant step toward implementing SERS as an analytical method in clinical and industrial settings.
See more in PubMed
Jensen L.; Aikens C. M.; Schatz G. C. Electronic structure methods for studying surface-enhanced Raman scattering. Chem. Soc. Rev. 2008, 37 (5), 1061–1073. 10.1039/b706023h. PubMed DOI
Kneipp K.; Wang Y.; Kneipp H.; et al. Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS). Phys. Rev. Lett. 1997, 78 (9), 1667–1670. 10.1103/PhysRevLett.78.1667. DOI
Nie S.; Emory S. R. Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering. Science 1997, 275 (5303), 1102–1106. 10.1126/science.275.5303.1102. PubMed DOI
Sharma B.; Frontiera R. R.; Henry A. I.; et al. SERS: Materials, applications, and the future. Mater. Today 2012, 15 (1), 16–25. 10.1016/S1369-7021(12)70017-2. DOI
Aroca R. F.; Rodriguez-Llorente S.. Surface Enhanced Vibrational Spectroscopy; Wiley, 2006.
Qiu Y.; Kuang C.; Liu X.; et al. Single-Molecule Surface-Enhanced Raman Spectroscopy. Sensors 2022, 22 (13), 4889.10.3390/s22134889. PubMed DOI PMC
Bell S. E. J.; Sirimuthu N. M. S. Quantitative surface-enhanced Raman spectroscopy. Chem. Soc. Rev. 2008, 37 (5), 1012–1024. 10.1039/b705965p. PubMed DOI
Saviello D.; Trabace M.; Alyami A.; et al. Raman Spectroscopy and Surface Enhanced Raman Scattering (SERS) for the Analysis of Blue and Black Writing Inks: Identification of Dye Content and Degradation Processes. Front. Chem. 2019, 7, 72710.3389/fchem.2019.00727. PubMed DOI PMC
Puente C.; Sánchez-Domínguez M.; Brosseau C. L.; et al. Silver-chitosan and gold-chitosan substrates for surface-enhanced Raman spectroscopy (SERS): Effect of nanoparticle morphology on SERS performance. Mater. Chem. Phys. 2021, 260, 12410710.1016/j.matchemphys.2020.124107. DOI
Shiohara A.; Wang Y.; Liz-Marzán L. M. Recent approaches toward creation of hot spots for SERS detection. J. Photochem. Photobiol., C 2014, 21, 2–25. 10.1016/j.jphotochemrev.2014.09.001. DOI
Pérez-Jiménez A. I.; Lyu D.; Lu Z.; et al. Surface-enhanced Raman spectroscopy: benefits, trade-offs and future developments. Chem. Sci. 2020, 11 (18), 4563–4577. 10.1039/D0SC00809E. PubMed DOI PMC
Fornasaro S.; Alsamad F.; Baia M.; et al. Surface Enhanced Raman Spectroscopy for Quantitative Analysis: Results of a Large-Scale European Multi-Instrument Interlaboratory Study. Anal. Chem. 2020, 92 (5), 4053–4064. 10.1021/acs.analchem.9b05658. PubMed DOI PMC
Bell S. E. J.; Charron G.; Cortés E.; et al. Towards Reliable and Quantitative Surface-Enhanced Raman Scattering (SERS): From Key Parameters to Good Analytical Practice. Angew. Chem., Int. Ed. 2020, 59 (14), 5454–5462. 10.1002/anie.201908154. PubMed DOI PMC
Magdy M. A Conceptual Overview of Surface-Enhanced Raman Scattering (SERS). Plasmonics 2023, 18 (2), 803–809. 10.1007/s11468-023-01807-y. DOI
Israelsen N. D.; Hanson C.; Vargis E. Nanoparticle Properties and Synthesis Effects on Surface-Enhanced Raman Scattering Enhancement Factor: An Introduction. Sci. World J. 2015, 2015, 12458210.1155/2015/124582. PubMed DOI PMC
Luechinger N. A.; Athanassiou E. K.; Stark W. J. Graphene-stabilized copper nanoparticles as an air-stable substitute for silver and gold in low-cost ink-jet printable electronics. Nanotechnology 2008, 19 (44), 44520110.1088/0957-4484/19/44/445201. PubMed DOI
Xue M.; Zhang Z.; Zhu N.; et al. Transfer Printing of Metal Nanoparticles with Controllable Dimensions, Placement, and Reproducible Surface-Enhanced Raman Scattering Effects. Langmuir 2009, 25 (8), 4347–4351. 10.1021/la900462f. PubMed DOI
De Silva Indrasekara A. S.; Johnson S. F.; Odion R. A.; et al. Manipulation of the Geometry and Modulation of the Optical Response of Surfactant-Free Gold Nanostars: A Systematic Bottom-Up Synthesis. ACS Omega 2018, 3 (2), 2202–2210. 10.1021/acsomega.7b01700. PubMed DOI PMC
Thomas S.; Maiti N.; Mukherjee T.; et al. Investigation on the adsorption characteristics of anserine on the surface of colloidal silver nanoparticles. Spectrochim. Acta, Part A 2013, 112, 27–32. 10.1016/j.saa.2013.04.047. PubMed DOI
Liu Y.; Chao K.; Nou X.; et al. Feasibility of colloidal silver SERS for rapid bacterial screening. Sens. Instrumen. Food Qual. Saf. 2009, 3 (2), 100–107. 10.1007/s11694-008-9064-y. DOI
Maruyama Y.; Mitsuru I.; Masayuki F. Surface-Enhanced Raman Scattering of Single Adenine Molecules on Silver Colloidal Particles. Chem. Lett. 2001, 30 (8), 834–835. 10.1246/cl.2001.834. DOI
Basu S.; Jana S.; Pande S.; et al. Interaction of DNA bases with silver nanoparticles: Assembly quantified through SPRS and SERS. J. Colloid Interface Sci. 2008, 321 (2), 288–293. 10.1016/j.jcis.2008.02.015. PubMed DOI
Kneipp H.; Kneipp J.; Kneipp K. Surface-Enhanced Raman Optical Activity on Adenine in Silver Colloidal Solution. Anal. Chem. 2006, 78 (4), 1363–1366. 10.1021/ac0516382. PubMed DOI
Kleinman S. L.; Frontiera R. R.; Henry A. I.; et al. Creating, characterizing, and controlling chemistry with SERS hot spots. Phys. Chem. Chem. Phys. 2013, 15 (1), 21–36. 10.1039/C2CP42598J. PubMed DOI
Šimáková P.; Procházka M.; Kočišová E. SERS Microspectroscopy of Biomolecules on Dried Ag Colloidal Drops. J. Spectrosc. 2012, 27, 39384710.1155/2012/393847. DOI
Šimáková P.; Kočišová E.; Procházka M. Sensitive Raman spectroscopy of lipids based on drop deposition using DCDR and SERS. J. Raman Spectrosc. 2013, 44 (11), 1479–1482. 10.1002/jrs.4364. DOI
Hajduková N.; Procházka M.; Molnár P.; et al. SERRS of free-base porphyrins on immobilized metal gold and silver nanoparticles. Vib. Spectrosc. 2008, 48 (1), 142–147. 10.1016/j.vibspec.2008.01.009. DOI
Wassner C.; Bradley N.; Lee Y. A Review and Clinical Understanding of Tenofovir: Tenofovir Disoproxil Fumarate versus Tenofovir Alafenamide. J. Int. Assoc. Provid. AIDS Care 2020, 19, 23259582209192310.1177/2325958220919231. PubMed DOI PMC
Panel on Antiretroviral Guidelines for Adults and Adolescents. Guidelines for the Use of Antiretroviral Agents in Adults and Adolescents with HIV, 2023.
Venter W. D. F.; Clayden P.; Serenata C. The ADVANCE study: a groundbreaking trial to evaluate a candidate universal antiretroviral regimen. Curr. Opin. HIV AIDS 2017, 12 (4), 351–354. 10.1097/COH.0000000000000389. PubMed DOI PMC
Muller J. T.; Al Khalili Y.. Emtricitabine, in StatPearls [Internet]; StatPearls Publishing, 2022.
Tantibanchachai C.FDA Approves First Injectable Treatment for HIV Pre-Exposure Prevention; U.S. Food and Drug Administration, 2021.
Brooks K. M.; Anderson P. L. Pharmacologic-Based Methods of Adherence Assessment in HIV Prevention. Clin. Pharmacol. Ther. 2018, 104 (6), 1056–1059. 10.1002/cpt.1201. PubMed DOI PMC
McCluskey S. M.; Govender K.; Adamson J.; et al. Point-of-care urine tenofovir testing to predict HIV drug resistance among individuals with virologic failure. AIDS 2023, 37 (7), 1109–1113. 10.1097/QAD.0000000000003520. PubMed DOI PMC
Hermans L. E.; Umunnakwe C. N.; Lalla-Edward S. T.; et al. Point-of-Care Tenofovir Urine Testing for the Prediction of Treatment Failure and Drug Resistance During Initial Treatment for Human Immunodeficiency Virus Type 1 (HIV-1) Infection. Clin. Infect. Dis. 2023, 76 (3), e553–e560. 10.1093/cid/ciac755. PubMed DOI PMC
Abaasa A.; Hendrix C.; Gandhi M.; et al. Utility of Different Adherence Measures for PrEP: Patterns and Incremental Value. Aids Behav. 2018, 22 (4), 1165–1173. 10.1007/s10461-017-1951-y. PubMed DOI PMC
Butler M. R.; Hrncirova J.; Jacot T. A.. et al., Detection and quantification of antiviral drug tenofovir using silver nanoparticles and surface enhanced Raman spectroscopy (SERS) with spatially resolved hotspot selection. Front. Nanotechnol. 2023. 51270474.10.3389/fnano.2023.1270474 DOI
Blank P. S.; Sjomeling C. M.; Backlund P. S.; et al. Use of cumulative distribution functions to characterize mass spectra of intact proteins. J. Am. Soc. Mass Spectrom. 2002, 13 (1), 40–46. 10.1016/S1044-0305(01)00338-5. PubMed DOI
Markello T. C.; Carlson-Donohoe H.; Sincan M.; et al. Sensitive quantification of mosaicism using high density SNP arrays and the cumulative distribution function. Mol. Genet. Metab. 2012, 105 (4), 665–671. 10.1016/j.ymgme.2011.12.015. PubMed DOI PMC
Leopold N.; Lendl B. A New Method for Fast Preparation of Highly Surface-Enhanced Raman Scattering (SERS) Active Silver Colloids at Room Temperature by Reduction of Silver Nitrate with Hydroxylamine Hydrochloride. J. Phys. Chem. B 2003, 107 (24), 5723–5727. 10.1021/jp027460u. DOI
Kent Lawson Wise J. B. C.; Christian Lee Schoen. Dispersive Near-IR Raman Spectrometer. In PatFT; USPTO , Ed.; Micron Optical Systems: United States, 2002.