2D Rhenium- and Niobium-Doped WSe2 Photoactive Cathodes in Photo-Enhanced Hybrid Zn-Ion Capacitors
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
38962508
PubMed Central
PMC11220785
DOI
10.1021/acsanm.4c01405
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Designing a multifunctional device that combines solar energy conversion and energy storage is an appealing and promising approach for the next generation of green power and sustainable society. In this work, we fabricated a single-piece device incorporating undoped WSe2, Re- or Nb-doped WSe2 photocathode, and zinc foil anode system enabling a light-assisted rechargeable aqueous zinc metal cell. Comparison of structural, optical, and photoelectric characteristics of undoped and doped WSe2 has further confirmed that ionic insertion of donor metal (rhenium and niobium) plays an important role in enhancing photoelectrochemical energy storage properties. The electrochemical energy storage cell consisting of Re-doped WSe2 (as the photoactive cathode and zinc metal as anode) showed the best photodriven enhancement in the specific capacitance of around 45% due to efficient harvesting of visible light irradiation. The assembled device exhibited a loss of 20% of its initial specific capacitance after 1500 galvanostatic charge-discharge cycles at 50 mA g-1. The cell also provided a specific energy density of 574.21 mWh kg1- and a power density of 5906 mW kg1- at 15 mA g-1. Under otherwise similar conditions, the pristine WSe2 and Nb-doped WSe2 showed photoenhanced induced capacitance of 43% and 27% at 15 mA g-1 and supplied an energy density of 436.4 mWh kg1- and 202 mWh kg1-, respectively. As a result, a reasonable capacitance improvement obtained by the Re-WSe2 photoenhanced zinc-ion capacitor could provide a facile and constructive way to achieve a highly efficient and low-cost solar-electrochemical capacitor system.
Zobrazit více v PubMed
Cook T. R.; Dogutan D. K.; Reece S. Y.; Surendranath Y.; Teets T. S.; Nocera D. G. Solar energy supply and storage for the legacy and nonlegacy worlds. Chem. Rev. 2010, 110 (11), 6474–6502. 10.1021/cr100246c. PubMed DOI
Mathews I.; Kantareddy S. N. R.; Sun S.; Layurova M.; Thapa J.; Correa-Baena J. P.; Bhattacharyya R.; Buonassisi T.; Sarma S.; Peters I. M. Self-powered sensors enabled by wide-bandgap perovskite indoor photovoltaic cells. Adv. Funct. Mater. 2019, 29 (42), 190407210.1002/adfm.201904072. DOI
Chen P.; Li T.-T.; Yang Y.-B.; Li G.-R.; Gao X.-P. Coupling aqueous zinc batteries and perovskite solar cells for simultaneous energy harvest, conversion and storage. Nat. Commun. 2022, 13 (1), 64.10.1038/s41467-021-27791-7. PubMed DOI PMC
Zeng Q.; Lai Y.; Jiang L.; Liu F.; Hao X.; Wang L.; Green M. A. Integrated photorechargeable energy storage system: next-generation power source driving the future. Adv. Energy Mater. 2020, 10 (14), 190393010.1002/aenm.201903930. DOI
Liu J.; Xu C.; Chen Z.; Ni S.; Shen Z. X. Progress in aqueous rechargeable batteries. Green Energy Environ. 2018, 3 (1), 20–41. 10.1016/j.gee.2017.10.001. DOI
Dong L.; Yang W.; Yang W.; Li Y.; Wu W.; Wang G. Multivalent metal ion hybrid capacitors: a review with a focus on zinc-ion hybrid capacitors. J. Mater. Chem. A 2019, 7 (23), 13810–13832. 10.1039/C9TA02678A. DOI
Boruah B. D.; Mathieson A.; Wen B.; Jo C.; Deschler F.; De Volder M. Photo-rechargeable zinc-ion capacitor using 2D graphitic carbon nitride. Nano Lett. 2020, 20 (8), 5967–5974. 10.1021/acs.nanolett.0c01958. PubMed DOI
Park S. K.; Boruah B. D.; Pujari A.; Kim B. M.; De Volder M. Photo-Enhanced Magnesium-Ion Capacitors Using Photoactive Electrodes. Small 2022, 18 (38), 220278510.1002/smll.202202785. PubMed DOI
Liu X.; Andersen H.; Lu Y.; Wen B.; Parkin I. P.; De Volder M.; Boruah B. D. Porous Carbon Coated on Cadmium Sulfide-Decorated Zinc Oxide Nanorod Photocathodes for Photo-accelerated Zinc Ion Capacitors. ACS Appl. Mater. Interfaces 2023, 15 (5), 6963–6969. 10.1021/acsami.2c20995. PubMed DOI PMC
Boruah B. D.; Wen B.; De Volder M. Molybdenum disulfide–zinc oxide photocathodes for photo-rechargeable zinc-ion batteries. ACS Nano 2021, 15 (10), 16616–16624. 10.1021/acsnano.1c06372. PubMed DOI PMC
Javed M. S.; Najam T.; Hussain I.; Idrees M.; Ahmad A.; Imran M.; Shah S. S. A.; Luque R.; Han W. Fundamentals and scientific challenges in structural design of cathode materials for zinc-ion hybrid supercapacitors. Adv. Energy Mater. 2023, 13 (3), 220230310.1002/aenm.202202303. DOI
Muska M.; Yang J.; Sun Y.; Wang J.; Wang Y.; Yang Q. CoSe2 nanoparticles dispersed in WSe2 nanosheets for efficient electrocatalysis and supercapacitance applications. ACS Appl. Nano Mater. 2021, 4 (6), 5796–5807. 10.1021/acsanm.1c00594. DOI
Terrones H.; Corro E. D.; Feng S.; Poumirol J.; Rhodes D.; Smirnov D.; Pradhan N.; Lin Z.; Nguyen M.; Elías A.; et al. New first order Raman-active modes in few layered transition metal dichalcogenides. Sci. Rep. 2014, 4 (1), 4215.10.1038/srep04215. PubMed DOI PMC
Rai S.; Singh V. K.; Pendurthi R.; Nasr J. R.; Das S.; Srivastava A. Unveiling the electrical and photo-physical properties of intrinsic n-type 2D WSe2 for high performance field-effect transistors. J. Appl. Phys. 2022, 131, 09430110.1063/5.0082707. DOI
Papanai G. S.; Gupta B. K. Spectroscopic studies on CVD-grown monolayer, bilayer, and ribbon structures of WSe2 flakes. Mater. Chem. Front. 2023, 7, 3102–3115. 10.1039/D3QM00246B. DOI
Kwon I. S.; Kwak I. H.; Kim J. Y.; Lee S. J.; Sial Q. A.; Ihsan J.; Lee K.-S.; Yoo S. J.; Park J.; Kang H. S. 2H–2M Phase Control of WSe2 Nanosheets by Se Enrichment Toward Enhanced Electrocatalytic Hydrogen Evolution Reaction. Adv. Mater. 2024, 36, 230786710.1002/adma.202307867. PubMed DOI
Urbanová V.; Antonatos N.; Plutnar J.; Lazar P.; Michalicka J.; Otyepka M.; Sofer Z.; Pumera M. Rhenium doping of layered transition-metal diselenides triggers enhancement of photoelectrochemical activity. ACS Nano 2021, 15 (2), 2374–2385. 10.1021/acsnano.0c04437. PubMed DOI
Zhang B.-Q.; Chen J.-S.; Niu H.-L.; Mao C.-J.; Song J.-M. Synthesis of ultrathin WSe2 nanosheets and their high-performance catalysis for conversion of amines to imines. Nanoscale 2018, 10 (43), 20266–20271. 10.1039/C8NR05954C. PubMed DOI
Yu X.; Sivula K. Photogenerated charge harvesting and recombination in photocathodes of solvent-exfoliated WSe2. Chem. Mater. 2017, 29 (16), 6863–6875. 10.1021/acs.chemmater.7b02018. DOI
Patel A. B.; Machhi H. K.; Chauhan P.; Narayan S.; Dixit V.; Soni S. S.; Jha P. K.; Solanki G. K.; Patel K. D.; Pathak V. M. Electrophoretically deposited MoSe2/WSe2 heterojunction from ultrasonically exfoliated nanocrystals for enhanced electrochemical photoresponse. ACS Appl. Mater. Interfaces 2019, 11 (4), 4093–4102. 10.1021/acsami.8b18177. PubMed DOI
Parmar A.; Kaur J.; Sharma M. D.; Goyal N. Extensive study of optical contrast between bulk and nanoscale transition metal dichalcogenide semiconductors. J. Semicond. 2021, 42 (8), 08200110.1088/1674-4926/42/8/082001. DOI
Azadmanjiri J.; Regner J.; Sturala J.; Sofer Z. Decoding Niobium Carbide MXene Dual-Functional Photoactive Cathode in Photoenhanced Hybrid Zinc-Ion Capacitor. ACS Mater. Lett. 2024, 6 (4), 1338–1346. 10.1021/acsmaterialslett.3c01661. PubMed DOI PMC
Desai S. B.; Seol G.; Kang J. S.; Fang H.; Battaglia C.; Kapadia R.; Ager J. W.; Guo J.; Javey A. Strain-induced indirect to direct bandgap transition in multilayer WSe2. Nano Lett. 2014, 14 (8), 4592–4597. 10.1021/nl501638a. PubMed DOI
Senthilkumar S.; Selvan R. K.; Lee Y.; Melo J. Electric double layer capacitor and its improved specific capacitance using redox additive electrolyte. J. Mater. Chem. A 2013, 1 (4), 1086–1095. 10.1039/C2TA00210H. DOI
Renani A. S.; Momeni M. M.; Aydisheh H. M.; Lee B.-K. New photoelectrodes based on bismuth vanadate-V2O5@ TiNT for photo-rechargeable supercapacitors. J. Energy Storage 2023, 62, 10686610.1016/j.est.2023.106866. DOI
Singh D.; Ojha S. K.; Maurya A.; Preitschopf T.; Fischer I.; Ojha A. K. Controlled synthesis of 2H-WSe2@rGO nanocomposites: An efficient electrode material for high performance asymmetric supercapacitor device application. J. Alloys Compd. 2023, 968, 17182810.1016/j.jallcom.2023.171828. DOI
Yang Y.; Xu D.; Wu Q.; Diao P. Cu2O/CuO bilayered composite as a high-efficiency photocathode for photoelectrochemical hydrogen evolution reaction. Sci. Rep. 2016, 6 (1), 35158.10.1038/srep35158. PubMed DOI PMC
Boruah B. D.; Misra A. A flexible ternary oxide based solid-state supercapacitor with excellent rate capability. J. Mater. Chem. A 2016, 4 (44), 17552–17559. 10.1039/C6TA07829J. DOI
Khalil A.; Liu Q.; He Q.; Xiang T.; Liu D.; Wang C.; Fang Q.; Song L. Metallic 1T-WS2 nanoribbons as highly conductive electrodes for supercapacitors. RSC Adv. 2016, 6 (54), 48788–48791. 10.1039/C6RA08975E. DOI
Momeni M. M.; Aydisheh H. M.; Lee B.-K.; Farrokhpour H.; Najafi M. Preparation of photo-rechargeable asymmetric supercapacitors using S, W-codoped titania: Experimental and theoretical insights. J. Alloys Compd. 2023, 960, 170722–170735. 10.1016/j.jallcom.2023.170722. DOI
Azadmanjiri J.; Sturala J.; Regner J.; Oliveira F. M.; Mazánek V.; Sofer Z. Tuning Germanane Band Gaps via Cyanoethyl Functionalization for Cutting-Edge Photoactive Cathodes: Photoenhanced Hybrid Zinc-Ion Capacitor Evaluation. ACS Appl. Mater. Interfaces. 2024, 16 (12), 14722–14741. 10.1021/acsami.3c17420. PubMed DOI PMC