Tuning Germanane Band Gaps via Cyanoethyl Functionalization for Cutting-Edge Photoactive Cathodes: Photoenhanced Hybrid Zinc-Ion Capacitor Evaluation
Status PubMed-not-MEDLINE Language English Country United States Media print-electronic
Document type Journal Article
PubMed
38497196
PubMed Central
PMC10982940
DOI
10.1021/acsami.3c17420
Knihovny.cz E-resources
- Keywords
- 2D materials, Zn-ion capacitors, energy storage, germanane, photoactive cathodes, photoenhanced capacitors,
- Publication type
- Journal Article MeSH
Energy harvesting and storing by dual-functional photoenhanced (photo-E) energy storage devices are being developed to battle the current energy hassles. In this research work, our investigations on the photoinduced efficiency of germanane (Ge-H) and its functionalized analogue cyanoethyl (Ge-C2-CN) are assessed as photocathodes in photo-E hybrid zinc-ion capacitors (ZICs). The evaluated self-powered photodetector devices made by these germanene-based samples revealed effective performances in photogenerated electrons and holes. The photo-E ZICs findings provided a photoinduced capacitance enhancement of ∼52% (for Ge-H) and ∼26% (for Ge-C2-CN) at a scan rate of 10 mV s-1 under 100 mW cm-2 illumination with 435 nm wavelength. Further characterizations demonstrated that the photo-E ZIC with Ge-C2-CN supply higher specific capacitance (∼6000 mF g-1), energy density (∼550 mWh kg-1), and power density (∼31,000 mW kg-1), compared to the Ge-H. In addition, capacitance retention of photo-E ZIC with Ge-C2-CN is ∼91% after 3000 cycles which is almost 6% greater than Ge-H. Interestingly, the photocharging voltage response in photo-E ZIC made by Ge-C2-CN is 1000 mV, while the photocharging voltage response with Ge-H is approximately 970 mV. The observed performances in Ge-H-based photoactive cathodes highlight the pivotal role of such two-dimensional materials to be applied as single architecture in new unconventional energy storage systems. They are particularly noteworthy when compared to the other advanced photo-E supercapacitors and could even be enhanced greatly with other suitable inorganic and organic functional precursors.
See more in PubMed
Dong X.; Chen X.; Jiang X.; Yang N. Light-Assisted Energy Storage Devices: Principles, Performance, and Perspectives. Adv. Energy Mater. 2023, 13, 230114310.1002/aenm.202301143. DOI
Yang Z.; Huang H.; Lin F. Sustainable Electric Vehicle Batteries for a Sustainable World: Perspectives on Battery Cathodes, Environment, Supply Chain, Manufacturing, Life Cycle, and Policy. Adv. Energy Mater. 2022, 12 (26), 220038310.1002/aenm.202200383. DOI
Bhuiyan M. R. A. Overcome the Future Environmental Challenges Through Sustainable and Renewable Energy Resources. Micro Nano Lett. 2022, 17 (14), 402–416. 10.1049/mna2.12148. DOI
Thangavel R.; Ganesan B. K.; Thangavel V.; Yoon W.-S.; Lee Y.-S. Emerging Materials for Sodium-Ion Hybrid Capacitors: A Bried Review. ACS Appl. Energy Mater. 2021, 4 (12), 13376–13394. 10.1021/acsaem.1c02099. DOI
Liu F.; Fan Z. Defect Engineering of Two-Dimensional Materials for Advanced Energy Conversion and Storage. Chem. Soc. Rev. 2023, 52 (5), 1723–1772. 10.1039/D2CS00931E. PubMed DOI
Guo Y.; Wei Y.; Li H.; Zhai T. Layer Structured Materials for Advanced Energy Storage and Conversion. Small 2017, 13 (45), 170164910.1002/smll.201701649. PubMed DOI
Vlad A.; Singh N.; Galande C.; Ajayan P. M. Design Considerations for Unconventional Electrochemical Energy Storage Architectures. Adv. Energy Mater. 2015, 5 (19), 140211510.1002/aenm.201402115. DOI
Zeng Q.; Lai Y.; Jiang L.; Liu F.; Hao X.; Wang L.; Green M. A. Integrated Photorechargeable Energy Storage System: Next-Generation Power Source Driving the Future. Adv. Energy Mater. 2020, 10 (14), 190393010.1002/aenm.201903930. DOI
Rafique A.; Ferreira I.; Abbas G.; Baptista A. C. Recent Advances and Challenges Toward Application of Fibers and Textiles in Integrated Photovoltaic Energy Storage Devices. Nano-Micro Lett. 2023, 15 (1), 4010.1007/s40820-022-01008-y. PubMed DOI PMC
Zhao H.; Yuan Z.-Y. Progress and Perspectives for Solar-Driven Water Electrolysis to Produce Green Hydrogen. Adv. Energy Mater. 2023, 13 (16), 230025410.1002/aenm.202300254. DOI
Ye C.; Liu D.; Chen P.; Cao L. N. Y.; Li X.; Jiang T.; Wang Z. L. An Integrated Solar Panel with a Triboelectric Nanogenerator Array for Synergistic Harvesting of Raindrop and Solar Energy. Adv. Mater. 2023, 35 (11), 220971310.1002/adma.202209713. PubMed DOI
Azadmanjiri J.; Wang J.; Berndt C. C.; Yu A. 2D Layered Organic–Inorganic Heterostructures for Clean Energy Applications. J. Mater. Chem. A 2018, 6 (9), 3824–3849. 10.1039/C8TA00132D. DOI
Lv J.; Xie J.; Mohamed A. G. A.; Zhang X.; Feng Y.; Jiao L.; Zhou E.; Yuan D.; Wang Y. Solar Utilization Beyond Photosynthesis. Nat. Rev. Chem. 2023, 7 (2), 91–105. 10.1038/s41570-022-00448-9. PubMed DOI
Xiang C.; Zhao X.; Tan L.; Ye J.; Wu S.; Zhang S.; Sun L. A solar tube: Efficiently Converting Sunlight into Electricity and Heat. Nano Energy 2019, 55, 269–276. 10.1016/j.nanoen.2018.10.077. DOI
Yang G.; Yang W.; Gu H.; Fu Y.; Wang B.; Cai H.; Xia J.; Zhang N.; Liang C.; Xing G.; et al. Perovskite Solar Cell Powered Integrated Fuel Conversion and Energy Storage Devices. Adv. Mater. 2023, 35, 230038310.1002/adma.202300383. PubMed DOI
Dong Q.; Wei M.; Zhang Q.; Xiao L.; Cai X.; Zhang S.; Gao Q.; Fang Y.; Peng F.; Yang S. Photoassisted Li-Ion De-intercalation and Niδ+ Valence Conversion Win-Win Boost Energy Storage Performance in Ni/CdS@Ni3S2-Based Li-Ion Battery. Chem. Eng. J. 2023, 459, 14154210.1016/j.cej.2023.141542. DOI
Xu J.; Wu H.; Lu L.; Leung S.-F.; Chen D.; Chen X.; Fan Z.; Shen G.; Li D. Integrated Photo-Supercapacitor Based on Bi-Polar TiO2 Nanotube Arrays with Selective One-Side Plasma-Assisted Hydrogenation. Adv. Funct. Mater. 2014, 24 (13), 1840–1846. 10.1002/adfm.201303042. DOI
Rani J. R.; Das N. C.; Kim M.; Thangavel R.; Kim S. T.; Lee Y.-S.; Jang J.-H. Realizing High Energy Density Supercapacitors Assisted by Light-Induced Charging. J. Power Sources 2023, 576, 23319710.1016/j.jpowsour.2023.233197. DOI
Chen T.; Qiu L.; Yang Z.; Cai Z.; Ren J.; Li H.; Lin H.; Sun X.; Peng H. An Integrated “Energy Wire” for Both Photoelectric Conversion and Energy Storage. Angew. Chem., Int. Ed. 2012, 51 (48), 11977–11980. 10.1002/anie.201207023. PubMed DOI
Kansal S.; Priya S.; Porwal S.; Chandra A.; Singh T. Integrated Energy Generation and Storage Systems for Low-Power Device Applications. Energy Storage 2022, e41310.1002/est2.413. DOI
Lv J.; Xie J.; Mohamed A. G. A.; Zhang X.; Wang Y. Photoelectrochemical Energy Storage Materials: Design Principles and Functional Devices Towards Direct Solar to Electrochemical Energy Storage. Chem. Soc. Rev. 2022, 51 (4), 1511–1528. 10.1039/D1CS00859E. PubMed DOI
Liu R.; Wang Z. L.; Fukuda K.; Someya T. Flexible Self-Charging Power Sources. Nat. Rev. Mater. 2022, 7 (11), 870–886. 10.1038/s41578-022-00441-0. DOI
Flores-Diaz N.; De Rossi F.; Das A.; Deepa M.; Brunetti F.; Freitag M. Progress of Photocapacitors. Chem. Rev. 2023, 123 (15), 9327–9355. 10.1021/acs.chemrev.2c00773. PubMed DOI PMC
Li Q.; Liu Y.; Guo S.; Zhou H. Solar Energy Storage in the Rechargeable Batteries. Nano Today 2017, 16, 46–60. 10.1016/j.nantod.2017.08.007. DOI
Li T.-T.; Yang Y.-B.; Zhao B.-S.; Wu Y.; Wu X.-W.; Chen P.; Gao X.-P. Photo-Rechargeable All-Solid-State Lithium-Sulfur Batteries Based on Perovskite Indoor Photovoltaic Modules. Chem. Eng. J. 2023, 455, 14068410.1016/j.cej.2022.140684. DOI
Zhu K.; Sun Z.; Li Z.; Liu P.; Li H.; Jiao L. Design Strategies and Recent Advancements for Low-Temperature Aqueous Rechargeable Energy Storage. Adv. Energy Mater. 2023, 13 (8), 220370810.1002/aenm.202203708. DOI
Teixeira J. S.; Costa R. S.; Pires A. L.; Pereira A. M.; Pereira C. Hybrid Dual-Function Thermal Energy Harvesting and Storage Technologies: Towards Self-Chargeable Flexible/Wearable Devices. Dalton Trans. 2021, 50 (29), 9983–10013. 10.1039/D1DT01568K. PubMed DOI
Wu S.; Li T.; Wu M.; Xu J.; Chao J.; Hu Y.; Yan T.; Li Q.-Y.; Wang R. Dual-Functional Aligned and Interconnected Graphite Nanoplatelet Networks for Accelerating Solar Thermal Energy Harvesting and Storage within Phase Change Materials. ACS Appl. Mater. Interfaces 2021, 13 (16), 19200–19210. 10.1021/acsami.0c22814. PubMed DOI
Falk M.; Shleev S. Hybrid Dual-Functioning Electrodes for Combined Ambient Anergy Harvesting and Charge Storage: Towards Self-Powered Systems. Biosens. Bioelectron. 2019, 126, 275–291. 10.1016/j.bios.2018.10.053. PubMed DOI
Khan S.; Khan A.; Azadmanjiri J.; Roy P. K.; Děkanovský L.; Sofer Z.; Numan A. 2D Heterostructures for Highly Efficient Photodetectors: From Advanced Synthesis to Characterizations, Mechanisms, and Device Applications. Adv. Photonics Res. 2022, 3 (8), 210034210.1002/adpr.202100342. DOI
Azadmanjiri J.; Reddy T. N.; Khezri B.; Děkanovský L.; Parameswaran A. K.; Pal B.; Ashtiani S.; Wei S.; Sofer Z. Prospective Advances in MXene Inks: Screen Printable Sediments for Flexible Micro-Supercapacitor Applications. J. Mater. Chem. A 2022, 10 (9), 4533–4557. 10.1039/D1TA09334G. DOI
Tang L.; Meng X.; Deng D.; Bao X. Confinement Catalysis with 2D Materials for Energy Conversion. Adv. Mater. 2019, 31 (50), 190199610.1002/adma.201901996. PubMed DOI
Khan A.; Azadmanjiri J.; Wu B.; Liping L.; Sofer Z.; Min J. Atomically Thin Nanosheets Confined in 2D Heterostructures: Metal-Ion Batteries Prospective. Adv. Energy Mater. 2021, 11 (20), 210045110.1002/aenm.202100451. DOI
Hartman T.; Konečný J.; Mazánek V.; Šturala J.; Sofer Z. A Decade of Germananes: Four Approaches to Their Functionalization. Inorg. Chem. 2022, 61 (31), 12425–12432. 10.1021/acs.inorgchem.2c01873. PubMed DOI
Hartman T.; Sofer Z. Beyond Graphene: Chemistry of Group 14 Graphene Analogues: Silicene, Germanene, and Stanene. ACS Nano 2019, 13 (8), 8566–8576. 10.1021/acsnano.9b04466. PubMed DOI
Song Z.; Ang W. L.; Sturala J.; Mazanek V.; Marvan P.; Sofer Z.; Ambrosi A.; Ding C.; Luo X.; Bonanni A. Functionalized Germanene-Based Nanomaterials for the Detection of Single Nucleotide Polymorphism. ACS Appl. Nano Mater. 2021, 4 (5), 5164–5175. 10.1021/acsanm.1c00606. DOI
Hartman T.; Šturala J.; Luxa J.; Sofer Z. Chemistry of Germanene: Surface Modification of Germanane Using Alkyl Halides. ACS Nano 2020, 14 (6), 7319–7327. 10.1021/acsnano.0c02635. PubMed DOI
Liu N.; Bo G.; Liu Y.; Xu X.; Du Y.; Dou S. X. Recent Progress on Germanene and Functionalized Germanene: Preparation, Characterizations, Applications, and Challenges. Small 2019, 15 (32), 180514710.1002/smll.201805147. PubMed DOI
Ni Z.; Liu Q.; Tang K.; Zheng J.; Zhou J.; Qin R.; Gao Z.; Yu D.; Lu J. Tunable Bandgap in Silicene and Germanene. Nano Lett. 2012, 12 (1), 113–118. 10.1021/nl203065e. PubMed DOI
Yao Q.; Zhang L.; Kabanov N. S.; Rudenko A. N.; Arjmand T.; Rahimpour Soleimani H.; Klavsyuk A. L.; Zandvliet H. J. W. Bandgap Opening in Hydrogenated Germanene. Appl. Phys. Lett. 2018, 112 (17), 17160710.1063/1.5026745. DOI
Tong J.; Wang J.; Xu P.; Zhang S. Nitrogen and Oxygen Codoped Porous Carbon Based on a Synthetic Polymer for High-Performance Solid-State Supercapacitors. J. Energy Storage 2023, 58, 10634910.1016/j.est.2022.106349. DOI
Min J.; Wen X.; Tang T.; Chen X.; Huo K.; Gong J.; Azadmanjiri J.; He C.; Mijowska E. A General Approach Towards Carbonization of Plastic Waste into a Well-Designed 3D Porous Carbon Framework for Super Lithium-Ion Batteries. Chem. Commun. 2020, 56 (64), 9142–9145. 10.1039/D0CC03236K. PubMed DOI
Min J.; Xu X.; Koh J. J.; Gong J.; Chen X.; Azadmanjiri J.; Zhang F.; Wen X.; He C. Branched Poly(l-lysine)-Derived Nitrogen-Containing Porous Carbon Flake as the Metal-Free Electrocatalyst toward Efficient Oxygen Reduction Reaction. ACS Appl. Energy Mater. 2021, 4 (4), 3317–3326. 10.1021/acsaem.0c03070. DOI
Yin J.; Zhang W.; Wang W.; Alhebshi N. A.; Salah N.; Alshareef H. N. Electrochemical Zinc Ion Capacitors Enhanced by Redox Reactions of Porous Carbon Cathodes. Adv. Energy Mater. 2020, 10 (37), 200170510.1002/aenm.202001705. DOI
Li J.; McColl K.; Lu X.; Sathasivam S.; Dong H.; Kang L.; Li Z.; Zhao S.; Kafizas A. G.; Wang R.; et al. Multi-Scale Investigations of δ-Ni0.25V2O5·nH2O Cathode Materials in Aqueous Zinc-Ion Batteries. Adv. Energy Mater. 2020, 10 (15), 200005810.1002/aenm.202000058. DOI
Yan H.; Li S.; Nan Y.; Yang S.; Li B. Ultrafast Zinc–Ion–Conductor Interface Toward High-Rate and Stable Zinc Metal Batteries. Adv. Energy Mater. 2021, 11 (46), 210222210.1002/aenm.202100186. DOI
Wang H.; Wang M.; Tang Y. A Novel Zinc-Ion Hybrid Supercapacitor for Long-Life and Low-Cost Energy Storage Applications. Energy Storage Mater. 2018, 13, 1–7. 10.1016/j.ensm.2017.12.022. DOI
Ge H.; Feng X.; Liu D.; Zhang Y. Recent Advances and Perspectives for Zn-Based Batteries: Zn Anode and Electrolyte. Nano Res. Energy 2023, 2, e912003910.26599/NRE.2023.9120039. DOI
Devi M.; Moorthy B.; Thangavel R. Recent Developments in Zinc Metal Anodes, Cathodes and Electrolytes for Zinc-Ion Hybrid Capacitors. Sustainable Energy Fuels 2023, 7, 3776–3795. 10.1039/D3SE00565H. DOI
Bianco E.; Butler S.; Jiang S.; Restrepo O. D.; Windl W.; Goldberger J. E. Stability and Exfoliation of Germanane: A Germanium Graphane Analogue. ACS Nano 2013, 7 (5), 4414–4421. 10.1021/nn4009406. PubMed DOI
Sturala J.; Luxa J.; Matějková S.; Plutnar J.; Hartman T.; Pumera M.; Sofer Z. Exfoliation of Calcium Germanide by Alkyl Halides. Chem. Mater. 2019, 31 (24), 10126–10134. 10.1021/acs.chemmater.9b03391. DOI
Giannozzi P.; Baroni S.; Bonini N.; Calandra M.; Car R.; Cavazzoni C.; Ceresoli D.; Chiarotti G. L.; Cococcioni M.; Dabo I.; et al. Quantum Espresso: a Modular and Open-Source Software Project for Quantum Simulations of Materials. J. Phys.: Condens. Matter 2009, 21 (39), 39550210.1088/0953-8984/21/39/395502. PubMed DOI
Giannozzi P.; Andreussi O.; Brumme T.; Bunau O.; Buongiorno Nardelli M.; Calandra M.; Car R.; Cavazzoni C.; Ceresoli D.; Cococcioni M.; et al. Advanced Capabilities for Materials Modelling with Quantum Espresso. J. Phys.: Condens. Matter 2017, 29 (46), 46590110.1088/1361-648X/aa8f79. PubMed DOI
Giannozzi P.; Baseggio O.; Bonfà P.; Brunato D.; Car R.; Carnimeo I.; Cavazzoni C.; de Gironcoli S.; Delugas P.; Ferrari Ruffino F.; et al. Quantum Espresso Toward the Exascale. J. Chem. Phys. 2020, 152 (15), 15410510.1063/5.0005082. PubMed DOI
Chakraborty D.; Berland K.; Thonhauser T. Next-Generation Nonlocal van der Waals Density Functional. J. Chem. Theory Comput. 2020, 16 (9), 5893–5911. 10.1021/acs.jctc.0c00471. PubMed DOI
Hamann D. R. Optimized Norm-Conserving Vanderbilt Pseudopotentials. Phys. Rev. B 2013, 88 (8), 08511710.1103/PhysRevB.88.085117. DOI
Heyd J.; Scuseria G. E.; Ernzerhof M. Hybrid Functionals Based on a Screened Coulomb Potential. J. Chem. Phys. 2003, 118 (18), 8207–8215. 10.1063/1.1564060. DOI
Greczynski G.; Hultman L. Compromising Science by Ignorant Instrument Calibration-Need to Revisit Half a Century of Published XPS Data. Angew. Chem., Int. Ed. 2020, 59 (13), 5002–5006. 10.1002/anie.201916000. PubMed DOI
Prabhakaran K.; Ogino T. Oxidation of Ge(100) and Ge(111) Surfaces: an UPS and XPS Study. Surf. Sci. 1995, 325 (3), 263–271. 10.1016/0039-6028(94)00746-2. DOI
Makuła P.; Pacia M.; Macyk W. How To Correctly Determine the Band Gap Energy of Modified Semiconductor Photocatalysts Based on UV–Vis Spectra. J. Phys. Chem. Lett. 2018, 9 (23), 6814–6817. 10.1021/acs.jpclett.8b02892. PubMed DOI
Kueng A.; Kranz C.; Mizaikoff B. Scanning Probe Microscopy with Integrated Biosensors. Sens. Lett. 2003, 1 (1), 2–15. 10.1166/sl.2003.001. DOI
Zhang K.; Li J.; Zhai W.; Li C.; Zhu Z.; Kang X.; Liao M.; Ye L.; Kong T.; Wang C.; et al. Boosting Cycling Stability and Rate Capability of Li–CO2 Batteries via Synergistic Photoelectric Effect and Plasmonic Interaction. Angew. Chem., Int. Ed. 2022, 61 (17), e20220171810.1002/anie.202201718. PubMed DOI
Boruah B. D.; Mathieson A.; Wen B.; Jo C.; Deschler F.; De Volder M. Photo-Rechargeable Zinc-Ion Capacitor Using 2D Graphitic Carbon Nitride. Nano Lett. 2020, 20 (8), 5967–5974. 10.1021/acs.nanolett.0c01958. PubMed DOI
Wang H.; Cao J.; Zhou Y.; Wang X.; Huang H.; Liu Y.; Shao M.; Kang Z. Carbon Dots Modified Ti3C2Tx-Based Fibrous Supercapacitor with Photo-Enhanced Capacitance. Nano Res. 2021, 14 (11), 3886–3892. 10.1007/s12274-021-3309-z. DOI
Momeni M. M.; Navandian S.; Aydisheh H. M.; Lee B.-K. Photo-Assisted Rechargeable Supercapacitors Based on Nickel-Cobalt-Deposited Tungsten-Doped Titania Photoelectrodes: A Novel Self-Powered Supercapacitor. J. Power Sources 2023, 557, 23258810.1016/j.jpowsour.2022.232588. DOI
Renani A. S.; Momeni M. M.; Aydisheh H. M.; Lee B.-K. New Photoelectrodes Based on Bismuth Vanadate-V2O5@TiNT for Photo-Rechargeable Supercapacitors. J. Energy Storage 2023, 62, 10686610.1016/j.est.2023.106866. DOI
Ren Y.; Zhu T.; Liu Y.; Liu Q.; Yan Q. Direct Utilization of Photoinduced Charge Carriers to Promote Electrochemical Energy Storage. Small 2021, 17 (21), 200804710.1002/smll.202008047. PubMed DOI
Momeni M. M.; Aydisheh H. M.; Lee B.-K.; Farrokhpour H.; Najafi M. Preparation of Photo-Rechargeable Asymmetric Supercapacitors Using S,W-Codoped Titania: Experimental and Theoretical Insights. J. Alloys Compd. 2023, 960, 17072210.1016/j.jallcom.2023.170722. DOI
Li C.; Cong S.; Tian Z.; Song Y.; Yu L.; Lu C.; Shao Y.; Li J.; Zou G.; Rümmeli M. H.; et al. Flexible Perovskite Solar Cell-Driven Photo-Rechargeable Lithium-Ion Capacitor for Self-Powered Wearable Strain Sensors. Nano Energy 2019, 60, 247–256. 10.1016/j.nanoen.2019.03.061. DOI
Boruah B. D.; Wen B.; Nagane S.; Zhang X.; Stranks S. D.; Boies A.; De Volder M. Photo-rechargeable Zinc-Ion Capacitors using V2O5-Activated Carbon Electrodes. ACS Energy Lett. 2020, 5 (10), 3132–3139. 10.1021/acsenergylett.0c01528. DOI
Park S. K.; Boruah B. D.; Pujari A.; Kim B.-M.; De Volder M. Photo-Enhanced Magnesium-Ion Capacitors Using Photoactive Electrodes. Small 2022, 18 (38), 220278510.1002/smll.202202785. PubMed DOI
2D Rhenium- and Niobium-Doped WSe2 Photoactive Cathodes in Photo-Enhanced Hybrid Zn-Ion Capacitors