Identification of microspore-active promoters that allow targeted manipulation of gene expression at early stages of microgametogenesis in Arabidopsis
Language English Country Great Britain, England Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
Grant support
P18532
Biotechnology and Biological Sciences Research Council - United Kingdom
PubMed
17184530
PubMed Central
PMC1769379
DOI
10.1186/1471-2229-6-31
PII: 1471-2229-6-31
Knihovny.cz E-resources
- MeSH
- Arabidopsis genetics physiology MeSH
- Reverse Transcriptase Polymerase Chain Reaction MeSH
- Promoter Regions, Genetic * MeSH
- Gene Expression Regulation, Plant * MeSH
- Genes, Plant * MeSH
- Genetic Complementation Test MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
BACKGROUND: The effective functional analysis of male gametophyte development requires new tools enabling the spatially and temporally controlled expression of both marker genes and modified genes of interest. In particular, promoters driving expression at earlier developmental stages including microspores are required. RESULTS: Transcriptomic datasets covering four progressive stages of male gametophyte development in Arabidopsis were used to select candidate genes showing early expression profiles that were male gametophyte-specific. Promoter-GUS reporter analysis of candidate genes identified three promoters (MSP1, MSP2, and MSP3) that are active in microspores and are otherwise specific to the male gametophyte and tapetum. The MSP1 and MSP2 promoters were used to successfully complement and restore the male transmission of the gametophytic two-in-one (tio) mutant that is cytokinesis-defective at first microspore division. CONCLUSION: We demonstrate the effective application of MSP promoters as tools that can be used to elucidate gametophytic gene functions in microspores in a male-specific manner.
See more in PubMed
Twell D, Oh AE, Honys D. Pollen development, a genetic and transcriptomic view. In: Malhó R, editor. Plant Cell Monographs (3); The Pollen Tube. Vol. 3. Berlin, Heidelberg , Springer-Verlag; 2006. pp. 15–45.
Twell D, Park SK, Hawkins TJ, Schubert D, Schmidt R, Smertenko A, Hussey PJ. MOR1/GEM1 has an essential role in the plant-specific cytokinetic phragmoplast. Nat Cell Biol. 2002;4:711–714. doi: 10.1038/ncb844. PubMed DOI PMC
Oh SA, Johnson A, Smertenko A, Rahman D, Park SK, Hussey PJ, Twell D. A Divergent Cellular Role for the FUSED Kinase Family in the Plant-Specific Cytokinetic Phragmoplast. Curr Biol. 2005;15:2107–2111. doi: 10.1016/j.cub.2005.10.044. PubMed DOI
Twell D, Yamaguchi J, McCormick S. Pollen-specific gene expression in transgenic plants: coordinate regulation of two different tomato gene promoters during microsporogenesis. Development. 1990;109:705–713. PubMed
van Tunen AJ, Mur LA, Brouns GS, Rienstra JD, Koes RE, Mol JN. Pollen- and anther-specific chi promoters from petunia: tandem promoter regulation of the chiA gene. Plant Cell. 1990;2:393–401. doi: 10.1105/tpc.2.5.393. PubMed DOI PMC
Twell D, Yamaguchi J, Wing RA, Ushiba J, McCormick S. Promoter analysis of genes that are coordinately expressed during pollen development reveals pollen-specific enhancer sequences and shared regulatory elements. Genes Dev. 1991;5:496–507. PubMed
Albani D, Sardana R, Robert LS, Altosaar I, Arnison PG, Fabijanski SF. A Brassica napus gene family which shows sequence similarity to ascorbate oxidase is expressed in developing pollen. Molecular characterization and analysis of promoter activity in transgenic tobacco plants. Plant J. 1992;2:331–342. PubMed
Hamilton DA, Roy M, Rueda J, Sindhu RK, Sanford J, Mascarenhas JP. Dissection of a pollen-specific promoter from maize by transient transformation assays. Plant Mol Biol. 1992;18:211–218. doi: 10.1007/BF00034950. PubMed DOI
Hamilton DA, Schwarz YH, Mascarenhas JP. A monocot pollen-specific promoter contains separable pollen-specific and quantitative elements. Plant Mol Biol. 1998;38:663–669. doi: 10.1023/A:1006083725102. PubMed DOI
Weterings K, Schrauwen J, Wullems G, Twell D. Functional dissection of the promoter of the pollen-specific gene NTP303 reveals a novel pollen-specific, and conserved cis-regulatory element. Plant J. 1995;8:55–63. doi: 10.1046/j.1365-313X.1995.08010055.x. PubMed DOI
Carpenter JL, Ploense SE, Snustad DP, Silflow CD. Preferential expression of an alpha-tubulin gene of Arabidopsis in pollen. Plant Cell. 1992;4:557–571. doi: 10.1105/tpc.4.5.557. PubMed DOI PMC
Gupta R, Ting JT, Sokolov LN, Johnson SA, Luan S. A tumor suppressor homolog, AtPTEN1, is essential for pollen development in Arabidopsis. Plant Cell. 2002;14:2495–2507. doi: 10.1105/tpc.005702. PubMed DOI PMC
Scholz-Starke J, Buttner M, Sauer N. AtSTP6, a new pollen-specific H+-monosaccharide symporter from Arabidopsis. Plant Physiol. 2003;131:70–77. doi: 10.1104/pp.012666. PubMed DOI PMC
Schneidereit A, Scholz-Starke J, Buttner M. Functional characterization and expression analyses of the glucose-specific AtSTP9 monosaccharide transporter in pollen of Arabidopsis. Plant Physiol. 2003;133:182–190. doi: 10.1104/pp.103.026674. PubMed DOI PMC
Engel ML, Holmes-Davis R, McCormick S. Green sperm. Identification of male gamete promoters in Arabidopsis. Plant Physiol. 2005;138:2124–2133. doi: 10.1104/pp.104.054213. PubMed DOI PMC
Bate N, Spurr C, Foster GD, Twell D. Maturation-specific translational enhancement mediated by the 5'-UTR of a late pollen transcript. Plant J. 1996;10:613–623. doi: 10.1046/j.1365-313X.1996.10040613.x. PubMed DOI
Bate N, Twell D. Functional architecture of a late pollen promoter: pollen-specific transcription is developmentally regulated by multiple stage-specific and co-dependent activator elements. Plant Mol Biol. 1998;37:859–869. doi: 10.1023/A:1006095023050. PubMed DOI
Chen YC, McCormick S. sidecar pollen, an Arabidopsis thaliana male gametophytic mutant with aberrant cell divisions during pollen development. Development. 1996;122:3243–3253. PubMed
Eady C, Lindsey K, Twell D. The Significance of Microspore Division and Division Symmetry for Vegetative Cell-Specific Transcription and Generative Cell Differentiation. Plant Cell. 1995;7:65–74. doi: 10.1105/tpc.7.1.65. PubMed DOI PMC
Park SK, Howden R, Twell D. The Arabidopsis thaliana gametophytic mutation gemini pollen1 disrupts microspore polarity, division asymmetry and pollen cell fate. Development. 1998;125:3789–3799. PubMed
Xu H, Swoboda I, Bhalla PL, Singh MB. Male gametic cell-specific gene expression in flowering plants. Proc Natl Acad Sci U S A. 1999;96:2554–2558. doi: 10.1073/pnas.96.5.2554. PubMed DOI PMC
Okada T, Bhalla PL, Singh MB. Transcriptional activity of male gamete-specific histone gcH3 promoter in sperm cells of Lilium longiflorum. Plant Cell Physiol. 2005;46:797–802. doi: 10.1093/pcp/pci075. PubMed DOI
Rotman N, Durbarry A, Wardle A, Yang WC, Chaboud A, Faure JE, Berger F, Twell D. A novel class of MYB factors controls sperm-cell formation in plants. Curr Biol. 2005;15:244–248. doi: 10.1016/j.cub.2005.01.013. PubMed DOI
Custers JB, Oldenhof MT, Schrauwen JA, Cordewener JH, Wullems GJ, van Lookeren Campagne MM. Analysis of microspore-specific promoters in transgenic tobacco. Plant Mol Biol. 1997;35:689–699. doi: 10.1023/A:1005846527674. PubMed DOI
Oldenhof MT, de Groot PF, Visser JH, Schrauwen JA, Wullems GJ. Isolation and characterization of a microspore-specific gene from tobacco. Plant Mol Biol. 1996;31:213–225. doi: 10.1007/BF00021785. PubMed DOI
Albani D, Robert LS, Donaldson PA, Altosaar I, Arnison PG, Fabijanski SF. Characterization of a pollen-specific gene family from Brassica napus which is activated during early microspore development. Plant Mol Biol. 1990;15:605–622. doi: 10.1007/BF00017835. PubMed DOI
Fourgoux-Nicol A, Drouaud J, Haouazine N, Pelletier G, Guerche P. Isolation of rapeseed genes expressed early and specifically during development of the male gametophyte. Plant Mol Biol. 1999;40:857–872. doi: 10.1023/A:1006282507095. PubMed DOI
Maddison AL, Hedley PE, Meyer RC, Aziz N, Davidson D, Machray GC. Expression of tandem invertase genes associated with sexual and vegetative growth cycles in potato. Plant Mol Biol. 1999;41:741–751. doi: 10.1023/A:1006389013179. PubMed DOI
Xu H, Davies SP, Kwan BY, O'Brien AP, Singh M, Knox RB. Haploid and diploid expression of a Brassica campestris anther-specific gene promoter in Arabidopsis and tobacco. Mol Gen Genet. 1993;239:58–65. PubMed
Truernit E, Stadler R, Baier K, Sauer N. A male gametophyte-specific monosaccharide transporter in Arabidopsis. Plant J. 1999;17:191–201. doi: 10.1046/j.1365-313X.1999.00372.x. PubMed DOI
Craigon DJ, James N, Okyere J, Higgins J, Jotham J, May S. NASCArrays: a repository for microarray data generated by NASC's transcriptomics service. Nucleic Acids Res. 2004;32:D575–7. doi: 10.1093/nar/gkh133. PubMed DOI PMC
Hennig L, Gruissem W, Grossniklaus U, Kohler C. Transcriptional programs of early reproductive stages in Arabidopsis. Plant Physiol. 2004;135:1765–1775. doi: 10.1104/pp.104.043182. PubMed DOI PMC
Honys D, Twell D. Transcriptome analysis of haploid male gametophyte development in Arabidopsis. Genome Biol. 2004;5:R85. doi: 10.1186/gb-2004-5-11-r85. PubMed DOI PMC
Zimmermann P, Hirsch-Hoffmann M, Hennig L, Gruissem W. GENEVESTIGATOR. Arabidopsis microarray database and analysis toolbox. Plant Physiol. 2004;136:2621–2632. doi: 10.1104/pp.104.046367. PubMed DOI PMC
Honys D, Renák D, Twell D. Male gametophyte development and function. In: Silva JT, editor. Floriculture, ornamental and plant biotechnology: advances and topical issues. Vol. 1. London , Global Science Books; 2006. pp. 76–87.
Bock KW, Honys D, Ward JM, Padmanaban S, Nawrocki EP, Hirschi KD, Twell D, Sze H. Integrating membrane transport with male gametophyte development and function through transcriptomics. Plant Physiol. 2006;140:1151–1168. doi: 10.1104/pp.105.074708. PubMed DOI PMC
Eulgem T, Rushton PJ, Robatzek S, Somssich IE. The WRKY superfamily of plant transcription factors. Trends Plant Sci. 2000;5:199–206. doi: 10.1016/S1360-1385(00)01600-9. PubMed DOI
Karimi M, De Meyer B, Hilson P. Modular cloning in plant cells. Trends Plant Sci. 2005;10:103–105. PubMed
Goldberg RB, Beals TP, Sanders PM. Anther development: Basic Principles and Practical Applications. The Plant Cell. 1993;5:1217–1229. doi: 10.1105/tpc.5.10.1217. PubMed DOI PMC
Atanassov I, Russinova E, Antonov L, Atanassov A. Expression of an anther-specific chalcone synthase-like gene is correlated with uninucleate microspore development in Nicotiana sylvestris. Plant Mol Biol. 1998;38:1169–1178. doi: 10.1023/A:1006074508779. PubMed DOI
Poovaiah BW, Xia M, Liu Z, Wang W, Yang T, Sathyanarayanan PV, Franceschi VR. Developmental regulation of the gene for chimeric calcium/calmodulin-dependent protein kinase in anthers. Planta. 1999;209:161–171. doi: 10.1007/s004250050618. PubMed DOI
Sorensen AM, Krober S, Unte US, Huijser P, Dekker K, Saedler H. The Arabidopsis ABORTED MICROSPORES (AMS) gene encodes a MYC class transcription factor. Plant J. 2003;33:413–423. doi: 10.1046/j.1365-313X.2003.01644.x. PubMed DOI
Boyes DC, Zayed AM, Ascenzi R, McCaskill AJ, Hoffman NE, Davis KR, Gorlach J. Growth stage-based phenotypic analysis of Arabidopsis: a model for high throughput functional genomics in plants. Plant Cell. 2001;13:1499–1510. doi: 10.1105/tpc.13.7.1499. PubMed DOI PMC
Cheng NH, Pittman JK, Barkla BJ, Shigaki T, Hirschi KD. The Arabidopsis cax1 mutant exhibits impaired ion homeostasis, development, and hormonal responses and reveals interplay among vacuolar transporters. Plant Cell. 2003;15:347–364. doi: 10.1105/tpc.007385. PubMed DOI PMC
Clough SJ, Bent AF. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 1998;16:735–743. doi: 10.1046/j.1365-313x.1998.00343.x. PubMed DOI
NASCArray Database
DNA-Chip Analyzer 1.3
ArabidopsisGFP Database
Primer 3
Sambrook J, Fritch EF, Maniatis T. Molecular cloning - a laboratory manual. Second edition. Cold Spring Harbour Press; 1989.
Lagarde D, Basset M, Lepetit M, Conejero G, Gaymard F, Astruc S, Grignon C. Tissue-specific expression of Arabidopsis AKT1 gene is consistent with a role in K+ nutrition. Plant J. 1996;9:195–203. doi: 10.1046/j.1365-313X.1996.09020195.x. PubMed DOI
Guo HS, Fei JF, Xie Q, Chua NH. A chemical-regulated inducible RNAi system in plants. Plant J. 2003;34:383–392. doi: 10.1046/j.1365-313X.2003.01723.x. PubMed DOI
Lalanne E, Michaelidis C, Moore JM, Gagliano W, Johnson A, Patel R, Howden R, Vielle-Calzada JP, Grossniklaus U, Twell D. Analysis of transposon insertion mutants highlights the diversity of mechanisms underlying male progamic development in Arabidopsis. Genetics. 2004;167:1975–1986. doi: 10.1534/genetics.104.030270. PubMed DOI PMC
Hormonome Dynamics During Microgametogenesis in Different Nicotiana Species