Catalytic utilization of converter gas - an industrial waste for the synthesis of pharmaceuticals
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
37123198
PubMed Central
PMC10132106
DOI
10.1039/d3sc00257h
PII: d3sc00257h
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Converter gas is a large scale waste product that is usually burned to carbon dioxide and contributes to the world emission of greenhouse gases. Herein we demonstrate that instead of burning the converter gas can be used as a reducing agent in organic reactions to produce valuable pharmaceuticals and agrochemicals. In particular, amide-based selected drug molecules have been synthesized by a reaction of aromatic nitro compounds and carboxylic acids in the presence of converter gas. In addition, we showed that this gas can also be conveniently utilized to carryout classical reductive amination reaction.
Zobrazit více v PubMed
He K. Wang L. Renewable Sustainable Energy Rev. 2017;70:1022–1039. doi: 10.1016/j.rser.2016.12.007. DOI
Napp T. A. Gambhir A. Hills T. P. Florin N. Fennell P. S. Renewable Sustainable Energy Rev. 2014;30:616–640. doi: 10.1016/j.rser.2013.10.036. DOI
Hasanbeigi A. Arens M. Price L. Renewable Sustainable Energy Rev. 2014;33:645–658. doi: 10.1016/j.rser.2014.02.031. DOI
Vehec J. R., AISI/DOE Technology Roadmap Research Program for the Steel Industry, Washington, DC, 2010
Ray S. K. Chattopadhyay G. Ray A. K. J. Air Waste Manag. Assoc. 1997;47:716–721. doi: 10.1080/10473289.1997.10463929. DOI
Ambrosi A. Denmark S. E. Angew. Chem., Int. Ed. 2016;55:12164–12189. doi: 10.1002/anie.201601803. PubMed DOI PMC
Ferretti F. Ramadan D. R. Ragaini F. ChemCatChem. 2019;11:4450–4488. doi: 10.1002/cctc.201901065. DOI
Tsygankov A. A. Makarova M. Chusov D. Mendeleev Commun. 2018;28:113–122. doi: 10.1016/j.mencom.2018.03.001. DOI
Podyacheva E. Afanasyev O. I. Tsygankov A. A. Makarova M. Chusov D. Synthesis. 2019;51:2667–2677. doi: 10.1055/s-0037-1611788. DOI
Harrington A. Tal-Gan Y. Future Med. Chem. 2019;11:2759–2763. doi: 10.4155/fmc-2019-0238. PubMed DOI
The Amide Linkage: Structural Significance in Chemistry, Biochemistry, and Materials Science, A. Greenberg, C. M. Breneman and J. F. Liebman, ed. Wiley-Interscience, 2000
Yun S. H. Ingole P. G. Choi W. K. Kim J. H. Lee H. K. J. Mater. Chem. A. 2015;3:7888–7899. doi: 10.1039/C5TA00706B. DOI
Pattabiraman V. R. Bode J. W. Nature. 2011;480:471–479. doi: 10.1038/nature10702. PubMed DOI
de Figueiredo R. M. Suppo J.-S. Campagne J.-M. Chem. Rev. 2016;116:12029–12122. doi: 10.1021/acs.chemrev.6b00237. PubMed DOI
Kumari S. V Carmona A. Tiwari A. K. Trippier P. C. J. Med. Chem. 2020;63:12290–12358. doi: 10.1021/acs.jmedchem.0c00530. PubMed DOI PMC
Denmark S. E. Ibrahim M. Y. S. Ambrosi A. ACS Catal. 2017;7:613–630. doi: 10.1021/acscatal.6b03183. DOI
Choi I. Chun S. Chung Y. K. J. Org. Chem. 2017;82:12771–12777. doi: 10.1021/acs.joc.7b02019. PubMed DOI
Tsygankov A. A. Makarova M. Afanasyev O. I. Kashin A. S. Naumkin A. V. Loginov D. A. Chusov D. ChemCatChem. 2020;12:112–117. doi: 10.1002/cctc.201901465. DOI
Park J. W. Chung Y. K. ACS Catal. 2015;5:4846–4850. doi: 10.1021/acscatal.5b01198. DOI
Marks P. A. Breslow R. Nat. Biotechnol. 2007;25:84–90. doi: 10.1038/nbt1272. PubMed DOI
Hegen O. Salazar Gómez J. I. Grünwald C. Rettke A. Sojka M. Klucken C. Pickenbrock J. Filipp J. Schlögl R. Ruland H. Chem. Ing. Tech. 2022;94:1405–1412. doi: 10.1002/cite.202200015. DOI
Skoog S. J. Campbell J. P. Gladfelter W. L. Organometallics. 1994;13:4137–4139. doi: 10.1021/om00023a005. DOI
Gargulak J. D. Berry A. J. Noirot M. D. Gladfelter W. L. J. Am. Chem. Soc. 1992;114:8933–8945. doi: 10.1021/ja00049a026. DOI
Gargulak J. D. Gladfelter W. L. J. Am. Chem. Soc. 1994;116:3792–3800. doi: 10.1021/ja00088a015. DOI
Hill A. F. Angew. Chem., Int. Ed. 2000;39:130–133. doi: 10.1002/(SICI)1521-3773(20000103)39:1<130::AID-ANIE130>3.0.CO;2-6. PubMed DOI
Tafesh A. M. Weiguny J. Chem. Rev. 1996;96:2035–2052. doi: 10.1021/cr950083f. PubMed DOI
Irrgang T. Kempe R. Chem. Rev. 2020;120:9583–9674. doi: 10.1021/acs.chemrev.0c00248. PubMed DOI
Murugesan K. Senthamarai T. Chandrashekhar V. G. Natte K. Kamer P. C. J. Beller M. V Jagadeesh R. Chem. Soc. Rev. 2020;49:6273–6328. doi: 10.1039/C9CS00286C. PubMed DOI
Afanasyev O. I. Kuchuk E. A. Muratov K. M. Denisov G. L. Chusov D. Eur. J. Org. Chem. 2021;2021:543–586. doi: 10.1002/ejoc.202001171. DOI
Reshi N. U. D. Saptal V. B. Beller M. Bera J. K. ACS Catal. 2021;11:13809–13837. doi: 10.1021/acscatal.1c04208. DOI
Gallardo-Donaire J. Hermsen M. Wysocki J. Ernst M. Rominger F. Trapp O. Hashmi A. S. K. Schäfer A. Comba P. Schaub T. J. Am. Chem. Soc. 2018;140:355–361. doi: 10.1021/jacs.7b10496. PubMed DOI
Brewer A. C. Ruble J. C. Vandeveer H. G. Frank S. A. Nevill C. R. Org. Process Res. Dev. 2021;25:576–582. doi: 10.1021/acs.oprd.0c00522. DOI
Chusov D. List B. Angew. Chem., Int. Ed. 2014;53:5199–5201. doi: 10.1002/anie.201400059. PubMed DOI
Podyacheva E. Afanasyev O. I. Ostrovskii V. S. Chusov D. ACS Catal. 2022;12:5145–5154. doi: 10.1021/acscatal.2c01000. DOI
Grammelis P., Margaritis N. and Karampinis E., Solid fuel types for energy generation: coal and fossil carbon-derivative solid fuels, ed. J. Oakey, Woodhead Publishing, Boston, 2016, pp. 29–58
Maitlis P. M. Haynes A. Sunley G. J. Howard M. J. J. Chem. Soc., Dalton Trans. 1996:2187–2196. doi: 10.1039/DT9960002187. DOI
Qi J. Finzel J. Robatjazi H. Xu M. Hoffman A. S. Bare S. R. Pan X. Christopher P. J. Am. Chem. Soc. 2020;142:14178–14189. doi: 10.1021/jacs.0c05026. PubMed DOI
Kalck P. Le Berre C. Serp P. Coord. Chem. Rev. 2020;402:213078. doi: 10.1016/j.ccr.2019.213078. DOI
Franke R. Selent D. Börner A. Chem. Rev. 2012;112:5675–5732. doi: 10.1021/cr3001803. PubMed DOI
Wang M. and Lu A., Hydroformylation: Alternatives to Rh and Syn-gas, Elsevier, 2021
Sigrist M. Zhang Y. Antheaume C. Dydio P. Angew. Chem., Int. Ed. 2022:e202116406. PubMed
Gabriele B. Salerno G. Mancuso R. Costa M. J. Org. Chem. 2004;69:4741–4750. doi: 10.1021/jo0494634. PubMed DOI
Wu Q. Chen J. Liu Z. Xu Y. ACS Appl. Mater. Interfaces. 2020;12:48700–48711. doi: 10.1021/acsami.0c15396. PubMed DOI
Madej D. Konopko A. Piotrowski P. Krogul-Sobczak A. Catalysts. 2020;10:877. doi: 10.3390/catal10080877. DOI