Catalytic utilization of converter gas - an industrial waste for the synthesis of pharmaceuticals

. 2023 Apr 26 ; 14 (16) : 4346-4350. [epub] 20230331

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37123198

Converter gas is a large scale waste product that is usually burned to carbon dioxide and contributes to the world emission of greenhouse gases. Herein we demonstrate that instead of burning the converter gas can be used as a reducing agent in organic reactions to produce valuable pharmaceuticals and agrochemicals. In particular, amide-based selected drug molecules have been synthesized by a reaction of aromatic nitro compounds and carboxylic acids in the presence of converter gas. In addition, we showed that this gas can also be conveniently utilized to carryout classical reductive amination reaction.

Zobrazit více v PubMed

He K. Wang L. Renewable Sustainable Energy Rev. 2017;70:1022–1039. doi: 10.1016/j.rser.2016.12.007. DOI

Napp T. A. Gambhir A. Hills T. P. Florin N. Fennell P. S. Renewable Sustainable Energy Rev. 2014;30:616–640. doi: 10.1016/j.rser.2013.10.036. DOI

Hasanbeigi A. Arens M. Price L. Renewable Sustainable Energy Rev. 2014;33:645–658. doi: 10.1016/j.rser.2014.02.031. DOI

Vehec J. R., AISI/DOE Technology Roadmap Research Program for the Steel Industry, Washington, DC, 2010

Ray S. K. Chattopadhyay G. Ray A. K. J. Air Waste Manag. Assoc. 1997;47:716–721. doi: 10.1080/10473289.1997.10463929. DOI

Ambrosi A. Denmark S. E. Angew. Chem., Int. Ed. 2016;55:12164–12189. doi: 10.1002/anie.201601803. PubMed DOI PMC

Ferretti F. Ramadan D. R. Ragaini F. ChemCatChem. 2019;11:4450–4488. doi: 10.1002/cctc.201901065. DOI

Tsygankov A. A. Makarova M. Chusov D. Mendeleev Commun. 2018;28:113–122. doi: 10.1016/j.mencom.2018.03.001. DOI

Podyacheva E. Afanasyev O. I. Tsygankov A. A. Makarova M. Chusov D. Synthesis. 2019;51:2667–2677. doi: 10.1055/s-0037-1611788. DOI

Harrington A. Tal-Gan Y. Future Med. Chem. 2019;11:2759–2763. doi: 10.4155/fmc-2019-0238. PubMed DOI

The Amide Linkage: Structural Significance in Chemistry, Biochemistry, and Materials Science, A. Greenberg, C. M. Breneman and J. F. Liebman, ed. Wiley-Interscience, 2000

Yun S. H. Ingole P. G. Choi W. K. Kim J. H. Lee H. K. J. Mater. Chem. A. 2015;3:7888–7899. doi: 10.1039/C5TA00706B. DOI

Pattabiraman V. R. Bode J. W. Nature. 2011;480:471–479. doi: 10.1038/nature10702. PubMed DOI

de Figueiredo R. M. Suppo J.-S. Campagne J.-M. Chem. Rev. 2016;116:12029–12122. doi: 10.1021/acs.chemrev.6b00237. PubMed DOI

Kumari S. V Carmona A. Tiwari A. K. Trippier P. C. J. Med. Chem. 2020;63:12290–12358. doi: 10.1021/acs.jmedchem.0c00530. PubMed DOI PMC

Denmark S. E. Ibrahim M. Y. S. Ambrosi A. ACS Catal. 2017;7:613–630. doi: 10.1021/acscatal.6b03183. DOI

Choi I. Chun S. Chung Y. K. J. Org. Chem. 2017;82:12771–12777. doi: 10.1021/acs.joc.7b02019. PubMed DOI

Tsygankov A. A. Makarova M. Afanasyev O. I. Kashin A. S. Naumkin A. V. Loginov D. A. Chusov D. ChemCatChem. 2020;12:112–117. doi: 10.1002/cctc.201901465. DOI

Park J. W. Chung Y. K. ACS Catal. 2015;5:4846–4850. doi: 10.1021/acscatal.5b01198. DOI

Marks P. A. Breslow R. Nat. Biotechnol. 2007;25:84–90. doi: 10.1038/nbt1272. PubMed DOI

Hegen O. Salazar Gómez J. I. Grünwald C. Rettke A. Sojka M. Klucken C. Pickenbrock J. Filipp J. Schlögl R. Ruland H. Chem. Ing. Tech. 2022;94:1405–1412. doi: 10.1002/cite.202200015. DOI

Skoog S. J. Campbell J. P. Gladfelter W. L. Organometallics. 1994;13:4137–4139. doi: 10.1021/om00023a005. DOI

Gargulak J. D. Berry A. J. Noirot M. D. Gladfelter W. L. J. Am. Chem. Soc. 1992;114:8933–8945. doi: 10.1021/ja00049a026. DOI

Gargulak J. D. Gladfelter W. L. J. Am. Chem. Soc. 1994;116:3792–3800. doi: 10.1021/ja00088a015. DOI

Hill A. F. Angew. Chem., Int. Ed. 2000;39:130–133. doi: 10.1002/(SICI)1521-3773(20000103)39:1<130::AID-ANIE130>3.0.CO;2-6. PubMed DOI

Tafesh A. M. Weiguny J. Chem. Rev. 1996;96:2035–2052. doi: 10.1021/cr950083f. PubMed DOI

Irrgang T. Kempe R. Chem. Rev. 2020;120:9583–9674. doi: 10.1021/acs.chemrev.0c00248. PubMed DOI

Murugesan K. Senthamarai T. Chandrashekhar V. G. Natte K. Kamer P. C. J. Beller M. V Jagadeesh R. Chem. Soc. Rev. 2020;49:6273–6328. doi: 10.1039/C9CS00286C. PubMed DOI

Afanasyev O. I. Kuchuk E. A. Muratov K. M. Denisov G. L. Chusov D. Eur. J. Org. Chem. 2021;2021:543–586. doi: 10.1002/ejoc.202001171. DOI

Reshi N. U. D. Saptal V. B. Beller M. Bera J. K. ACS Catal. 2021;11:13809–13837. doi: 10.1021/acscatal.1c04208. DOI

Gallardo-Donaire J. Hermsen M. Wysocki J. Ernst M. Rominger F. Trapp O. Hashmi A. S. K. Schäfer A. Comba P. Schaub T. J. Am. Chem. Soc. 2018;140:355–361. doi: 10.1021/jacs.7b10496. PubMed DOI

Brewer A. C. Ruble J. C. Vandeveer H. G. Frank S. A. Nevill C. R. Org. Process Res. Dev. 2021;25:576–582. doi: 10.1021/acs.oprd.0c00522. DOI

Chusov D. List B. Angew. Chem., Int. Ed. 2014;53:5199–5201. doi: 10.1002/anie.201400059. PubMed DOI

Podyacheva E. Afanasyev O. I. Ostrovskii V. S. Chusov D. ACS Catal. 2022;12:5145–5154. doi: 10.1021/acscatal.2c01000. DOI

Grammelis P., Margaritis N. and Karampinis E., Solid fuel types for energy generation: coal and fossil carbon-derivative solid fuels, ed. J. Oakey, Woodhead Publishing, Boston, 2016, pp. 29–58

Maitlis P. M. Haynes A. Sunley G. J. Howard M. J. J. Chem. Soc., Dalton Trans. 1996:2187–2196. doi: 10.1039/DT9960002187. DOI

Qi J. Finzel J. Robatjazi H. Xu M. Hoffman A. S. Bare S. R. Pan X. Christopher P. J. Am. Chem. Soc. 2020;142:14178–14189. doi: 10.1021/jacs.0c05026. PubMed DOI

Kalck P. Le Berre C. Serp P. Coord. Chem. Rev. 2020;402:213078. doi: 10.1016/j.ccr.2019.213078. DOI

Franke R. Selent D. Börner A. Chem. Rev. 2012;112:5675–5732. doi: 10.1021/cr3001803. PubMed DOI

Wang M. and Lu A., Hydroformylation: Alternatives to Rh and Syn-gas, Elsevier, 2021

Sigrist M. Zhang Y. Antheaume C. Dydio P. Angew. Chem., Int. Ed. 2022:e202116406. PubMed

Gabriele B. Salerno G. Mancuso R. Costa M. J. Org. Chem. 2004;69:4741–4750. doi: 10.1021/jo0494634. PubMed DOI

Wu Q. Chen J. Liu Z. Xu Y. ACS Appl. Mater. Interfaces. 2020;12:48700–48711. doi: 10.1021/acsami.0c15396. PubMed DOI

Madej D. Konopko A. Piotrowski P. Krogul-Sobczak A. Catalysts. 2020;10:877. doi: 10.3390/catal10080877. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Streamlining the synthesis of amides using Nickel-based nanocatalysts

. 2023 Aug 17 ; 14 (1) : 5013. [epub] 20230817

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...