Environmental patterns of brown moss- and Sphagnum-associated microbial communities

. 2020 Dec 29 ; 10 (1) : 22412. [epub] 20201229

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid33376244
Odkazy

PubMed 33376244
PubMed Central PMC7772339
DOI 10.1038/s41598-020-79773-2
PII: 10.1038/s41598-020-79773-2
Knihovny.cz E-zdroje

Northern peatlands typically develop through succession from fens dominated by the moss family Amblystegiaceae to bogs dominated by the moss genus Sphagnum. How the different plants and abiotic environmental conditions provided in Amblystegiaceae and Sphagnum peat shape the respective moss associated microbial communities is unknown. Through a large-scale molecular and biogeochemical study spanning Arctic, sub-Arctic and temperate regions we assessed how the endo- and epiphytic microbial communities of natural northern peatland mosses relate to peatland type (Sphagnum and Amblystegiaceae), location, moss taxa and abiotic environmental variables. Microbial diversity and community structure were distinctly different between Amblystegiaceae and Sphagnum peatlands, and within each of these two peatland types moss taxon explained the largest part of microbial community variation. Sphagnum and Amblystegiaceae shared few (< 1% of all operational taxonomic units (OTUs)) but strikingly abundant (up to 65% of relative abundance) OTUs. This core community overlapped by one third with the Sphagnum-specific core-community. Thus, the most abundant microorganisms in Sphagnum that are also found in all the Sphagnum plants studied, are the same OTUs as those few shared with Amblystegiaceae. Finally, we could confirm that these highly abundant OTUs were endophytes in Sphagnum, but epiphytes on Amblystegiaceae. We conclude that moss taxa and abiotic environmental variables associate with particular microbial communities. While moss taxon was the most influential parameter, hydrology, pH and temperature also had significant effects on the microbial communities. A small though highly abundant core community is shared between Sphagnum and Amblystegiaceae.

Zobrazit více v PubMed

Chapman S, et al. Exploitation of northern peatlands and biodiversity maintenance: a conflict between economy and ecology. Front. Ecol. Environ. 2003;1:525–532. doi: 10.1890/1540-9295(2003)001[0525:EONPAB]2.0.CO;2. DOI

Joosten H. Zustand und Perspektiven der Moore weltweit. Nat. Landschaft. 2012;87:50–55.

MacDonald GM, et al. Rapid early development of circumarctic peatlands and atmospheric CH4 and CO2 variations. Science. 2006;314:285–288. doi: 10.1126/science.1131722. PubMed DOI

Freeman C, Ostle N, Kang H. An enzymic ‘latch’ on a global carbon store. Nature. 2001;409:149. doi: 10.1038/35051650. PubMed DOI

Macdonald JA, et al. Methane emission rates from a northern wetland; response to temperature Water Table and Transport. Atmos. Environ. 1998;32:3219–3227. doi: 10.1016/S1352-2310(97)00464-0. DOI

Holden J. Peatland hydrology and carbon release: why small-scale process matters. Philos. Trans. R. Soc. A. 2005;363:2891–2913. doi: 10.1098/rsta.2005.1671. PubMed DOI

Joosten, H. & Clarke, D. Wise Use of Mires and Peatlands. (International Mire Conversation Group and International Peat Society, 2002).

Bauer IE, Gignac LD, Vitt DH. Development of a peatland complex in boreal western Canada: lateral site expansion and local variability in vegetation succession and long-term peat accumulation. Can. J. Bot. 2003;81:833–847. doi: 10.1139/b03-076. DOI

Schumann, M. & Joosten, H. A Global Peatland Restoration Manual 357–385 (2008).

Kuhry, P. & Turunen, J. The Postglacial Development of Boreal and Subarctic Peatlands. In Boreal Peatland Ecosystems (Springer, New York, 2006).

Rydin H, Gunnarsson U, Sundberg S. The role of Sphagnum in peatland development and persistence. Boreal Peatl. Ecosyst. 2006;188:47–65. doi: 10.1007/978-3-540-31913-9_4. DOI

Moore PD. The ecology of peat-forming processes: A review. Int. J. Coal Geol. 1989;12:89–103. doi: 10.1016/0166-5162(89)90048-7. DOI

Soudzilovskaia NA, et al. Similar cation exchange capacities among bryophyte species refute a presumed mechanism of peatland acidification. Ecology. 2010;91:2716–2726. doi: 10.1890/09-2095.1. PubMed DOI

Clymo RS. Sphagnum-dominated peat bog: a naturally acid ecosystem. Philos. Trans. R. Soc. Lnd. B. 1984;499:487–499.

Gorham E, Janssens JA. The paleorecord of geochemistry and hydrology in northern peatlands and its relation to global change. Suo. 1992;43:117–126.

Kuhry P, Nicholson B, Gignac LD, Vitt DH, Bayley S. Development of Sphagnum-dominated peatlands in boreal continental Canada. Can. J. Bot. 1993;71:10–22. doi: 10.1139/b93-002. DOI

Vile MA, et al. N2-fixation by methanotrophs sustains carbon and nitrogen accumulation in pristine peatlands. Biogeochemistry. 2014;121:317–328. doi: 10.1007/s10533-014-0019-6. DOI

Tveit A, Schwacke R, SvenniUse the "Insert Citation" button to add citations to this document.ng, M. M. Urich T. Organic carbon transformations in high-Arctic peat soils: key functions and microorganisms. ISME J. 2013;7:299–311. doi: 10.1038/ismej.2012.99. PubMed DOI PMC

Liebner S, Wagner D. Abundance, distribution and potential activity of methane oxidizing bacteria in permafrost soils from the Lena Delta Siberia. Environ. Microbiol. 2007;9:107–117. doi: 10.1111/j.1462-2920.2006.01120.x. PubMed DOI

Leppänen SM, Rissanen AJ, Tiirola M. Nitrogen fixation in Sphagnum mosses is affected by moss species and water table level. Plant Soil. 2014 doi: 10.1007/s11104-014-2356-6. DOI

Shcherbakov AV, et al. Endophytic bacteria of Sphagnum mosses as promising objects of agricultural microbiology. Microbiology. 2013;82:306–315. doi: 10.1134/S0026261713030107. PubMed DOI

Parmentier FJW, et al. The role of endophytic methane-oxidizing bacteria in submerged Sphagnum in determining methane emissions of Northeastern Siberian tundra. Biogeosciences. 2011;8:1267–1278. doi: 10.5194/bg-8-1267-2011. DOI

Opelt K, Berg C, Berg G. The bryophyte genus Sphagnum is a reservoir for powerful and extraordinary antagonists and potentially facultative human pathogens. FEMS Microbiol. Ecol. 2007;61:38–53. doi: 10.1111/j.1574-6941.2007.00323.x. PubMed DOI

Raghoebarsing AA, et al. Methanotrophic symbionts provide carbon for photosynthesis in peat bogs. Nature. 2005;436:1153–1156. doi: 10.1038/nature03802. PubMed DOI

Vicherová E, Hájek M, Šmilauer P, Hájek T. Sphagnum establishment in alkaline fens: Importance of weather and water chemistry. Sci. Total Environ. 2017;580:1429–1438. doi: 10.1016/j.scitotenv.2016.12.109. PubMed DOI

Kumar M, et al. Plants assemble species specific bacterial communities from common core taxa in three arcto-alpine climate zones. Front. Microbiol. 2017;8:1–11. PubMed PMC

Bragina A, et al. Similar diversity of Alphaproteobacteria and nitrogenase gene amplicons on two related Sphagnum mosses. Front. Microbiol. 2012;2:1–10. doi: 10.3389/fmicb.2011.00275. PubMed DOI PMC

Opelt K, Berg C, Schönmann S, Eberl L, Berg G. High specificity but contrasting biodiversity of Sphagnum-associated bacterial and plant communities in bog ecosystems independent of the geographical region. ISME J. 2007;1:502–516. doi: 10.1038/ismej.2007.58. PubMed DOI

Bragina A, Berg C, Müller H, Moser D, Berg G. Insights into functional bacterial diversity and its effects on Alpine bog ecosystem functioning. Sci. Rep. 2013;3:1955. doi: 10.1038/srep01955. PubMed DOI PMC

Bragina A, Berg C, Berg G. The core microbiome bonds the Alpine bog vegetation to a transkingdom metacommunity. Mol. Ecol. 2015;24:4795–4807. doi: 10.1111/mec.13342. PubMed DOI

Bragina A, et al. Sphagnum mosses harbour highly specific bacterial diversity during their whole lifecycle. ISME J. 2012;6:802–813. doi: 10.1038/ismej.2011.151. PubMed DOI PMC

Opelt K, et al. Investigations of the structure and function of bacterial communities associated with Sphagnum mosses. Environ. Microbiol. 2007;9:2795–2809. doi: 10.1111/j.1462-2920.2007.01391.x. PubMed DOI

Sand-Jensen K, Riis T, Markager S, Vincent WF. Slow growth and decomposition of mosses in Arctic lakes. Can. J. Fish. Aquat. Sci. 1999;56:388–393. doi: 10.1139/f98-184. DOI

Gavazov KS, Soudzilovskaia NA, van Logtestijn RSP, Braster M, Cornelissen JHC. Isotopic analysis of cyanobacterial nitrogen fixation associated with subarctic lichen and bryophyte species. Plant Soil. 2010;333:507–517. doi: 10.1007/s11104-010-0374-6. DOI

Basilier K, Granhall U. Nitrogen fixation in wet minerotrophic moss communities of a subarctic mire. Oikos. 1978;31:236–246. doi: 10.2307/3543568. DOI

Liebner S, et al. Methane oxidation associated with submerged brown mosses reduces methane emissions from Siberian polygonal tundra. J. Ecol. 2011;99:914–922. doi: 10.1111/j.1365-2745.2011.01823.x. DOI

Liebner S, et al. Shifts in methanogenic community composition and methane fluxes along the degradation of discontinuous permafrost. Front. Microbiol. 2015;6:1–10. doi: 10.3389/fmicb.2015.00356. PubMed DOI PMC

Ikeda S, et al. Development of a bacterial cell enrichment method and its application to the community analysis in soybean stems. Microb. Ecol. 2009;58:703–714. doi: 10.1007/s00248-009-9566-0. PubMed DOI

Morris CE, et al. A technique to quantify the population size and composition of the biofilm component in communities of bacteria in the phyllosphere. Appl. Environ. Microbiol. 1998;64:4789–4795. doi: 10.1128/AEM.64.12.4789-4795.1998. PubMed DOI PMC

Bay G, et al. Boreal feather mosses secrete chemical signals to gain nitrogen. New Phytol. 2013;200:54–60. doi: 10.1111/nph.12403. PubMed DOI

Griffiths RI, et al. Rapid method for coextraction of DNA and RNA from natural environments for analysis of ribosomal DNA- and rRNA-based microbial community composition. Appl. Environ. Microbiol. 2000;66:5488–5491. doi: 10.1128/AEM.66.12.5488-5491.2000. PubMed DOI PMC

Herlemann DP, et al. Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea. ISME J. 2011;5:1571–1579. doi: 10.1038/ismej.2011.41. PubMed DOI PMC

Takai K, Horikoshi K. Rapid detection and quantification of members of the archael community by quantitative PCR using fluorogenic probes. Appl. Environ. Microbiol. 2000;66:5066–5072. doi: 10.1128/AEM.66.11.5066-5072.2000. PubMed DOI PMC

Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. Journal 10–12 (2011).

Zhang J, Kobert K, Flouri T, Stamatakis A. PEAR: A fast and accurate Illumina Paired-End reAd mergeR. Bioinformatics. 2014;30:614–620. doi: 10.1093/bioinformatics/btt593. PubMed DOI PMC

Bolger AM, Lohse M, Usadel B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–2120. doi: 10.1093/bioinformatics/btu170. PubMed DOI PMC

Caporaso JG, et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods. 2011;7:335–336. doi: 10.1038/nmeth.f.303. PubMed DOI PMC

McDonald D, et al. An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J. 2012;6:610–618. doi: 10.1038/ismej.2011.139. PubMed DOI PMC

R Core Team. R: A language and environment for statistical computing. (2015).

Greenacre M. Computation of correspondence analysis. In: Keiding N, editor. Correspondance Analysis in Practice. BocaRaton: Chapman and Hall/CRC; 2007. pp. 213–259.

Fierer N, Jackson RB. The diversity and biogeography of soil bacterial communities. Proc. Natl. Acad. Sci. USA. 2006;103:626–631. doi: 10.1073/pnas.0507535103. PubMed DOI PMC

Potter C, et al. Subtle shifts in microbial communities occur alongside the release of carbon induced by drought and rewetting in contrasting peatland ecosystems. Sci. Rep. 2017;7:1–14. doi: 10.1038/s41598-016-0028-x. PubMed DOI PMC

Andersen R, Chapman SJ, Artz RRE. Microbial communities in natural and disturbed peatlands: A review. Soil Biol. Biochem. 2013;57:979–994. doi: 10.1016/j.soilbio.2012.10.003. DOI

Jassey VEJ, et al. Plant functional diversity drives niche-size-structure of dominant microbial consumers along a poor to extremely rich fen gradient. J. Ecol. 2014;102:1150–1162. doi: 10.1111/1365-2745.12288. DOI

Zhalnina K, et al. Soil pH determines microbial diversity and composition in the park grass experiment. Microb. Ecol. 2014;69:395–406. doi: 10.1007/s00248-014-0530-2. PubMed DOI

Slonczewski JL, Fujisawa M, Dopson M, Krulwich TA. Cytoplasmic pH measurement and homeostasis in bacteria and archaea. Adv. Microb. Physiol. 2009;55:1–79. doi: 10.1016/S0065-2911(09)05501-5. PubMed DOI

Holland-Moritz H, et al. Novel bacterial lineages associated with boreal moss species. Environ. Microbiol. 2018 doi: 10.1093/annonc/mdy039/4835470. PubMed DOI

Xiang X, Wang H, Gong L, Liu Q. Vertical variations and associated ecological function of bacterial communities from Sphagnum to underlying sediments in Dajiuhu Peatland. Sci. China Earth Sci. 2013;57:1–8.

Campbell BJ. The family acidobacteriaceae. The Prokaryotes. 2014;9783642389:405–415.

Dedysh SN, Pankratov TA, Belova SE, Kulichevskaya IS, Liesack W. Phylogenetic analysis and in situ identification of bacteria community composition in an acidic Sphagnum peat bog. Appl. Environ. Microbiol. 2006;72:2110–2117. doi: 10.1128/AEM.72.3.2110-2117.2006. PubMed DOI PMC

Bulgarelli D, Schlaeppi K, Spaepen S, van Themaat EVL, Schulze-Lefert P. Structure and functions of the bacterial microbiota of plants. Annu. Rev. Plant Biol. 2013;64:807–838. doi: 10.1146/annurev-arplant-050312-120106. PubMed DOI

Oliverio AM, et al. The ecology and diversity of microbial eukaryotes in geothermal springs. ISME J. 2018 doi: 10.1038/s41396-018-0104-2. PubMed DOI PMC

Radujkovic, D. Structure of Soil Microbial Communities Along a Geothermal Gradient in Iceland (2016).

Rice SK, Schuepp PH. On the ecological and evolutionary significance of branch and leaf morphology in aquatic Sphagnum (Sphagnaceae) Am. J. Bot. 1995;82:833–846. doi: 10.1002/j.1537-2197.1995.tb15699.x. DOI

Rice SK. Patterns of allocation and growth in aquatic Sphagnum species. Can. J. Bot. Can. Bot. 1995;73:349–359. doi: 10.1139/b95-036. DOI

Fiala I, Winkler S. Entwicklungsgeschichtliche Untersuchungen an Sphagnum centrale Jens. Flora oder Allg Bot. Zeitung. Abt. B. 1969;158:390–401.

Mitchell EAD, et al. Structure of microbial communities in Sphagnum peatlands and effect of atmospheric carbon dioxide enrichment. Microb. Ecol. 2003;46:187–199. doi: 10.1007/s00248-002-0008-5. PubMed DOI

Liu X, et al. Insights into the ecology, evolution, and metabolism of the widespread Woesearchaeotal lineages. Microbiome. 2018;6:1–16. doi: 10.1186/s40168-017-0383-2. PubMed DOI PMC

Xiang X, et al. Distribution of bathyarchaeota communities across different terrestrial settings and their potential ecological functions. Sci. Rep. 2017;7:1–11. doi: 10.1038/s41598-016-0028-x. PubMed DOI PMC

Wen X, et al. Global biogeographic analysis of methanogenic archaea identifies community-shaping environmental factors of natural environments. Front. Microbiol. 2017;8:1–13. PubMed PMC

Knief C. Diversity and habitat preferences of cultivated and uncultivated aerobic methanotrophic bacteria evaluated based on pmoA as molecular marker. Front. Microbiol. 2015;6:1346. doi: 10.3389/fmicb.2015.01346. PubMed DOI PMC

Osudar R, et al. Methane turnover and methanotrophic communities in arctic aquatic ecosystems of the Lena Delta Northeast Siberia. FEMS Microbiol. Ecol. 2016;92:1–13. doi: 10.1093/femsec/fiw116. PubMed DOI

Larmola T, et al. The role of Sphagnum mosses in the methane cycling of a boreal mire. Ecology. 2010;91:2356–2365. doi: 10.1890/09-1343.1. PubMed DOI

Lüke C, et al. Macroecology of methane-oxidizing bacteria: The β-diversity of pmoA genotypes in tropical and subtropical rice paddies. Environ. Microbiol. 2014;16:72–83. doi: 10.1111/1462-2920.12190. PubMed DOI

Lüke C. Molecular Ecology and Biogeography of Methanotrophic Bacteria in Wetland Rice Fields. Marburg: Max-Planck-Institut für terrestrische Mikrobiologie; 2010.

Tveit AT, Urich T, Svenning MM. Metatranscriptomic analysis of arctic peat soil microbiota. Appl. Environ. Microbiol. 2014;80:5761–5772. doi: 10.1128/AEM.01030-14. PubMed DOI PMC

Vorobev AV, et al. Methyloferula stellata gen. nov., sp. nov., an acidophilic, obligately methanotrophic bacterium that possesses only a soluble methane monooxygenase. Int. J. Syst. Evol. Microbiol. 2011;61:2456–2463. doi: 10.1099/ijs.0.028118-0. PubMed DOI

Dedysh SN, et al. Methylocapsa palsarum sp. nov., a methanotroph isolated from a subarctic discontinuous permafrost ecosystem. Int. J. Syst. Evol. Microbiol. 2015;65:3618–3624. doi: 10.1099/ijsem.0.000465. PubMed DOI

Dedysh SN, et al. Methylocapsa acidiphila gen. nov., sp. nov., a novel methane-oxidizing and dinitrogen-fixing acidophilic bacterium from Sphagnum bog. Int. J. Syst. Evol. Microbiol. 2002;52:251–261. doi: 10.1099/00207713-52-1-251. PubMed DOI

Dedysh SN, et al. Methylocella tundrae sp. nov., a novel methanotrophic bacterium from acidic tundra peatlands. Int. J. Syst. Evol. Microbiol. 2004;54:151–156. doi: 10.1099/ijs.0.02805-0. PubMed DOI

Hájek T, Ballance S, Limpens J, Zijlstra M, Verhoeven JTA. Cell-wall polysaccharides play an important role in decay resistance of Sphagnum and actively depressed decomposition in vitro. Biogeochemistry. 2011;103:45–57. doi: 10.1007/s10533-010-9444-3. DOI

Stalheim T, Ballance S, Christensen BE, Granum PE. Sphagnan: A pectin-like polymer isolated from Sphagnum moss can inhibit the growth of some typical food spoilage and food poisoning bacteria by lowering the pH. J. Appl. Microbiol. 2009;106:967–976. doi: 10.1111/j.1365-2672.2008.04057.x. PubMed DOI

Basile A, Giordano S, Lopez-Saez JA, Cobianchi RC. Antibacterial activity of pure flavonoids isolated from mosses. Phytochemistry. 1999;52:1479–1482. doi: 10.1016/S0031-9422(99)00286-1. PubMed DOI

Rudolph H, Samland J. Occurrence and metabolism of sphagnum acid in the cell walls of bryophytes. Phytochemistery. 1985;24:745–749. doi: 10.1016/S0031-9422(00)84888-8. DOI

Berg G, Grube M, Schloter M, Smalla K. Unraveling the plant microbiome: Looking back and future perspectives. Front. Microbiol. 2014;5:1–7. PubMed PMC

Sturz AV, Christie BR, Nowak J. Bacterial endophytes: potential role in developing sustainable systems of crop production. CRC. Crit. Rev. Plant Sci. 2000;19:1–30. doi: 10.1080/07352680091139169. DOI

Yu X, Yang J, Wang E, Li B, Yuan H. Effects of growth stage and fulvic acid on the diversity and dynamics of endophytic bacterial community in stevia rebaudiana bertoni leaves. Front. Microbiol. 2015;6:1–13. PubMed PMC

Qin S, et al. Abundant and diverse endophytic actinobacteria associated with medicinal plant Maytenus austroyunnanensis in Xishuangbanna tropical rainforest revealed by culture-dependent and culture-independent methods. Environ. Microbiol. Rep. 2012;4:522–531. doi: 10.1111/j.1758-2229.2012.00357.x. PubMed DOI

Selbmann L, et al. Culturable bacteria associated with Antarctic lichens: Affiliation and psychrotolerance. Polar Biol. 2010;33:71–83. doi: 10.1007/s00300-009-0686-2. DOI

Reiter B, Sessitsch A. Bacterial endophytes of the wildflower Crocus albiflorus analyzed by characterization of isolates and by a cultivation-independent approach. Can. J. Microbiol. 2006;52:140–149. doi: 10.1139/w05-109. PubMed DOI

Putkinen A, et al. Water dispersal of methanotrophic bacteria maintains functional methane oxidation in Sphagnum mosses. Front. Microbiol. 2012;3:1–10. doi: 10.3389/fmicb.2012.00015. PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...