Environmental patterns of brown moss- and Sphagnum-associated microbial communities
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
33376244
PubMed Central
PMC7772339
DOI
10.1038/s41598-020-79773-2
PII: 10.1038/s41598-020-79773-2
Knihovny.cz E-zdroje
- MeSH
- biodiverzita * MeSH
- mechy mikrobiologie MeSH
- mikrobiota fyziologie MeSH
- mokřady * MeSH
- rašeliníky mikrobiologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Arktida MeSH
Northern peatlands typically develop through succession from fens dominated by the moss family Amblystegiaceae to bogs dominated by the moss genus Sphagnum. How the different plants and abiotic environmental conditions provided in Amblystegiaceae and Sphagnum peat shape the respective moss associated microbial communities is unknown. Through a large-scale molecular and biogeochemical study spanning Arctic, sub-Arctic and temperate regions we assessed how the endo- and epiphytic microbial communities of natural northern peatland mosses relate to peatland type (Sphagnum and Amblystegiaceae), location, moss taxa and abiotic environmental variables. Microbial diversity and community structure were distinctly different between Amblystegiaceae and Sphagnum peatlands, and within each of these two peatland types moss taxon explained the largest part of microbial community variation. Sphagnum and Amblystegiaceae shared few (< 1% of all operational taxonomic units (OTUs)) but strikingly abundant (up to 65% of relative abundance) OTUs. This core community overlapped by one third with the Sphagnum-specific core-community. Thus, the most abundant microorganisms in Sphagnum that are also found in all the Sphagnum plants studied, are the same OTUs as those few shared with Amblystegiaceae. Finally, we could confirm that these highly abundant OTUs were endophytes in Sphagnum, but epiphytes on Amblystegiaceae. We conclude that moss taxa and abiotic environmental variables associate with particular microbial communities. While moss taxon was the most influential parameter, hydrology, pH and temperature also had significant effects on the microbial communities. A small though highly abundant core community is shared between Sphagnum and Amblystegiaceae.
GFZ German Research Center for Geosciences Section Geomicrobiology Potsdam Germany
UiT The Arctic University of Norway Department of Arctic and Marine Biology Tromsø Norway
University of Potsdam Institute of Biochemistry and Biology Potsdam Germany
University of Potsdam Institute of Geosciences Potsdam Germany
University of South Bohemia Faculty of Science České Budějovice Czech Republic
Zobrazit více v PubMed
Chapman S, et al. Exploitation of northern peatlands and biodiversity maintenance: a conflict between economy and ecology. Front. Ecol. Environ. 2003;1:525–532. doi: 10.1890/1540-9295(2003)001[0525:EONPAB]2.0.CO;2. DOI
Joosten H. Zustand und Perspektiven der Moore weltweit. Nat. Landschaft. 2012;87:50–55.
MacDonald GM, et al. Rapid early development of circumarctic peatlands and atmospheric CH4 and CO2 variations. Science. 2006;314:285–288. doi: 10.1126/science.1131722. PubMed DOI
Freeman C, Ostle N, Kang H. An enzymic ‘latch’ on a global carbon store. Nature. 2001;409:149. doi: 10.1038/35051650. PubMed DOI
Macdonald JA, et al. Methane emission rates from a northern wetland; response to temperature Water Table and Transport. Atmos. Environ. 1998;32:3219–3227. doi: 10.1016/S1352-2310(97)00464-0. DOI
Holden J. Peatland hydrology and carbon release: why small-scale process matters. Philos. Trans. R. Soc. A. 2005;363:2891–2913. doi: 10.1098/rsta.2005.1671. PubMed DOI
Joosten, H. & Clarke, D. Wise Use of Mires and Peatlands. (International Mire Conversation Group and International Peat Society, 2002).
Bauer IE, Gignac LD, Vitt DH. Development of a peatland complex in boreal western Canada: lateral site expansion and local variability in vegetation succession and long-term peat accumulation. Can. J. Bot. 2003;81:833–847. doi: 10.1139/b03-076. DOI
Schumann, M. & Joosten, H. A Global Peatland Restoration Manual 357–385 (2008).
Kuhry, P. & Turunen, J. The Postglacial Development of Boreal and Subarctic Peatlands. In Boreal Peatland Ecosystems (Springer, New York, 2006).
Rydin H, Gunnarsson U, Sundberg S. The role of Sphagnum in peatland development and persistence. Boreal Peatl. Ecosyst. 2006;188:47–65. doi: 10.1007/978-3-540-31913-9_4. DOI
Moore PD. The ecology of peat-forming processes: A review. Int. J. Coal Geol. 1989;12:89–103. doi: 10.1016/0166-5162(89)90048-7. DOI
Soudzilovskaia NA, et al. Similar cation exchange capacities among bryophyte species refute a presumed mechanism of peatland acidification. Ecology. 2010;91:2716–2726. doi: 10.1890/09-2095.1. PubMed DOI
Clymo RS. Sphagnum-dominated peat bog: a naturally acid ecosystem. Philos. Trans. R. Soc. Lnd. B. 1984;499:487–499.
Gorham E, Janssens JA. The paleorecord of geochemistry and hydrology in northern peatlands and its relation to global change. Suo. 1992;43:117–126.
Kuhry P, Nicholson B, Gignac LD, Vitt DH, Bayley S. Development of Sphagnum-dominated peatlands in boreal continental Canada. Can. J. Bot. 1993;71:10–22. doi: 10.1139/b93-002. DOI
Vile MA, et al. N2-fixation by methanotrophs sustains carbon and nitrogen accumulation in pristine peatlands. Biogeochemistry. 2014;121:317–328. doi: 10.1007/s10533-014-0019-6. DOI
Tveit A, Schwacke R, SvenniUse the "Insert Citation" button to add citations to this document.ng, M. M. Urich T. Organic carbon transformations in high-Arctic peat soils: key functions and microorganisms. ISME J. 2013;7:299–311. doi: 10.1038/ismej.2012.99. PubMed DOI PMC
Liebner S, Wagner D. Abundance, distribution and potential activity of methane oxidizing bacteria in permafrost soils from the Lena Delta Siberia. Environ. Microbiol. 2007;9:107–117. doi: 10.1111/j.1462-2920.2006.01120.x. PubMed DOI
Leppänen SM, Rissanen AJ, Tiirola M. Nitrogen fixation in Sphagnum mosses is affected by moss species and water table level. Plant Soil. 2014 doi: 10.1007/s11104-014-2356-6. DOI
Shcherbakov AV, et al. Endophytic bacteria of Sphagnum mosses as promising objects of agricultural microbiology. Microbiology. 2013;82:306–315. doi: 10.1134/S0026261713030107. PubMed DOI
Parmentier FJW, et al. The role of endophytic methane-oxidizing bacteria in submerged Sphagnum in determining methane emissions of Northeastern Siberian tundra. Biogeosciences. 2011;8:1267–1278. doi: 10.5194/bg-8-1267-2011. DOI
Opelt K, Berg C, Berg G. The bryophyte genus Sphagnum is a reservoir for powerful and extraordinary antagonists and potentially facultative human pathogens. FEMS Microbiol. Ecol. 2007;61:38–53. doi: 10.1111/j.1574-6941.2007.00323.x. PubMed DOI
Raghoebarsing AA, et al. Methanotrophic symbionts provide carbon for photosynthesis in peat bogs. Nature. 2005;436:1153–1156. doi: 10.1038/nature03802. PubMed DOI
Vicherová E, Hájek M, Šmilauer P, Hájek T. Sphagnum establishment in alkaline fens: Importance of weather and water chemistry. Sci. Total Environ. 2017;580:1429–1438. doi: 10.1016/j.scitotenv.2016.12.109. PubMed DOI
Kumar M, et al. Plants assemble species specific bacterial communities from common core taxa in three arcto-alpine climate zones. Front. Microbiol. 2017;8:1–11. PubMed PMC
Bragina A, et al. Similar diversity of Alphaproteobacteria and nitrogenase gene amplicons on two related Sphagnum mosses. Front. Microbiol. 2012;2:1–10. doi: 10.3389/fmicb.2011.00275. PubMed DOI PMC
Opelt K, Berg C, Schönmann S, Eberl L, Berg G. High specificity but contrasting biodiversity of Sphagnum-associated bacterial and plant communities in bog ecosystems independent of the geographical region. ISME J. 2007;1:502–516. doi: 10.1038/ismej.2007.58. PubMed DOI
Bragina A, Berg C, Müller H, Moser D, Berg G. Insights into functional bacterial diversity and its effects on Alpine bog ecosystem functioning. Sci. Rep. 2013;3:1955. doi: 10.1038/srep01955. PubMed DOI PMC
Bragina A, Berg C, Berg G. The core microbiome bonds the Alpine bog vegetation to a transkingdom metacommunity. Mol. Ecol. 2015;24:4795–4807. doi: 10.1111/mec.13342. PubMed DOI
Bragina A, et al. Sphagnum mosses harbour highly specific bacterial diversity during their whole lifecycle. ISME J. 2012;6:802–813. doi: 10.1038/ismej.2011.151. PubMed DOI PMC
Opelt K, et al. Investigations of the structure and function of bacterial communities associated with Sphagnum mosses. Environ. Microbiol. 2007;9:2795–2809. doi: 10.1111/j.1462-2920.2007.01391.x. PubMed DOI
Sand-Jensen K, Riis T, Markager S, Vincent WF. Slow growth and decomposition of mosses in Arctic lakes. Can. J. Fish. Aquat. Sci. 1999;56:388–393. doi: 10.1139/f98-184. DOI
Gavazov KS, Soudzilovskaia NA, van Logtestijn RSP, Braster M, Cornelissen JHC. Isotopic analysis of cyanobacterial nitrogen fixation associated with subarctic lichen and bryophyte species. Plant Soil. 2010;333:507–517. doi: 10.1007/s11104-010-0374-6. DOI
Basilier K, Granhall U. Nitrogen fixation in wet minerotrophic moss communities of a subarctic mire. Oikos. 1978;31:236–246. doi: 10.2307/3543568. DOI
Liebner S, et al. Methane oxidation associated with submerged brown mosses reduces methane emissions from Siberian polygonal tundra. J. Ecol. 2011;99:914–922. doi: 10.1111/j.1365-2745.2011.01823.x. DOI
Liebner S, et al. Shifts in methanogenic community composition and methane fluxes along the degradation of discontinuous permafrost. Front. Microbiol. 2015;6:1–10. doi: 10.3389/fmicb.2015.00356. PubMed DOI PMC
Ikeda S, et al. Development of a bacterial cell enrichment method and its application to the community analysis in soybean stems. Microb. Ecol. 2009;58:703–714. doi: 10.1007/s00248-009-9566-0. PubMed DOI
Morris CE, et al. A technique to quantify the population size and composition of the biofilm component in communities of bacteria in the phyllosphere. Appl. Environ. Microbiol. 1998;64:4789–4795. doi: 10.1128/AEM.64.12.4789-4795.1998. PubMed DOI PMC
Bay G, et al. Boreal feather mosses secrete chemical signals to gain nitrogen. New Phytol. 2013;200:54–60. doi: 10.1111/nph.12403. PubMed DOI
Griffiths RI, et al. Rapid method for coextraction of DNA and RNA from natural environments for analysis of ribosomal DNA- and rRNA-based microbial community composition. Appl. Environ. Microbiol. 2000;66:5488–5491. doi: 10.1128/AEM.66.12.5488-5491.2000. PubMed DOI PMC
Herlemann DP, et al. Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea. ISME J. 2011;5:1571–1579. doi: 10.1038/ismej.2011.41. PubMed DOI PMC
Takai K, Horikoshi K. Rapid detection and quantification of members of the archael community by quantitative PCR using fluorogenic probes. Appl. Environ. Microbiol. 2000;66:5066–5072. doi: 10.1128/AEM.66.11.5066-5072.2000. PubMed DOI PMC
Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. Journal 10–12 (2011).
Zhang J, Kobert K, Flouri T, Stamatakis A. PEAR: A fast and accurate Illumina Paired-End reAd mergeR. Bioinformatics. 2014;30:614–620. doi: 10.1093/bioinformatics/btt593. PubMed DOI PMC
Bolger AM, Lohse M, Usadel B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–2120. doi: 10.1093/bioinformatics/btu170. PubMed DOI PMC
Caporaso JG, et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods. 2011;7:335–336. doi: 10.1038/nmeth.f.303. PubMed DOI PMC
McDonald D, et al. An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J. 2012;6:610–618. doi: 10.1038/ismej.2011.139. PubMed DOI PMC
R Core Team. R: A language and environment for statistical computing. (2015).
Greenacre M. Computation of correspondence analysis. In: Keiding N, editor. Correspondance Analysis in Practice. BocaRaton: Chapman and Hall/CRC; 2007. pp. 213–259.
Fierer N, Jackson RB. The diversity and biogeography of soil bacterial communities. Proc. Natl. Acad. Sci. USA. 2006;103:626–631. doi: 10.1073/pnas.0507535103. PubMed DOI PMC
Potter C, et al. Subtle shifts in microbial communities occur alongside the release of carbon induced by drought and rewetting in contrasting peatland ecosystems. Sci. Rep. 2017;7:1–14. doi: 10.1038/s41598-016-0028-x. PubMed DOI PMC
Andersen R, Chapman SJ, Artz RRE. Microbial communities in natural and disturbed peatlands: A review. Soil Biol. Biochem. 2013;57:979–994. doi: 10.1016/j.soilbio.2012.10.003. DOI
Jassey VEJ, et al. Plant functional diversity drives niche-size-structure of dominant microbial consumers along a poor to extremely rich fen gradient. J. Ecol. 2014;102:1150–1162. doi: 10.1111/1365-2745.12288. DOI
Zhalnina K, et al. Soil pH determines microbial diversity and composition in the park grass experiment. Microb. Ecol. 2014;69:395–406. doi: 10.1007/s00248-014-0530-2. PubMed DOI
Slonczewski JL, Fujisawa M, Dopson M, Krulwich TA. Cytoplasmic pH measurement and homeostasis in bacteria and archaea. Adv. Microb. Physiol. 2009;55:1–79. doi: 10.1016/S0065-2911(09)05501-5. PubMed DOI
Holland-Moritz H, et al. Novel bacterial lineages associated with boreal moss species. Environ. Microbiol. 2018 doi: 10.1093/annonc/mdy039/4835470. PubMed DOI
Xiang X, Wang H, Gong L, Liu Q. Vertical variations and associated ecological function of bacterial communities from Sphagnum to underlying sediments in Dajiuhu Peatland. Sci. China Earth Sci. 2013;57:1–8.
Campbell BJ. The family acidobacteriaceae. The Prokaryotes. 2014;9783642389:405–415.
Dedysh SN, Pankratov TA, Belova SE, Kulichevskaya IS, Liesack W. Phylogenetic analysis and in situ identification of bacteria community composition in an acidic Sphagnum peat bog. Appl. Environ. Microbiol. 2006;72:2110–2117. doi: 10.1128/AEM.72.3.2110-2117.2006. PubMed DOI PMC
Bulgarelli D, Schlaeppi K, Spaepen S, van Themaat EVL, Schulze-Lefert P. Structure and functions of the bacterial microbiota of plants. Annu. Rev. Plant Biol. 2013;64:807–838. doi: 10.1146/annurev-arplant-050312-120106. PubMed DOI
Oliverio AM, et al. The ecology and diversity of microbial eukaryotes in geothermal springs. ISME J. 2018 doi: 10.1038/s41396-018-0104-2. PubMed DOI PMC
Radujkovic, D. Structure of Soil Microbial Communities Along a Geothermal Gradient in Iceland (2016).
Rice SK, Schuepp PH. On the ecological and evolutionary significance of branch and leaf morphology in aquatic Sphagnum (Sphagnaceae) Am. J. Bot. 1995;82:833–846. doi: 10.1002/j.1537-2197.1995.tb15699.x. DOI
Rice SK. Patterns of allocation and growth in aquatic Sphagnum species. Can. J. Bot. Can. Bot. 1995;73:349–359. doi: 10.1139/b95-036. DOI
Fiala I, Winkler S. Entwicklungsgeschichtliche Untersuchungen an Sphagnum centrale Jens. Flora oder Allg Bot. Zeitung. Abt. B. 1969;158:390–401.
Mitchell EAD, et al. Structure of microbial communities in Sphagnum peatlands and effect of atmospheric carbon dioxide enrichment. Microb. Ecol. 2003;46:187–199. doi: 10.1007/s00248-002-0008-5. PubMed DOI
Liu X, et al. Insights into the ecology, evolution, and metabolism of the widespread Woesearchaeotal lineages. Microbiome. 2018;6:1–16. doi: 10.1186/s40168-017-0383-2. PubMed DOI PMC
Xiang X, et al. Distribution of bathyarchaeota communities across different terrestrial settings and their potential ecological functions. Sci. Rep. 2017;7:1–11. doi: 10.1038/s41598-016-0028-x. PubMed DOI PMC
Wen X, et al. Global biogeographic analysis of methanogenic archaea identifies community-shaping environmental factors of natural environments. Front. Microbiol. 2017;8:1–13. PubMed PMC
Knief C. Diversity and habitat preferences of cultivated and uncultivated aerobic methanotrophic bacteria evaluated based on pmoA as molecular marker. Front. Microbiol. 2015;6:1346. doi: 10.3389/fmicb.2015.01346. PubMed DOI PMC
Osudar R, et al. Methane turnover and methanotrophic communities in arctic aquatic ecosystems of the Lena Delta Northeast Siberia. FEMS Microbiol. Ecol. 2016;92:1–13. doi: 10.1093/femsec/fiw116. PubMed DOI
Larmola T, et al. The role of Sphagnum mosses in the methane cycling of a boreal mire. Ecology. 2010;91:2356–2365. doi: 10.1890/09-1343.1. PubMed DOI
Lüke C, et al. Macroecology of methane-oxidizing bacteria: The β-diversity of pmoA genotypes in tropical and subtropical rice paddies. Environ. Microbiol. 2014;16:72–83. doi: 10.1111/1462-2920.12190. PubMed DOI
Lüke C. Molecular Ecology and Biogeography of Methanotrophic Bacteria in Wetland Rice Fields. Marburg: Max-Planck-Institut für terrestrische Mikrobiologie; 2010.
Tveit AT, Urich T, Svenning MM. Metatranscriptomic analysis of arctic peat soil microbiota. Appl. Environ. Microbiol. 2014;80:5761–5772. doi: 10.1128/AEM.01030-14. PubMed DOI PMC
Vorobev AV, et al. Methyloferula stellata gen. nov., sp. nov., an acidophilic, obligately methanotrophic bacterium that possesses only a soluble methane monooxygenase. Int. J. Syst. Evol. Microbiol. 2011;61:2456–2463. doi: 10.1099/ijs.0.028118-0. PubMed DOI
Dedysh SN, et al. Methylocapsa palsarum sp. nov., a methanotroph isolated from a subarctic discontinuous permafrost ecosystem. Int. J. Syst. Evol. Microbiol. 2015;65:3618–3624. doi: 10.1099/ijsem.0.000465. PubMed DOI
Dedysh SN, et al. Methylocapsa acidiphila gen. nov., sp. nov., a novel methane-oxidizing and dinitrogen-fixing acidophilic bacterium from Sphagnum bog. Int. J. Syst. Evol. Microbiol. 2002;52:251–261. doi: 10.1099/00207713-52-1-251. PubMed DOI
Dedysh SN, et al. Methylocella tundrae sp. nov., a novel methanotrophic bacterium from acidic tundra peatlands. Int. J. Syst. Evol. Microbiol. 2004;54:151–156. doi: 10.1099/ijs.0.02805-0. PubMed DOI
Hájek T, Ballance S, Limpens J, Zijlstra M, Verhoeven JTA. Cell-wall polysaccharides play an important role in decay resistance of Sphagnum and actively depressed decomposition in vitro. Biogeochemistry. 2011;103:45–57. doi: 10.1007/s10533-010-9444-3. DOI
Stalheim T, Ballance S, Christensen BE, Granum PE. Sphagnan: A pectin-like polymer isolated from Sphagnum moss can inhibit the growth of some typical food spoilage and food poisoning bacteria by lowering the pH. J. Appl. Microbiol. 2009;106:967–976. doi: 10.1111/j.1365-2672.2008.04057.x. PubMed DOI
Basile A, Giordano S, Lopez-Saez JA, Cobianchi RC. Antibacterial activity of pure flavonoids isolated from mosses. Phytochemistry. 1999;52:1479–1482. doi: 10.1016/S0031-9422(99)00286-1. PubMed DOI
Rudolph H, Samland J. Occurrence and metabolism of sphagnum acid in the cell walls of bryophytes. Phytochemistery. 1985;24:745–749. doi: 10.1016/S0031-9422(00)84888-8. DOI
Berg G, Grube M, Schloter M, Smalla K. Unraveling the plant microbiome: Looking back and future perspectives. Front. Microbiol. 2014;5:1–7. PubMed PMC
Sturz AV, Christie BR, Nowak J. Bacterial endophytes: potential role in developing sustainable systems of crop production. CRC. Crit. Rev. Plant Sci. 2000;19:1–30. doi: 10.1080/07352680091139169. DOI
Yu X, Yang J, Wang E, Li B, Yuan H. Effects of growth stage and fulvic acid on the diversity and dynamics of endophytic bacterial community in stevia rebaudiana bertoni leaves. Front. Microbiol. 2015;6:1–13. PubMed PMC
Qin S, et al. Abundant and diverse endophytic actinobacteria associated with medicinal plant Maytenus austroyunnanensis in Xishuangbanna tropical rainforest revealed by culture-dependent and culture-independent methods. Environ. Microbiol. Rep. 2012;4:522–531. doi: 10.1111/j.1758-2229.2012.00357.x. PubMed DOI
Selbmann L, et al. Culturable bacteria associated with Antarctic lichens: Affiliation and psychrotolerance. Polar Biol. 2010;33:71–83. doi: 10.1007/s00300-009-0686-2. DOI
Reiter B, Sessitsch A. Bacterial endophytes of the wildflower Crocus albiflorus analyzed by characterization of isolates and by a cultivation-independent approach. Can. J. Microbiol. 2006;52:140–149. doi: 10.1139/w05-109. PubMed DOI
Putkinen A, et al. Water dispersal of methanotrophic bacteria maintains functional methane oxidation in Sphagnum mosses. Front. Microbiol. 2012;3:1–10. doi: 10.3389/fmicb.2012.00015. PubMed DOI PMC