Characterization of repetitive DNA landscape in wheat homeologous group 4 chromosomes
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
25962417
PubMed Central
PMC4440537
DOI
10.1186/s12864-015-1579-0
PII: 10.1186/s12864-015-1579-0
Knihovny.cz E-zdroje
- MeSH
- chromozomy rostlin genetika MeSH
- DNA rostlinná analýza MeSH
- fyzikální mapování chromozomů MeSH
- pšenice genetika MeSH
- repetitivní sekvence nukleových kyselin * MeSH
- sekvenční analýza DNA metody MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA rostlinná MeSH
BACKGROUND: The number and complexity of repetitive elements varies between species, being in general most represented in those with larger genomes. Combining the flow-sorted chromosome arms approach to genome analysis with second generation DNA sequencing technologies provides a unique opportunity to study the repetitive portion of each chromosome, enabling comparisons among them. Additionally, different sequencing approaches may produce different depth of insight to repeatome content and structure. In this work we analyze and characterize the repetitive sequences of Triticum aestivum cv. Chinese Spring homeologous group 4 chromosome arms, obtained through Roche 454 and Illumina sequencing technologies, hereinafter marked by subscripts 454 and I, respectively. Repetitive sequences were identified with the RepeatMasker software using the interspersed repeat database mips-REdat_v9.0p. The input sequences consisted of our 4DS454 and 4DL454 scaffolds and 4ASI, 4ALI, 4BSI, 4BLI, 4DSI and 4DLI contigs, downloaded from the International Wheat Genome Sequencing Consortium (IWGSC). RESULTS: Repetitive sequences content varied from 55% to 63% for all chromosome arm assemblies except for 4DLI, in which the repeat content was 38%. Transposable elements, small RNA, satellites, simple repeats and low complexity sequences were analyzed. SSR frequency was found one per 24 to 27 kb for all chromosome assemblies except 4DLI, where it was three times higher. Dinucleotides and trinucleotides were the most abundant SSR repeat units. (GA)n/(TC)n was the most abundant SSR except for 4DLI where the most frequently identified SSR was (CCG/CGG)n. Retrotransposons followed by DNA transposons were the most highly represented sequence repeats, mainly composed of CACTA/En-Spm and Gypsy superfamilies, respectively. This whole chromosome sequence analysis allowed identification of three new LTR retrotransposon families belonging to the Copia superfamily, one belonging to the Gypsy superfamily and two TRIM retrotransposon families. Their physical distribution in wheat genome was analyzed by fluorescent in situ hybridization (FISH) and one of them, the Carmen retrotransposon, was found specific for centromeric regions of all wheat chromosomes. CONCLUSION: The presented work is the first deep report of wheat repetitive sequences analyzed at the chromosome arm level, revealing the first insight into the repeatome of T. aestivum chromosomes of homeologous group 4.
CERZOS and Universidad Nacional del Sur Bahía Blanca Argentina
The Genome Analysis Centre Norwich Research Park Norwich NR4 7UH UK
Zobrazit více v PubMed
Petersen G, Seberg O, Yde M, Berthelsen K. Phylogenetic relationships of Triticum and Aegilops and evidence for the origin of the A, B, and D genomes of common wheat (Triticum aestivum) Mol Phylogenet Evol. 2006;39:70–82. doi: 10.1016/j.ympev.2006.01.023. PubMed DOI
Bennetzen JL, Ma J, Devos KM. Mechanisms of recent genome size variation in flowering plants. Ann Bot (Lond) 2005;95:127–32. doi: 10.1093/aob/mci008. PubMed DOI PMC
The International Wheat Genome Sequencing Consortium A chromosome based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science. 2014;345:1251788. doi: 10.1126/science.1251788. PubMed DOI
Kidwell MG. Transposable elements and the evolution of genome size in eukaryotes. Genetica. 2002;115:49–63. doi: 10.1023/A:1016072014259. PubMed DOI
Rebollo R, Romanish MT, Mager DL. Transposable elements: an abundant and natural source of regulatory sequences for host genes. Annu Rev Genet. 2012;46:21–42. doi: 10.1146/annurev-genet-110711-155621. PubMed DOI
Wicker T, Sabot F, Hua-Van A, Bennetzen JL, Capy P, Chalhoub B, et al. A unified classification system for eukaryotic transposable elements. Nat Rev Genet. 2007;8:973–82. doi: 10.1038/nrg2165. PubMed DOI
Lerat E. Identifying repeats and transposable elements in sequenced genomes: how to find your way through the dense forest of programs. Heredity. 2010;104:520–33. doi: 10.1038/hdy.2009.165. PubMed DOI
Ugarković D, Plohl M. Variation in satellite DNA profiles causes and effects. EMBO J. 2002;21:5955–9. doi: 10.1093/emboj/cdf612. PubMed DOI PMC
Plohl M, Luchetti A, Mestrović N, Mantovani B. Satellite DNAs between selfishness and functionality: structure, genomics and evolution of tandem repeats in centromeric (hetero)chromatin. Gene. 2008;409:72–82. doi: 10.1016/j.gene.2007.11.013. PubMed DOI
Ananiev EV, Phillips RL, Rines HW. Chromosome-specific molecular organization of maize (Zea mays L.) centromeric regions. Proc Natl Acad Sci U S A. 1998;95:13073–8. doi: 10.1073/pnas.95.22.13073. PubMed DOI PMC
Feuillet C, Salse J. Comparative genomics in the Triticeae. In: Feuillet C, Muehlbauer GJ, editors. Plant Genetics and Genomics. New York: Springer; 2009. pp. 451–77.
Beckmann JS, Soller M. Toward a unified approach to genetic-mapping of eukaryotes based on sequence tagged microsatellite sites. BIO-TECHNOLOGY. 1990;8:930–2. doi: 10.1038/nbt1090-930. PubMed DOI
Gupta PK, Varshney RK. The development and use of microsatellite markers for genetic analysis and plant breeding with emphasis on bread wheat. Euphytica. 2000;113:163–85. doi: 10.1023/A:1003910819967. DOI
Waugh R, McLean K, Flavell AJ, Pearce SR, Kumar A, Thomas BB, et al. Genetic distribution of Bare-1-like retrotransposable elements in the barley genome revealed by sequence-specific amplification polymorphisms (S-SAP) Mol Gen Genet. 1997;253:687–94. doi: 10.1007/s004380050372. PubMed DOI
Flavell AJ, Knox MR, Pearce SR, Ellis TH. Retrotransposon-based insertion polymorphisms (RBIP) for high throughput marker analysis. Plant J. 1998;16:643–50. doi: 10.1046/j.1365-313x.1998.00334.x. PubMed DOI
Kalendar R, Schulman AH. IRAP and REMAP for retrotransposon-based genotyping and fingerprinting. Nat Protoc. 2006;1:2478–84. doi: 10.1038/nprot.2006.377. PubMed DOI
Luce AC, Sharma A, Mollere OS, Wolfgruber TK, Nagaki K, Jiang J, et al. Precise centromere mapping using a combination of repeat junction markers and chromatin immunoprecipitation-polymerase chain reaction. Genetics. 2006;174:1057–61. doi: 10.1534/genetics.106.060467. PubMed DOI PMC
Devos KM, Ma J, Pontaroli AC, Pratt LH, Bennetzen JL. Analysis and mapping of randomly chosen bacterial artificial chromosome clones from hexaploid bread wheat. Proc Natl Acad Sci U S A. 2005;102:19243–8. doi: 10.1073/pnas.0509473102. PubMed DOI PMC
Paux E, Roger D, Badaeva E, Gay G, Bernard M, Sourdille P, et al. Characterizing the composition and evolution of homeologous genomes in hexaploid wheat through BAC-end sequencing on chromosome 3B. Plant J. 2006;48:463–74. doi: 10.1111/j.1365-313X.2006.02891.x. PubMed DOI
Wanjugi H, Coleman-Derr D, Huo NX, Kianian SF, Luo MC, Wu JJ, et al. Rapid development of PCR-based genome-specific repetitive DNA junction markers in wheat. Genome. 2009;52:576–87. doi: 10.1139/G09-033. PubMed DOI
International Wheat Genome Sequencing Consortium at www.wheatgenome.org
Doležel J, Simkova H, Kubalakova M, Safar J, Suchankova P, Cihalikova J, et al. Chromosome genomics in the Triticeae. In: Feuillet C, Muehlbauer GJ, et al., editors. Plant Genetics and Genomics. New York: Springer; 2009. pp. 285–316.
Doležel J, Kubaláková M, Paux E, Bartoš J, Feuillet C. Chromosome-based genomics in the cereals. Chromosom Res. 2007;15:51–66. doi: 10.1007/s10577-006-1106-x. PubMed DOI
Helguera M, Rivarola M, Clavijo B, Marthis M, Vanzetti L, González S, et al. Sequence of chromosome 4D of bread wheat reveals its structure and virtual gene order. Plant Sci. 2015;233:200–12. doi: 10.1016/j.plantsci.2014.12.004. PubMed DOI PMC
Ling HQ, Zhao S, Liu D, Wang J, Sun H, Zhang C, et al. Draft genome of the wheat A-genome progenitor Triticum urartu. Nature. 2013;496:87–90. doi: 10.1038/nature11997. PubMed DOI
Jia J, Zhao S, Kong X, Li Y, Zhao G, He W, et al. Aegilops tauschii draft genome sequence reveals a gene repertoire for wheat adaptation. Nature. 2013;496:91–5. doi: 10.1038/nature12028. PubMed DOI
Vitulo N, Albiero A, Forcato C, Campagna D, Dal Pero F, Bagnaresi P, et al. First Survey of the wheat chromosome 5A composition through a next generation sequencing approach. PLoS One. 2011;6(10):e26421. doi: 10.1371/journal.pone.0026421. PubMed DOI PMC
Sehgal SK, Li W, Rabinowicz PD, Chan A, Simková H, Doležel J, et al. Chromosome arm-specific BAC end sequences permit comparative analysis of homoeologous chromosomes and genomes of polyploid wheat. BMC Plant Biology. 2012;12:64. doi: 10.1186/1471-2229-12-64. PubMed DOI PMC
Hernandez P, Martis M, Dorado G, Pfeifer M, Gálvez S, Schaaf S, et al. Next generation sequencing and syntenic integration of flow sorted arms of wheat chromosome 4A exposes the chromosome structure and gene content. Plant J. 2012;69:377–86. doi: 10.1111/j.1365-313X.2011.04808.x. PubMed DOI
Tanaka T, Kobayashi F, Joshi GP, Onuki R, Sakai H, Kanamori H, et al. Next-Generation Survey Sequencing and the Molecular Organization of Wheat Chromosome 6B. DNA Res. 2014;21:103–14. doi: 10.1093/dnares/dst041. PubMed DOI PMC
Sergeeva EM, Afonnikov DA, Koltunova MK, Gusev VD, Miroshnichenko LA, Vrána J, et al. Common wheat chromosome 5B composition analysis using low-coverage 454 Sequencing. The Plant Genome. 2014;7:1–16.
Metzker ML. Sequencing technologies - the next generation. Nat Rev Genet. 2010;11:31–46. doi: 10.1038/nrg2626. PubMed DOI
Kurtz S, Narechania A, Stein JC, Ware D. A new method to compute K-mer frequencies and its application to annotate large repetitive plant genomes. BMC Genomics. 2008;9:517. doi: 10.1186/1471-2164-9-517. PubMed DOI PMC
Mayer KFX, Taudien S, Martis M, Šimková H, Suchánková P, Gundlach H, et al. Gene content and virtual gene order of barley chromosome 1 H. Plant Physiol. 2009;151:496–505. doi: 10.1104/pp.109.142612. PubMed DOI PMC
Oyola SO, Otto TD, Gu Y, Maslen G, Manske M, Campino S, et al. Optimizing Illumina next-generation sequencing library preparation for extremely AT biased genomes. BMC Genomics. 2012;13:1. doi: 10.1186/1471-2164-13-1. PubMed DOI PMC
Kubaláková M, Kovářová P, Suchánková P, Číhalíková J, Bartoš J, Lucretti S, et al. Chromosome sorting in tetraploid wheat and its potential for genome analysis. Genetics. 2005;170:823–9. doi: 10.1534/genetics.104.039180. PubMed DOI PMC
Morgante M, Hanafey M, Powell W. Microsatellites are preferentially associated with nonrepetitive DNA in plant genomes. Nat Genet. 2002;30:194–200. doi: 10.1038/ng822. PubMed DOI
Huo N, Lazo GR, Vogel JP, You FM, Ma Y, Hayden DM, et al. The nuclear genome of Brachypodium distachyon: analysis of BAC end sequences. Funct Integr Genomics. 2008;8:135–47. doi: 10.1007/s10142-007-0062-7. PubMed DOI
Röder MS, Korzun V, Wandehake K, Planschke J, Tixier MH, Leroy P, et al. A microsatellite map of wheat. Genetics. 1998;149:2007–23. PubMed PMC
Pestsova E, Ganal MW, Röder MS. Isolation and mapping of microsatellite markers specific for the D genome of bread wheat. Genome. 2000;43:689–97. doi: 10.1139/g00-042. PubMed DOI
Vrána J, Kubaláková M, Šimková H, Číhalíková J, Lysák MA, Doležel J. Flow-sorting of mitotic chromosomes in common wheat (Triticum aestivum L.) Genetics. 2000;156:2033–41. PubMed PMC
Giorgi D, Farina A, Grosso V, Gennaro A, Ceoloni C, Lucretti S. FISHIS: fluorescence in situ hybridization in suspension and chromosome flow sorting made easy. PLoS One. 2013;8:e57994. doi: 10.1371/journal.pone.0057994. PubMed DOI PMC
Cuadrado A, Cardoso M, Jouve N. Physical organisation of simple sequence repeats (SSRs) in Triticeae: structural, functional and evolutionary implications. Cytogenet Genome Res. 2008;120:210–9. doi: 10.1159/000121069. PubMed DOI
Witte CP, Le QH, Bureau T, Kumar A. Terminal-repeat retrotransposons in miniature (TRIM) are involved in restructuring plant genomes. Proc Natl Acad Sci U S A. 2001;98:13778–83. doi: 10.1073/pnas.241341898. PubMed DOI PMC
Kalendar R, Vicient CM, Peleg O, Anamthawat-Jonsson K, Bolshoy A, Schulman A. Large retrotransposon derivatives: abundant, conserved but nonautonomous retroelements of barley and related genomes. Genetics. 2004;166:1437–50. doi: 10.1534/genetics.166.3.1437. PubMed DOI PMC
Xu Z, Wang H. LTR_FINDER: an efficient tool for the prediction of full-length LTR retrotransposons. Nucleic Acids Res. 2007;35(Web Server issue):W265–W26. doi: 10.1093/nar/gkm286. PubMed DOI PMC
McCarthy EM, McDonald JF. LTR_STRUC: a novel search and identification program for LTR retrotransposons. Bioinformatics. 2003;19:362–7. doi: 10.1093/bioinformatics/btf878. PubMed DOI
CD-HIT Suite: Biological Sequence Clustering and Comparison. http://weizhong-lab.ucsd.edu/cdhit_suite/cgi-bin/index.cgi?cmd=h-cd-hit-est.
Gypsy Database. www.gydb.org.
Brenchley R, Spannagl M, Pfeifer M, Barker GL, D'Amore R, Allen AM, et al. Analysis of the bread wheat genome using whole-genome shotgun sequencing. Nature. 2012;491:705–10. doi: 10.1038/nature11650. PubMed DOI PMC
Marcussen T, Sandve SR, Heier L, Spannagl M, Pfeifer M, International Wheat Genome Sequencing Consortium et al. Ancient hybridizations among the ancestral genomes of bread wheat. Science. 2014;345:6194. doi: 10.1126/science.1250092. PubMed DOI
Cordaux R, Batzer MA. The impact of retrotransposons on human genome evolution. Nat Rev Genet. 2009;10:691–703. doi: 10.1038/nrg2640. PubMed DOI PMC
Sharma A, Presting GG. Centromeric retrotransposon lineages predate the maize/rice divergence and differ in abundance and activity. Mol Genet Genomics. 2008;279:133–47. doi: 10.1007/s00438-007-0302-5. PubMed DOI
Neumann P, Navrátilová A, Koblížková A, Kejnovský E, Hřibová E, Hobza R, et al. Plant centromeric retrotransposons: a structural and cytogenetic perspective. Mob DNA. 2011;2:4. doi: 10.1186/1759-8753-2-4. PubMed DOI PMC
Repeatmasker. www.repeatmasker.org.
Bedell JA, Korf I, Gish W. MaskerAid: a performance enhancement to RepeatMasker. Bioinformatics. 2000;16:1040–1. doi: 10.1093/bioinformatics/16.11.1040. PubMed DOI
MIPS Plant DB. ftp://ftpmips.helmholtz-muenchen.de/plants/REdat/.
Guidelines for Annotating Wheat Genomic Sequences. http://wheat.pw.usda.gov/ITMI/Repeats/gene_annotation.pdf.
Genomic tRNa database. http://lowelab.ucsc.edu/GtRNAdb/.
Lowe TM, Eddy SR. tRNA scan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 1997;25:955–64. doi: 10.1093/nar/25.5.0955. PubMed DOI PMC
Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, et al. ClustalW and ClustalX version 2. Bioinformatics. 2007;23:2947–8. doi: 10.1093/bioinformatics/btm404. PubMed DOI
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215:403–10. doi: 10.1016/S0022-2836(05)80360-2. PubMed DOI
SanMiguel P, Gaut BS, Tikhonov A, Nakajima Y, Bennetzen JL. The paleontology of intergene retrotransposons of maize. Nature. 1998;20:43–5. PubMed
Ma J, Bennetzen JL. Rapid recent growth and divergence of rice nuclear genomes. Proc Natl Acad Sci U S A. 2004;101:12404–10. doi: 10.1073/pnas.0403715101. PubMed DOI PMC
Eck RV, Dayhoff MO. Atlas of Protein Sequence and Structure. Maryland: Silver Springs; 1966.
Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution. 1985;39:783–91. doi: 10.2307/2408678. PubMed DOI
Nagaki K, Tsujimoto H, Isono K, Sasakuma T. Molecular characterization of a tandem repeat, Afa family, and its distribution among Triticeae. Genome. 1995;38:479–86. doi: 10.1139/g95-063. PubMed DOI
Vrána J, Šimková H, Kubaláková M, Číhalíková J, Doležel J. Flow cytometric chromosome sorting in plants: The next generation. Methods. 2012;57:331–7. doi: 10.1016/j.ymeth.2012.03.006. PubMed DOI
Kato A, Albert PS, Vega JM, Bichler JA. Sensitive fluorescence in situ hybridization signal detection in maize using directly labelled probes produced by high concentration DNA polymerase nick translation. Biotech Histochem. 2006;81:71–8. doi: 10.1080/10520290600643677. PubMed DOI
Primer 3 Software. http://bioinfo.ut.ee/primer3-0.4.0/.
Masoudi-Nejad A, Nasuda S, McIntosh RA, Endo TR. Transfer of rye chromosome segments to wheat by a gametocidal system. Chromosome Res. 2002;10:349–57. doi: 10.1023/A:1016845200960. PubMed DOI
Ma L, Xiao Y, Huang H, Wang QW, Rao WN, Feng Y, et al. Direct determination of molecular haplotypes by chromosome microdissection. Nat Methods. 2010;7:299–301. doi: 10.1038/nmeth.1443. PubMed DOI PMC
Kubaláková M, Valárik M, Bartoš J, Vrána J, Cíhalíková J, Molnár-Láng M, et al. Analysis and sorting of rye (Secale cereale L.) chromosomes using flow cytometry. Genome. 2003;46:893–905. doi: 10.1139/g03-054. PubMed DOI
Šafář J, Šimková H, Kubaláková M, Číhalíková J, Suchánková P, Bartoš J, et al. Development of chromosome-specific BAC resources for genomics of bread wheat. Cytogenet Genome Res. 2010;129:211–23. doi: 10.1159/000313072. PubMed DOI
Tamura K, Dudley J, Nei M, Kumar S. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol. 2007;24:1596–9. doi: 10.1093/molbev/msm092. PubMed DOI