New insights into the wheat chromosome 4D structure and virtual gene order, revealed by survey pyrosequencing
Jazyk angličtina Země Irsko Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
25711827
PubMed Central
PMC4352925
DOI
10.1016/j.plantsci.2014.12.004
PII: S0168-9452(14)00291-X
Knihovny.cz E-zdroje
- Klíčová slova
- Chromosome 4D survey sequence, Gene annotation, Gene content, Synteny, Triticum aestivum, Virtual gene order,
- MeSH
- chromozomy rostlin * MeSH
- exprimované sekvenční adresy chemie MeSH
- mapování chromozomů MeSH
- molekulární sekvence - údaje MeSH
- pořadí genů * MeSH
- pšenice genetika MeSH
- sekvenční analýza DNA MeSH
- vysoce účinné nukleotidové sekvenování MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Survey sequencing of the bread wheat (Triticum aestivum L.) genome (AABBDD) has been approached through different strategies delivering important information. However, the current wheat sequence knowledge is not complete. The aim of our study is to provide different and complementary set of data for chromosome 4D. A survey sequence was obtained by pyrosequencing of flow-sorted 4DS (7.2×) and 4DL (4.1×) arms. Single ends (SE) and long mate pairs (LMP) reads were assembled into contigs (223Mb) and scaffolds (65Mb) that were aligned to Aegilops tauschii draft genome (DD), anchoring 34Mb to chromosome 4. Scaffolds annotation rendered 822 gene models. A virtual gene order comprising 1973 wheat orthologous gene loci and 381 wheat gene models was built. This order was largely consistent with the scaffold order determined based on a published high density map from the Ae. tauschii chromosome 4, using bin-mapped 4D ESTs as a common reference. The virtual order showed a higher collinearity with homeologous 4B compared to 4A. Additionally, a virtual map was constructed and ∼5700 genes (∼2200 on 4DS and ∼3500 on 4DL) predicted. The sequence and virtual order obtained here using the 454 platform were compared with the Illumina one used by the IWGSC, giving complementary information.
Bayer Crop Science 3500 Paramount Parkway Morrisville NC 27560 USA
CERZOS and Universidad Nacional del Sur Bahía Blanca Buenos Aires Argentina
Instituto de Biotecnología Centro Investigación en Ciencias Veterinarias y Agronómicas Argentina
Instituto de Recursos Biológicos CIRN INTA Hurlingham Buenos Aires Argentina
MIPS IBIS Helmholtz Zentrum München 85764 Neuherberg Germany
The Genome Analysis Centre Norwich Research Park Norwich NR4 7UH UK
Zobrazit více v PubMed
Food and Agriculture, Organisation of the United Nations, http://faostat.fao.org/site/609/default.aspx#ancor.
Ray D.K., Ramankutty N., Mueller N.D., West P.C., Foley J.A. Recent patterns of crop yield growth and stagnation. Nat. Commun. 2012;3:1293. PubMed
Lin M., Huybers P. Reckoning wheat yield trends. Environ. Res. Lett. 2012;7:024016.
Godfray H.C.J., Beddington J.R., Crute I.R., Haddad L., Lawrence D., Muir J.F., Pretty J., Robinson S., Thomas S.M., Toulmin C. Food security: the challenge of feeding 9 billion people. Science. 2010;327:812–818. PubMed
Reynolds M., Foulkes M.J., Slafer G.A., Berry P., Parry M.A.J., Snape J.W., Angus W.J. Raising yield potential in wheat. J. Exp. Bot. 2009;60:1899–1918. PubMed
Smith D.B., Flavell R.B. Characterisation of the wheat genome by renaturation kinetics. Chromosoma. 1975;50:223–242.
Bennetzen J.L., Ma J., Devos K.M. Mechanisms of recent genome size variation in flowering plants. Ann. Bot. 2005;95:127–132. PubMed PMC
Devos K.M., Ma J., Pontaroli A.C., Pratt L.H., Bennetzen J.L. Analysis and mapping of randomly chosen bacterial artificial chromosome clones from hexaploid bread wheat. Proc. Natl. Acad. Sci. U. S. A. 2005;102:19243–19248. PubMed PMC
Huang S., Sirikhachornkit A., Su X., Faris J., Gill B., Haselkorn R., Gornicki P. Genes encoding plastid acetyl-CoA carboxylase and 3-phosphoglycerate kinase of the Triticum/Aegilops complex and the evolutionary history of polyploid wheat. Proc. Natl. Acad. Sci. U. S. A. 2002;99:8133–8138. PubMed PMC
Bennett M.D., Smith J.B. Nuclear DNA amounts in angiosperms. Philos. Trans. R. Soc. Lond. B: Biol. Sci. 1991;334:309–345. PubMed
Bennett M.D., Bhandol P., Leitch I.J. Nuclear DNA amounts in angiosperms and their modern uses-807 new estimates. Ann. Bot. 2000;86:859–909.
Mardis E.R. The impact of next-generation sequencing technology on genetics. Trends Genet. 2008;24:133–141. PubMed
Brenchley R., Spannagl M., Pfeifer M., Barker G.L.A., D’Amore R., Allen A.M., McKenzie N., Kramer M., Kerhornou A., Bolser D., Kay S., Waite D., Trick M., Bancroft I., Gu Y., Huo N., Luo M.-C., Sehgal S., Gill B., Kianian S., Anderson O., Kersey P., Dvorak J., McCombie W.R., Hall A., Mayer K.F.X., Edwards K.J., Bevan M.W., Hall N. Analysis of the bread wheat genome using whole-genome shotgun sequencing. Nature. 2012;491:705–710. PubMed PMC
International Wheat Genome Sequencing Consortium A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science. 2014;345:1251788. PubMed
Ling H.-Q., Zhao S., Liu D., Wang J., Sun H., Zhang C., Fan H., Li D., Dong L., Tao Y., Gao C., Wu H., Li Y., Cui Y., Guo X., Zheng S., Wang B., Yu K., Liang Q., Yang W., Lou X., Chen J., Feng M., Jian J., Zhang X., Luo G., Jiang Y., Liu J., Wang Z., Sha Y., Zhang B., Wu H., Tang D., Shen Q., Xue P., Zou S., Wang X., Liu X., Wang F., Yang Y., An X., Dong Z., Zhang K., Zhang X., Luo M., Dvorak J., Tong Y., Wang J., Yang H., Li Z., Wang D., Zhang A., Wang J. Draft genome of the wheat A-genome progenitor Triticum urartu. Nature. 2013;496:87–90. PubMed
Jia J., Zhao S., Kong X., Li Y., Zhao G., He W., Appels R., Pfeifer M., Tao Y., Zhang X., Jing R., Zhang C., Ma Y., Gao L., Gao C., Spannagl M., Mayer K.F.X., Li D., Pan S., Zheng F., Hu Q., Xia X., Li J., Liang Q., Chen J., Wicker T., Gou C., Kuang H., He G., Luo Y., Keller B., Xia Q., Lu P., Wang J., Zou H., Zhang R., Xu J., Gao J., Middleton C., Quan Z., Liu G., Wang J., Yang H., Liu X., He Z., Mao L., Wang J. Aegilops tauschii draft genome sequence reveals a gene repertoire for wheat adaptation. Nature. 2013;496:91–95. PubMed
Chu C.-G., Xu S.S., Friesen T.L., Faris J.D. Whole genome mapping in a wheat doubled haploid population using SSRs and TRAPs and the identification of QTL for agronomic traits. Mol. Breed. 2008;22:251–266.
zue S., Zhang Z., Lin F., Kong Z., Cao Y., Li C., Yi H., Mei M., Zhu H., Wu J., Xu H., Zhao D., Tian D., Zhang C., Ma Z. A high-density intervarietal map of the wheat genome enriched with markers derived from expressed sequence tags. Theor. Appl. Genet. 2008;117:181–189. PubMed
Luo M., Gu Y.Q., You F.M., Deal K.R., Ma Y., Hu Y., Huo N., Wang Y., Wang J., Chen S., Jorgensen C.M., Zhang Y., McGuire P.E., Pasternak S., Stein J.C., Ware D., Kramer M., McCombie W.R., Kianian S.F., Martis M.M., Mayer K.F.X., Sehgal S.K., Li W., Gill B.S., Bevan M.W., Simková H., Dolezel J., Weining S., Lazo G.R., Anderson O.D., Dvorak J. A 4-gigabase physical map unlocks the structure and evolution of the complex genome of Aegilops tauschii, the wheat d-genome progenitor. Proc. Natl. Acad. Sci. U. S. A. 2013;110:7940–7945. PubMed PMC
Sears E.R., Sears L.M.S. The telocentric chromosomes of common wheat. In: Ramanujams S., editor. Proceeding of 5th International Wheat Genetics Symposium. Indian Agricultural Research Institute; New Delhi: 1978. pp. 389–407.
Vrána J., Kubaláková M., Simková H., Cíhalíková J., Lysák M.A., Dolezel J. Flow sorting of mitotic chromosomes in common wheat (Triticum aestivum L.) Genetics. 2000;156:2033–2041. PubMed PMC
Kubaláková M., Valárik M., Barto J., Vrána J., Cíhalíková J., Molnár-Láng M., Dolezel J. Analysis and sorting of rye (Secale cereale L.) chromosomes using flow cytometry. Genome. 2003;46:893–905. PubMed
Šimková H., Svensson J.T., Condamine P., Hřibová E., Suchánková P., Bhat P.R., Bartoš J., Šafář J., Close T.J., Doležel J. Coupling amplified DNA from flow-sorted chromosomes to high-density SNP mapping in barley. BMC Genom. 2008;9:294. PubMed PMC
Paux E., Faure S., Choulet F., Roger D., Gauthier V., Martinant J.-P., Sourdille P., Balfourier F., Le Paslier M.-C., Chauveau A., Cakir M., Gandon B., Feuillet C. Insertion site-based polymorphism markers open new perspectives for genome saturation and marker-assisted selection in wheat. Plant Biotechnol. J. 2010;8:196–210. PubMed
Langmead B., Trapnell C., Pop M., Salzberg S.L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 2009;10:R25. PubMed PMC
Miftahudin, Ross K., Ma X.-F., Mahmoud A.A., Layton J., Milla M.A.R., Chikmawati T., Ramalingam J., Feril O., Pathan M.S., Momirovic G.S., Kim S., Chema K., Fang P., Haule L., Struxness H., Birkes J., Yaghoubian C., Skinner R., McAllister J., Nguyen V., Qi L.L., Echalier B., Gill B.S., Linkiewicz A.M., Dubcovsky J., Akhunov E.D., Dvorák J., Dilbirligi M., Gill K.S., Peng J.H., Lapitan N.L.V., Bermudez-Kandianis C.E., Sorrells M.E., Hossain K.G., Kalavacharla V., Kianian S.F., Lazo G.R., Chao S., Anderson O.D., Gonzalez-Hernandez J., Conley E.J., Anderson J.A., Choi D.-W., Fenton R.D., Close T.J., McGuire P.E., Qualset C.O., Nguyen H.T., Gustafson J.P. Analysis of expressed sequence tag loci on wheat chromosome group 4. Genetics. 2004;168:651–663. PubMed PMC
Delcher A.L., Salzberg S.L., Phillippy A.M. Using MUMmer to identify similar regions in large sequence sets. Curr. Protoc. Bioinform. 2003 (Chapter 10, Unit 10.3) PubMed
Leroy P., Guilhot N., Sakai H., Bernard A., Choulet F., Theil S., Reboux S., Amano N., Flutre T., Pelegrin C., Ohyanagi H., Seidel M., Giacomoni F., Reichstadt M., Alaux M., Gicquello E., Legeai F., Cerutti L., Numa H., Tanaka T., Mayer K., Itoh T., Quesneville H., Feuillet C. TriAnnot: a versatile and high performance pipeline for the automated annotation of plant genomes. Front. Plant Sci. 2012;3:1–14. PubMed PMC
Altschul S.F., Madden T.L., Schäffer A.A., Zhang J., Zhang Z., Miller W., Lipman D.J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;25:3389–33402. PubMed PMC
Conesa A., Götz S., García-Gómez J.M., Terol J., Talón M., Robles M. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics. 2005;21:3674–3676. PubMed
Ashburner M., Ball C.A., Blake J.A., Botstein D., Butler H., Cherry J.M., Davis A.P., Dolinski K., Dwight S.S., Eppig J.T., Harris M.A., Hill D.P., Issel-Tarver L., Kasarskis A., Lewis S., Matese J.C., Richardson J.E., Ringwald M., Rubin G.M., Sherlock G. Gene ontology: tool for the unification of biology, The Gene Ontology Consortium. Nat. Genet. 2000;25:25–29. PubMed PMC
Zdobnov E.M., Apweiler R. InterProScan – an integration platform for the signature-recognition methods in InterPro. Bioinformatics. 2001;17:847–848. PubMed
B. Clavijo, P. Fernandez, S. Gonzalez, M. Rivarola, R. Heinz, M. Farber, N. Paniego. ATCG: an ontology driven database and web interface applied to Sunflower Microarray Project, in: 20th Plant and Animal Genome Conference (PAG), San Diego, US 2012.
Mayer K.F.X., Martis M., Hedley P.E., Simková H., Liu H., Morris J.A., Steuernagel B., Taudien S., Roessner S., Gundlach H., Kubaláková M., Suchánková P., Murat F., Felder M., Nussbaumer T., Graner A., Salse J., Endo T., Sakai H., Tanaka T., Itoh T., Sato K., Platzer M., Matsumoto T., Scholz U., Dolezel J., Waugh R., Stein N. Unlocking the barley genome by chromosomal and comparative genomics. Plant Cell. 2011;23:1249–1263. PubMed PMC
Saintenac C., Jiang D., Wang S., Akhunov E. Sequence-based mapping of the polyploid wheat genome. G3 (Bethesda) 2013;3(7):1105–1114. PubMed PMC
Mochida K., Yoshida T., Sakurai T., Ogihara Y., Shinozaki K. TriFLDB: a database of clustered full-length coding sequences from Triticeae with applications to comparative grass genomics. Plant Physiol. 2009;150:1135–1146. PubMed PMC
Krzywinski M., Schein J., Birol I., Connors J., Gascoyne R., Horsman D., Jones S.J., a Marra M. Circos: an information aesthetic for comparative genomics. Genome Res. 2009;19:1639–1645. PubMed PMC
Li L., Stoeckert C.J., Roos D.S. OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res. 2003;13:2178–2189. PubMed PMC
Larkin M.A., Blackshields G., Brown N.P., Chenna R., a McGettigan P., McWilliam H., Valentin F., Wallace I.M., Wilm A., Lopez R., Thompson J.D., Gibson T.J., Higgins D.G. Clustal W and Clustal X version 2.0. Bioinformatics. 2007;23:2947–2948. PubMed
Rice P., Longden I., Bleasby A. EMBOSS: the European molecular biology open software suite. Trends Genet. 2000;16:276–277. PubMed
Yang Z., Nielsen R. Estimating synonymous and nonsynonymous substitution rates under realistic evolutionary models. Mol. Biol. Evol. 2000;17:32–43. PubMed
Šafár J., Simková H., Kubaláková M., Cíhalíková J., Suchánková P., Bartos J., Dolezel J. Development of chromosome-specific BAC resources for genomics of bread wheat. Cytogenet. Genome Res. 2010;129:211–223. PubMed
Kurtz S., Phillippy A., Delcher A.L., Smoot M., Shumway M., Antonescu C., Salzberg S.L. Versatile and open software for comparing large genomes. Genome Biol. 2004;5:R12. PubMed PMC
Vitulo N., Albiero A., Forcato C., Campagna D., Dal Pero F., Bagnaresi P., Colaiacovo M., Faccioli P., Lamontanara A., Šimková H., Kubaláková M., Perrotta G., Facella P., Lopez L., Pietrella M., Gianese G., Doležel J., Giuliano G., Cattivelli L., Valle G., Stanca A.M. First survey of the wheat chromosome 5A composition through a next generation sequencing approach. PLoS ONE. 2011;6:e26421. PubMed PMC
Lucas S.J., Akpınar B.A., Kantar M., Weinstein Z., Aydınoğlu F., Safář J., Simková H., Frenkel Z., Korol A., Magni F., Cattonaro F., Vautrin S., Bellec A., Bergès H., Doležel J., Budak H. Physical mapping integrated with syntenic analysis to characterize the gene space of the long arm of wheat chromosome 1A. PLOS ONE. 2013;8:e59542. PubMed PMC
I. Garbus, J.R. Romero, M. Valarik, H. Vanžurová, M. Karafiátová, J. Dolezel, Helguera, G. Tranquilli, V. Echenique, Characterization of repetitive DNA landscape in wheat homeologous group 4 chromosomes (submitted for publication). PubMed PMC
Devos K.M., Dubcovsky J., Dvořák J., Chinoy C.N., Gale M.D. Structural evolution of wheat chromosomes 4A, 5A, and 7B and its impact on recombination. Theor. Appl. Genet. 1995;91:282–288. PubMed
Hernandez P.P., Martis M., Dorado G., Pfeifer M., Gálvez S., Schaaf S., Jouve N., Šimková H., Valárik M., Doležel J., Mayer K.F.X., Vala M., Dolez J. Next-generation sequencing and syntenic integration of flow-sorted arms of wheat chromosome 4A exposes the chromosome structure and gene content. Plant J. 2012;69:377–386. PubMed
Ma J., Stiller J., Berkman P.J., Wei Y., Rogers J., Feuillet C., Dolezel J., Mayer K.F., Eversole K., Zheng Y.-L., Liu C. Sequence-based analysis of translocations and inversions in bread wheat (Triticum aestivum L.) PLOS ONE. 2013;8:e79329. PubMed PMC
Mayer K.F.X., Taudien S., Martis M., Simková H., Suchánková P., Gundlach H., Wicker T., Petzold A., Felder M., Steuernagel B., Scholz U., Graner A., Platzer M., Dolezel J., Stein N. Gene content and virtual gene order of barley chromosome 1H. Plant Physiol. 2009;151:496–505. PubMed PMC
Berkman P.J., Skarshewski A., Lorenc M.T., Lai K., Duran C., Ling E.Y.S., Stiller J., Smits L., Imelfort M., Manoli S., McKenzie M., Kubaláková M., Šimková H., Batley J., Fleury D., Doležel J., Edwards D. Sequencing and assembly of low copy and genic regions of isolated Triticum aestivum chromosome arm 7DS. Plant Biotechnol. J. 2011;9:768–775. PubMed
Berkman P.J., Skarshewski A., Manoli S., Lorenc M.T., Stiller J., Smits L., Lai K., Campbell E., Kubaláková M., Simková H., Batley J., Doležel J., Hernandez P., Edwards D. Sequencing wheat chromosome arm 7BS delimits the 7BS/4AL translocation and reveals homoeologous gene conservation. Theor. Appl. Genet. 2012;124:423–432. PubMed
Wicker T., Mayer K.F.X., Gundlach H., Martis M., Steuernagel B., Scholz U., Simková H., Kubaláková M., Choulet F., Taudien S., Platzer M., Feuillet C., Fahima T., Budak H., Dolezel J., Keller B., Stein N. Frequent gene movement and pseudogene evolution is common to the large and complex genomes of wheat, barley, their relatives. Plant Cell. 2011;23:1706–1718. PubMed PMC
Gill B.S., Friebe B., Wilson D.L., Martin T.J., Cox T.S. Registration of KS93WGRC27 wheat streak mosaic virus resistant T4DL-4Ai#2S wheat germplasm. Crop Sci. 1995;35:1236.
Singh R.P., Nelson J.C., Sorrells M.E. Mapping Yr28 and other genes for resistance to stripe rust in wheat. Crop Sci. 2000;40:1148–1155.
Zhang Q., Li Q., Wang X., Wang H., Lang S., Wang Y., Wang S., Chen P., Liu D. Development and characterization of a Triticum aestivum–Haynaldia villosa translocation line T4VS-4DL conferring resistance to wheat spindle streak mosaic virus. Euphytica. 2005;145:317–320.
Hiebert C.W., Thomas J.B., McCallum B.D., Humphreys D.G., Depauw R.M., Hayden M.J., Mago R., Schnippenkoetter W., Spielmeyer W. An introgression on wheat chromosome 4DL in RL6077 (Thatcher-6/PI 250413) confers adult plant resistance to stripe rust and leaf rust (Lr67) Theor. Appl. Genet. 2010;121:1083–1091. PubMed
Hiebert C.W., Thomas J.B., Somers D.J., McCallum B.D., Fox S.L. Microsatellite mapping of adult-plant leaf rust resistance gene Lr22a in wheat Theor. Appl. Genet. 2007;115:877–884. PubMed
Srinivasachary N., Gosman A., Steed T.W., Hollins R., Bayles P., Jennings P., Nicholson P. Semi-dwarfing Rht-B1 and Rht-D1 loci of wheat differ significantly in their influence on resistance to Fusarium head blight. Theor. Appl. Genet. 2009;118:695–702. PubMed
Byrt C.S., Platten J.D., Spielmeyer W., James R.A., Lagudah E.S., Dennis E.S., Tester M., Munns R. HKT1;5-like cation transporters linked to Na+ exclusion loci in wheat, Nax2 and Kna1. Plant Physiol. 2007;143:1918–1928. PubMed PMC
Navakode S., Weidner A., Lohwasser U., Röder M.S., Börner A. Molecular mapping of quantitative trait loci (QTLs) controlling aluminium tolerance in bread wheat. Euphytica. 2009;166:283–290.
Peng J., Richards D.E., Hartley N.M., Murphy G.P., Devos K.M., Flintham J.E., Beales J., Fish L.J., Worland aJ., Pelica F., Sudhakar D., Christou P., Snape J.W., Gale M.D., Harberd N.P. Green revolution genes encode mutant gibberellin response modulators. Nature. 1999;400:256–261. PubMed
Distelfeld A., Tranquilli G., Li C., Yan L., Dubcovsky J. Genetic and molecular characterization of the VRN2 loci in tetraploid wheat. Plant Physiol. 2009;149:245–257. PubMed PMC
Tanaka T., Kobayashi F., Joshi G.P., Onuki R., Sakai H., Kanamori H., Wu J., Simkova H., Nasuda S., Endo T.R., Hayakawa K., Doležel J., Ogihara Y., Itoh T., Matsumoto T., Handa H. Next-generation survey sequencing and the molecular organization of wheat chromosome 6B. DNA Res. 2014;21:103–114. PubMed PMC
Sergeeva E.M., Afonnikov D.A., Koltunova M.K., Gusev V.D., Miroshnichenko L.A., Vrána J., Kubaláková M., Poncet C., Sourdille P., Feuillet C., Doležel J., Salina E.A. Common wheat chromosome 5B composition analysis using low-coverage 454 sequencing. Plant Genome. 2014;7:1–16.
Griffiths S., Simmonds J., Leverington M., Wang Y., Fish L., Sayers L., Alibert L., Orford S., Wingen L., Herry L., Faure S., Laurie D., Bilham L., Snape J. Meta-QTL analysis of the genetic control of ear emergence in elite European winter wheat germplasm. Theor. Appl. Genet. 2009;119:383–395. PubMed
Le Gouis J., Bordes J., Ravel C., Heumez E., Faure S., Praud S., Galic N., Remoué C., Balfourier F., Allard V., Rousset M. Genome-wide association analysis to identify chromosomal regions determining components of earliness in wheat. Theor. Appl. Genet. 2012;124:597–611. PubMed
Feng B., Dong Z., Xu Z., An X., Qin H., Wu N., Wang D., Wang T. Molecular analysis of lipoxygenase (LOX) genes in common wheat and phylogenetic investigation of LOX proteins from model and crop plants. J. Cereal Sci. 2010;52:387–394.
Garbus I., Soresi D., Romero J., Echenique V. Identification, mapping and evolutionary course of wheat lipoxygenase-1 genes located on the A genome. J. Cereal Sci. 2013;58:298–304.
Raats D., Frenkel Z., Krugman T., Dodek I., Sela H., Simková H., Magni F., Cattonaro F., Vautrin S., Bergès H., Wicker T., Keller B., Leroy P., Philippe R., Paux E., Doležel J., Feuillet C., Korol A., Fahima T. The physical map of wheat chromosome 1BS provides insights into its gene space organization and evolution. Genome Biol. 2013;14:R138. PubMed PMC
Cook D.R., Varshney R.K. From genome studies to agricultural biotechnology: closing the gap between basic plant science and applied agriculture. Curr. Opin. Plant Biol. 2010;13:115–118. PubMed
Feuillet C., Leach J.E., Rogers J., Schnable P.S., Eversole K. Crop genome sequencing: lessons and rationales. Trends Plant. Sci. 2011;16:77–88. PubMed
Elsik C.G., Worley K.C., Zhang L., Milshina N.V., Jiang H., Reese J.T., Childs K.L., Venkatraman A., Dickens C.M., Weinstock G.M., Gibbs R.A. Community annotation: procedures, protocols, and supporting tools. Genome Res. 2006;16:1329–1333. PubMed
Belova T., Zhan B., Wright J., Caccamo M., Asp T., Simková H., Kent M., Bendixen C., Panitz F., Lien S., Doležel J., Olsen O.-A., Sandve S.R. Integration of mate pair sequences to improve shotgun assemblies of flow-sorted chromosome arms of hexaploid wheat. BMC Genomics. 2013;14:222. PubMed PMC
Choulet F., Alberti A., Theil S., Glover N., Barbe V., Daron J., Pingault L., Sourdille P., Couloux A., Paux E., Leroy P., Mangenot S., Guilhot N., Le Gouis J., Balfourier F., Alaux M., Jamilloux V., Poulain J., Durand C., Bellec A., Gaspin C., Safar J., Dolezel J., Rogers J., Vandepoele K., Aury J.-M., Mayer K., Berges H., Quesneville H., Wincker P., Feuillet C. Structural and functional partitioning of bread wheat chromosome 3B. Science. 2014;345:249721. PubMed
Choulet F., Wicker T., Rustenholz C., Paux E., Salse J., Leroy P., Schlub S., Le Paslier M.-C., Magdelenat G., Gonthier C., Couloux A., Budak H., Breen J., Pumphrey M., Liu S., Kong X., Jia J., Gut M., Brunel D., Anderson J.A., Gill B.S., Appels R., Keller B., Feuillet C., Pascal B. Megabase level sequencing reveals contrasted organization and evolution patterns of the wheat gene and transposable element spaces. Plant Cell. 2010;22:1686–1701. PubMed PMC
Philippe R., Paux E., Bertin I., Sourdille P., Choulet F., Laugier C., Simková H., Safář J., Bellec A., Vautrin S., Frenkel Z., Cattonaro F., Magni F., Scalabrin S., Martis M.M., Mayer K.F., Korol A., Bergès H., Doležel J., Feuillet C. A high density physical map of chromosome 1BL supports evolutionary studies, map-based cloning and sequencing in wheat. Genome Biol. 2013;14:R64. PubMed PMC
Sehgal S.K., Li W., Rabinowicz P.D., Chan A., Simková H., Doležel J., Gill B.S. Chromosome arm-specific BAC end sequences permit comparative analysis of homoeologous chromosomes and genomes of polyploid wheat. BMC Plant Biol. 2012;12:64. PubMed PMC
Akhunov E.D., Sehgal S., Liang H., Wang S., Akhunova A.R., Kaur G., Li W., Forrest K.L., See D., Simková H., Ma Y., Hayden M.J., Luo M., Faris J.D., Dolezel J., Gill B.S. Comparative analysis of syntenic genes in grass genomes reveals accelerated rates of gene structure and coding sequence evolution in polyploid wheat. Plant Physiol. 2013;161:252–265. PubMed PMC
Wicker T., Oberhaensli S., Parlange F., Buchmann J.P., Shatalina M., Roffler S., Ben-David R., Doležel J., Šimková H., Schulze-Lefert P., Spanu P.D., Bruggmann R., Amselem J., Quesneville H., Ver Loren van Themaat E., Paape T., Shimizu K.K., Keller B. The wheat powdery mildew genome shows the unique evolution of an obligate biotroph. Nat. Genet. 2013;45:1092–1096. PubMed
Leggett R.M., Ramirez-Gonzalez R.H., Clavijo B.J., Waite D., Davey R.P. Sequencing quality assessment tools to enable data-driven informatics for high throughput genomics. Front. Genet. 2013;4:288. PubMed PMC
Characterization of repetitive DNA landscape in wheat homeologous group 4 chromosomes
GENBANK
JROL00000000