The improved assembly of 7DL chromosome provides insight into the structure and evolution of bread wheat
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
31471988
PubMed Central
PMC7004910
DOI
10.1111/pbi.13240
Knihovny.cz E-zdroje
- Klíčová slova
- 7DL chromosome arm, BAC by BAC, domestication, gene loss, physical mapping, wheat,
- MeSH
- Aegilops genetika MeSH
- biologická evoluce * MeSH
- chromozomy rostlin genetika MeSH
- genom rostlinný * MeSH
- lokus kvantitativního znaku MeSH
- pšenice genetika MeSH
- srovnávací genomová hybridizace MeSH
- syntenie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Wheat is one of the most important staple crops worldwide and also an excellent model species for crop evolution and polyploidization studies. The breakthrough of sequencing the bread wheat genome and progenitor genomes lays the foundation to decipher the complexity of wheat origin and evolutionary process as well as the genetic consequences of polyploidization. In this study, we sequenced 3286 BACs from chromosome 7DL of bread wheat cv. Chinese Spring and integrated the unmapped contigs from IWGSC v1 and available PacBio sequences to close gaps present in the 7DL assembly. In total, 8043 out of 12 825 gaps, representing 3 491 264 bp, were closed. We then used the improved assembly of 7DL to perform comparative genomic analysis of bread wheat (Ta7DL) and its D donor, Aegilops tauschii (At7DL), to identify domestication signatures. Results showed a strong syntenic relationship between Ta7DL and At7DL, although some small rearrangements were detected at the distal regions. A total of 53 genes appear to be lost genes during wheat polyploidization, with 23% (12 genes) as RGA (disease resistance gene analogue). Furthermore, 86 positively selected genes (PSGs) were identified, considered to be domestication-related candidates. Finally, overlapping of QTLs obtained from GWAS analysis and PSGs indicated that TraesCS7D02G321000 may be one of the domestication genes involved in grain morphology. This study provides comparative information on the sequence, structure and organization between bread wheat and Ae. tauschii from the perspective of the 7DL chromosome, which contribute to better understanding of the evolution of wheat, and supports wheat crop improvement.
BGI Genomics BGI Shenzhen Shenzhen China
BGI Institute of Applied Agriculture BGI Shenzhen Shenzhen China
College of Bioscience and Engineering Jiangxi Agricultural University Nanchang Jiangxi China
Department of Plant Sciences University of California Davis CA USA
Zobrazit více v PubMed
Akpinar, B.A. , Lucas, S.J. , Vrána, J. , Doležel, J. and Budak, H. (2015) Sequencing chromosome 5D of Aegilops tauschii and comparison with its allopolyploid descendant bread wheat (triticum aestivum). Plant Biotechnol. J. 13, 740–752. PubMed
Akpinar, B.A. , Biyiklioglu, S. , Alptekin, B. , Havránková, M. , Vrána, J. , Doležel, J. , Distelfeld, A. et al. (2018) Chromosome‐based survey sequencing reveals the genome organization of wild wheat progenitor Triticum dicoccoides. Plant Biotechnol. J. 16, 2077–2087. PubMed PMC
Avni, R. , Nave, M. , Barad, O. , Baruch, K. , Twardziok, S.O. , Gundlach, H. , Hale, I. et al. (2017) Wild emmer genome architecture and diversity elucidate wheat evolution and domestication. Science, 357, 93–97. PubMed
Bateman, A. , Martin, M.J. , O'Donovan, C. , Magrane, M. , Apweiler, R. , Alpi, E. , Antunes, R. et al. (2015) UniProt: a hub for protein information. Nucleic Acids Res. 43, D204–D212. PubMed PMC
Berkman, P.J. , Skarshewski, A. , Lorenc, M.T. , Lai, K. , Duran, C. , Ling, E.Y.S. , Stiller, J. et al. (2011) Sequencing and assembly of low copy and genic regions of isolated Triticum aestivum chromosome arm 7DS. Plant Biotechnol. J. 9, 768–775. PubMed
Berkman, P.J. , Skarshewski, A. , Manoli, S. , Lorenc, M.T. , Stiller, J. , Smits, L. , Lai, K. et al. (2012) Sequencing wheat chromosome arm 7BS delimits the 7BS/4AL translocation and reveals homoeologous gene conservation. Theor. Appl. Genet. 3, 423–432. PubMed
Berkman, P.J. , Visendi, P. , Lee, H.C. , Stiller, J. , Manoli, S. , Lorenc, M.T. , Lai, K. et al. (2013) Dispersion and domestication shaped the genome of bread wheat. Plant Biotechnol. J. 11, 564–571. PubMed
BIG Data Center Members . (2017) The BIG Data Center: from deposition to integration to translation. Nucleic Acids Res. 45, D18–D24. PubMed PMC
Birney, E. , Clamp, M. and Durbin, R. (2004) GeneWise and genomewise. Genome Res. 14, 988–995. PubMed PMC
Brenchley, R. , Spannagl, M. , Pfeifer, M. , Barker, G.L. , D'Amore, R. , Allen, A.M. , McKenzie, N. et al. (2012) Analysis of the bread wheat genome using whole‐genome shotgun sequencing. Nature, 491, 705–710. PubMed PMC
Campbell, B.C. , Gilding, E.K. , Mace, E.S. , Tai, S. , Tao, Y. , Prentis, P.J. , Thomelin, P. et al. (2016) Domestication and the storage starch biosynthesis pathway: signatures of selection from a whole sorghum genome sequencing strategy. Plant Biotechnol. J. 14, 2240–2253. PubMed PMC
Chapman, J.A. , Mascher, M. , Buluç, A. , Barry, K. , Georganas, E. , Session, A. , Strnadova, V. , et al. (2015) A whole-genome shotgun approach for assembling and anchoring the hexaploid bread wheat genome. Genome Biology 16, 26. PubMed PMC
Cheng, Z. , Sattler, S. , Maeda, H. , Sakuragi, Y. , Bryant, D.A. and Dellapenna, D. (2003) Highly divergent methyltransferases catalyze a conserved reaction in tocopherol and plastoquinone synthesis in cyanobacteria and photosynthetic eukaryotes. Plant Cell, 15, 2343–2356. PubMed PMC
Cheng, H. , Liu, J. , Wen, J. , Nie, X. , Xu, L. , Chen, N. , Li, Z. et al. (2019) Frequent intra‐and inter‐species introgression shapes the landscape of genetic variation in bread wheat. Genome Biol. 20, 136. PubMed PMC
Choulet, F. , Alberti, A. , Theil, S. , Glover, N. , Barbe, V. , Daron, J. , Pingault, L. et al. (2014) Structural and functional partitioning of bread wheat chromosome 3B. Science, 345, 1249721. PubMed
Chu, C. , Li, X. and Wu, Y. (2019) GAPPadder: a sensitive approach for closing gaps on draft genomes with short sequence reads. BMC Genom. 20, 426. PubMed PMC
Clavijo, B.J. , Venturini, L. , Schudoma, C. , Accinelli, G.G. , Kaithakottil, G. , Wright, J. , Borrill, P. et al. (2017) An improved assembly and annotation of the allohexaploid wheat genome identifies complete families of agronomic genes and provides genomic evidence for chromosomal translocations. Genome Res. 27, 885–896. PubMed PMC
Deng, P. , Nie, X. , Wang, L. , Cui, L. , Liu, P. , Tong, W. , Biradar, S.S. et al. (2014) Computational identification and comparative analysis of miRNAs in wheat group 7 chromosomes. Plant Mol. Biol. Rep. 32, 487–500.
Dubcovsky, J. and Dvorak, J. (2007) Genome plasticity a key factor in the success of polyploid wheat under domestication. Science, 316, 1862–1866. PubMed PMC
Edgar, R.C. and Myers, E.W. (2005) PILER: identification and classification of genomic repeats. Bioinformatics, 21, I152–I158. PubMed
Elsik, C.G. , Mackey, A.J. , Reese, J.T. , Milshina, N.V. , Roos, D.S. and Weinstock, G.M. (2007) Creating a honey bee consensus gene set. Genome Biol. 8, R13. PubMed PMC
Fu, J. , Thiemann, A. , Schrag, T.A. , Melchinger, A.E. , Scholten, S. and Frisch, M. (2010) Dissecting grain yield pathways and their interactions with grain dry matter content by a two‐step correlation approach with maize seedling transcriptome. BMC Plant Biol. 10, 63. PubMed PMC
Gegas, V.C. , Nazari, A. , Griffiths, S. , Simmonds, J. , Fish, L. , Orford, S. , Sayers, L. et al. (2010) A genetic framework for grain size and shape variation in wheat. Plant Cell, 22, 1046–1056. PubMed PMC
Genome Sequence Archive (GSA). (2017) Genomics, Proteomics & Bioinformatics, vol. 15, pp. 14–18. PubMed PMC
Grün, S. , Frey, M. and Gierl, A. (2005) Evolution of the indole alkaloid biosynthesis in the genus hordeum: distribution of gramine and diboa and isolation of the benzoxazinoid biosynthesis genes from hordeum lechleri. Phytochemistry, 66, 1264–1272. PubMed
Harris, R.S. (2007) Improved pairwise Alignmnet of genomic DNA. Ph.D. Thesis, The Pennsylvania State University.
He, F. , Pasam, R. , Shi, F. , Kant, S. , Keeble‐Gagnere, G. , Kay, P. , Forrest, K. et al. (2019) Exome sequencing highlights the role of wild‐relative introgression in shaping the adaptive landscape of the wheat genome. Nat. Genet. 51, 896–904. PubMed
Helguera, M. , Rivarola, M. , Clavijo, B. , Martis, M.M. , Vanzetti, L. , González, S. , Garbus, I. et al. (2015) New insights into the wheat chromosome 4D structure and virtual gene order, revealed by survey pyrosequencing. Plant Sci. 233, 200–212. PubMed PMC
Hurgobin, B. , Golicz, A.A. , Bayer, P.E. , Chan, C.K. , Tirnaz, S. , Dolatabadian, A. , Schiessl, S.V. et al. (2018) Homoeologous exchange is a major cause of gene presence/absence variation in the amphidiploid brassica napus. Plant Biotechnol. J. 16, 1265–1274. PubMed PMC
IWGSC (International Wheat Genome Sequencing Consortium). (2014) A chromosome‐based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science, 345, 1251788. PubMed
IWGSC (International Wheat Genome Sequencing Consortium). (2018) Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science, 361, eaar7191. PubMed
Jarvis, E.D. , Mirarab, S. , Aberer, A.J. , Li, B. , Houde, P. , Li, C. and Zhang, G.J. (2014) Whole‐genome analyses resolve early branches in the tree of life of modern birds. Science, 346, 1320–1331. PubMed PMC
Jia, J. , Zhao, S. , Kong, X. , Li, Y. , Zhao, G. , He, W. , Appels, R. et al. (2013) Aegilops tauschii draft genome sequence reveals a gene repertoire for wheat adaptation. Nature, 496, 91–95. PubMed
Jing, B. , Ishikawa, T. , Soltis, N. , Inada, N. , Liang, Y. , Murawska, G. , Andeberhan, F. et al. (2018) GONST2 transports GDP‐Mannose for sphingolipid glycosylation in the Golgi apparatus of Arabidopsis. BioRxiv, 8, 346775.
Jones, P. , Binns, D. , Chang, H.Y. , Fraser, M. , Li, W. , McAnulla, C. , McWilliam, H. et al. (2014) InterProScan 5: genome‐scale protein function classification. Bioinformatics, 30, 1236–1240. PubMed PMC
Kanehisa, M. , Goto, S. , Sato, Y. , Kawashima, M. , Furumichi, M. and Tanabe, M. (2014) Data, information, knowledge and principle: back to metabolism in KEGG. Nucleic Acids Res. 42, D199–D205. PubMed PMC
Kent, W.J. (2002) BLAT ‐ The BLAST‐like alignment tool. Genome Res. 12, 656–664. PubMed PMC
Li, L. , Stoeckert, C.J. and Roos, D.S. (2003) OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res. 13, 2178–2189. PubMed PMC
Ling, H.Q. , Ma, B. , Shi, X. , Liu, H. , Dong, L. , Sun, H. , Cao, Y. et al. (2018) Genome sequence of the progenitor of wheat A subgenome Triticum urartu. Nature, 557, 424–428. PubMed PMC
Luo, M.C. , Thomas, C. , You, F.M. , Hsiao, J. , Ouyang, S. , Buell, C.R. , Malandro, M. et al. (2003) High‐throughput fingerprinting of bacterial artificial chromosomes using the SNaPshot labeling kit and sizing of restriction fragments by capillary electrophoresis. Genomics, 82, 378–389. PubMed
Luo, R. , Liu, B. , Xie, Y. , Li, Z. , Huang, W. , Yuan, J. , He, G. et al. (2012) SOAPdenovo2: an empirically improved memory‐efficient short‐read de novo assembler. Gigascience, 1, 18. PubMed PMC
Luo, M.C. , Gu, Y.Q. , Puiu, D. , Wang, H. , Twardziok, S.O. , Deal, K.R. et al. (2017) Genome sequence of the progenitor of the wheat D genome Aegilops tauschii . Nature, 551, 498–502. PubMed PMC
Ma, J. , Stiller, J. , Zheng, Z. , Wei, Y. , Zheng, Y.‐L. , Yan, G. and Liu, C. (2015) Putative interchromosomal rearrangements in the hexaploid wheat (Triticum aestivum L.) genotype “Chinese Spring” revealed by gene locations on homoeologous chromosomes. BMC Evol. Biol. 15, 37. PubMed PMC
Maccaferri, M. , Harris, N.S. , Twardziok, S.O. , Pasam, R.K. , Gundlach, H. , Spannagl, M. , Ormanbekova, D. et al. (2019) Durum wheat genome highlights past domestication signatures and future improvement targets. Nat. Genet. 51, 885–895. PubMed
Meyer, R.S. and Purugganan, M.D. (2013) Evolution of crop species: genetics of domestication and diversification. Nat. Rev. Genet. 14, 840–852. PubMed
Miyawaki, K. , Tarkowski, P. , Matsumoto‐Kitano, M. , Kato, T. , Sato, S. , Tarkowska, D. , Tabata, S. et al. (2006) Roles of arabidopsis atp/adp isopentenyltransferases and trna isopentenyltransferases in cytokinin biosynthesis. Proc. Natl Acad. Sci. USA, 103, 16598–16603. PubMed PMC
Montenegro, J.D. , Golicz, A.A. , Bayer, P.E. , Hurgobin, B. , Lee, H. , Chan, C.K. , Visendi, P. et al. (2017) The pangenome of hexaploid bread wheat. Plant J. Cell Mol. Biol. 90, 1007–1013. PubMed
Mount, D.W. (2007). Using the Basic Local Alignment Search Tool (BLAST). Csh Protocols, 2007, pdb.top17 PubMed
Nawrocki, E.P. , Burge, S.W. , Bateman, A. , Daub, J. , Eberhardt, R.Y. , Eddy, S.R. , Floden, E.W. et al. (2015) Rfam 12.0: updates to the RNA families database. Nucleic Acids Res. 43, D130–D137. PubMed PMC
Nelson, W. and Soderlund, C. (2009) Integrating sequence with FPC fingerprint maps. Nucleic Acids Res. 37, e36. PubMed PMC
Ostlund, G. , Schmitt, T. , Forslund, K. , Köstler, T. , Messina, D.N. , Roopra, S. , Frings, O. et al. (2010) InParanoid 7: new algorithms and tools for eukaryotic orthology analysis. Nucleic Acids Res. 38, D196–D203. PubMed PMC
Pont, C. , Leroy, T. , Seidel, M. , Tondelli, A. , Duchemin, W. , Armisen, D. , Lang, D. et al. (2019) Tracing the ancestry of modern bread wheats. Nat. Genet. 51, 905–911. PubMed
Ramírez‐González, R.H. , Borrill, P. , Lang, D. , Harrington, S.A. , Brinton, J. , Venturini, L. , Davey, M. et al. (2018) The transcriptional landscape of polyploid wheat. Science, 361, eaar6089. PubMed
Rao, I.S. , Srikanth, B. , Kishore, V.H. , Suresh, P.B. , Chaitanya, U. , Vemireddy, L.R. , Voleti, S.R. et al. (2011) Indel polymorphism in sugar translocation and transport genes associated with grain filling of rice (Oryza sativa L.). Mol. Breed. 28, 683–691.
Reif, J.C. , Zhang, P. , Dreisigacker, S. , Warburton, M.L. , van Ginkel, M. , Hoisington, D. , Bohn, M. et al. (2005) Wheat genetic diversity trends during domestication and breeding. Theor. Appl. Genet. 110, 859–864. PubMed
Rotmistrovsky, K. , Jang, W. and Schuler, G.D. (2004) A web server for performing electronic PCR. Nucleic Acids Res. 32, W108–W112. PubMed PMC
Saintenac, C. , Jiang, D.Y. , Wang, S.C. and Akhunov, E. (2013) Sequence‐based mapping of the polyploid wheat genome. G3‐Genes Genomes Genet. 3, 1105–1114. PubMed PMC
Sankoff, D. and Nadeau, J.H. (2003) Chromosome rearrangements in evolution: from gene order to genome sequence and back. Proc. Natl Acad. Sci. USA, 100, 11188–11189. PubMed PMC
She, R. , Chu, J.S.C. , Wang, K. , Pei, J. and Chen, N.S. (2009) genBlastA: enabling BLAST to identify homologous gene sequences. Genome Res. 19, 143–149. PubMed PMC
Šimková, H. , Svensson, J.T. , Condamine, P. , Hřibová, E. , Suchánková, P. , Bhat, P.R. , Bartoš, J. et al. (2008) Coupling amplified DNA from flow‐sorted chromosomes to high‐density SNP mapping in barley. BMC Genom. 9, 294. PubMed PMC
Šimková, H. , Šafář, J. , Kubaláková, M. , Suchánková, P. , Číhalíková, J. , Robert‐Quatre, H. , Azhaguvel, P. et al. (2011) BAC libraries from wheat chromosome 7D: efficient tool for positional cloning of aphid resistance genes. J. Biomed. Biotechnol. 2011, 302543. PubMed PMC
Swamy, B.P.M. (2011) Meta‐analysis of grain yield qtl identified during agricultural drought in grasses showed consensus. BMC Genom. 12, 319. PubMed PMC
Tarailo‐Graovac, M. and Chen, N. (2009) Using RepeatMasker to identify repetitive elements in genomic sequences. Curr. Protoc. Bioinform. 25, 4–10. PubMed
Tian, J. , Deng, Z. , Zhang, K. , Yu, H. , Jiang, X. and Li, C. (2015) Genetic Analyses of Wheat and Molecular Marker Assisted Breeding, Volume 1, Genetics Map and QTL Mapping. Beijing: Science Press; and Dordrecht, Netherlands: Springer.
Trapnell, C. , Pachter, L. and Salzberg, S.L. (2009) TopHat: discovering splice junctions with RNA‐Seq. Bioinformatics, 25, 1105–1111. PubMed PMC
Trapnell, C. , Roberts, A. , Goff, L. , Pertea, G. , Kim, D. , Kelley, D.R. and Pachter, L. (2014) Differential gene and transcript expression analysis of RNA‐seq experiments with TopHat and Cufflinks. Nat. Protocol. 7, 562–578. PubMed PMC
Wang, S. , Wong, D. , Forrest, K. , Allen, A. , Chao, S. , Huang, B.E. , Maccaferri, M. et al. (2014) Characterization of polyploid wheat genomic diversity using a high‐density 90 000 single nucleotide polymorphism array. Plant Biotechnol. J. 12, 787–796. PubMed PMC
Wang, M. , Yue, H. , Feng, K. , Deng, P. , Song, W. and Nie, X. . (2016) Genome-wide identification, phylogeny and expressional profiles of mitogen activated protein kinase kinase kinase (MAPKKK) gene family in bread wheat (Triticum aestivum L.). BMC genomics 17, 668. PubMed PMC
Werner, T. , Motyka, V. , Laucou, V. , Smets, R. , Van, O.H. and Schmülling, T. (2003) Cytokinin‐deficient transgenic arabidopsis plants show multiple developmental alterations indicating opposite functions of cytokinins in the regulation of shoot and root meristem activity. Plant Cell, 15, 2532–2550. PubMed PMC
Xie, W.L. and Nevo, E. (2008) Wild emmer: genetic resources, gene mapping and potential for wheat improvement. Euphytica, 164, 603–614.
Xu, Z. and Wang, H. (2007) LTR_FINDER: an efficient tool for the prediction of full‐length LTR retrotransposons. Nucleic Acids Res. 35, W265–W268. PubMed PMC
Yang, Z. (2007) PAML 4: phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 24, 1586–1591. PubMed