Chromosome-based survey sequencing reveals the genome organization of wild wheat progenitor Triticum dicoccoides
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
Winifred-Asbjornson - International
P501/12/G090
Czech Science Foundation - International
LO1204
Ministry of Education, Youth and Sports of the Czech Republic - International
National Program of Sustainability I - International
AGL2016-77149-C2-1-P
MINECO - International
CGL2016-79790-P
MINECO - International
P12-AGR-0482
Junta de Andalucia - International
PubMed
29729062
PubMed Central
PMC6230948
DOI
10.1111/pbi.12940
Knihovny.cz E-zdroje
- Klíčová slova
- chromosome sorting, comparative genomics, hexaploid wheat, next-generation sequencing, wild emmer wheat,
- MeSH
- chromozomy rostlin genetika MeSH
- genetické lokusy genetika MeSH
- genom rostlinný genetika MeSH
- konzervovaná sekvence genetika MeSH
- lipnicovité genetika MeSH
- mikro RNA genetika MeSH
- nekódující RNA genetika MeSH
- polyploidie MeSH
- průtoková cytometrie MeSH
- pšenice genetika MeSH
- repetitivní sekvence nukleových kyselin genetika MeSH
- rostlinné geny genetika MeSH
- tetraploidie MeSH
- vysoce účinné nukleotidové sekvenování MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- mikro RNA MeSH
- nekódující RNA MeSH
Wild emmer wheat (Triticum turgidum ssp. dicoccoides) is the progenitor of wheat. We performed chromosome-based survey sequencing of the 14 chromosomes, examining repetitive sequences, protein-coding genes, miRNA/target pairs and tRNA genes, as well as syntenic relationships with related grasses. We found considerable differences in the content and distribution of repetitive sequences between the A and B subgenomes. The gene contents of individual chromosomes varied widely, not necessarily correlating with chromosome size. We catalogued candidate agronomically important loci, along with new alleles and flanking sequences that can be used to design exome sequencing. Syntenic relationships and virtual gene orders revealed several small-scale evolutionary rearrangements, in addition to providing evidence for the 4AL-5AL-7BS translocation in wild emmer wheat. Chromosome-based sequence assemblies contained five novel miRNA families, among 59 families putatively encoded in the entire genome which provide insight into the domestication of wheat and an overview of the genome content and organization.
Zobrazit více v PubMed
Akpinar, B.A. and Budak, H. (2016) Dissecting miRNAs in wheat D genome progenitor, Aegilops tauschii. Front. Plant Sci. 7, 1–17. PubMed PMC
Akpinar, B.A. , Lucas, S.J. , Vr, J. , Dole, J. and Budak, H. (2014) Sequencing chromosome 5D of Aegilops tauschii and comparison with its allopolyploid descendant bread wheat (Triticum aestivum). Plant Biotechnol. J. 13, 740–752. PubMed
Akpinar, B.A. , Kantar, M. and Budak, H. (2015a) Root precursors of microRNAs in wild emmer and modern wheats show major differences in response to drought stress. Funct. Integr. Genomics, 15, 587–598. PubMed
Akpinar, B.A. , Yuce, M. , Lucas, S. , Vrána, J. , Burešová, V. , Doležel, J. and Budak, H. (2015b) Molecular organization and comparative analysis of chromosome 5B of the wild wheat ancestor Triticum dicoccoides. Sci. Rep. 5, 10763. PubMed PMC
Akpinar, B.A. , Lucas, S. and Budak, H. (2016) A large‐scale chromosome‐specific SNP discovery guideline. Funct. Integr. Genomics, 17, 97–105. PubMed
Alptekin, B. , Akpinar, B.A. and Budak, H. (2017) A comprehensive prescription for plant miRNA identification. Front. Plant Sci. 7, 2058. PubMed PMC
Avni, R. , Nave, M. , Barad, O. , Baruch, K. , Twardziok, S.O. , Gundlach, H. , Hale, I. et al. (2017) Wild emmer genome architecture and diversity elucidate wheat evolution and domestication. Science, 357, 93–97. PubMed
Berkman, P.J. , Skarshewski, A. , Lorenc, M.T. , Lai, K. , Duran, C. , Ling, E.Y. , Stiller, J. et al. (2011) Sequencing and assembly of low copy and genic regions of isolated Triticum aestivum chromosome arm 7DS. Plant Biotechnol. J. 9, 768–775. PubMed
Berkman, P.J. , Lai, K. , Lorenc, M.T. and Edwards, D. (2012a) Next‐generation sequencing applications for wheat crop improvement. Am. J. Bot. 99, 365–371. PubMed
Berkman, P.J. , Skarshewski, A. , Manoli, S. , Lorenc, M.T. , Stiller, J. , Smits, L. , Lai, K. et al. (2012b) Sequencing wheat chromosome arm 7BS delimits the 7BS/4AL translocation and reveals homoeologous gene conservation. Theor. Appl. Genet. 124, 423–432. PubMed
Budak, H. , Akpinar, B.A. , Unver, T. and Turktas, M. (2013a) Proteome changes in wild and modern wheat leaves upon drought stress by two‐dimensional electrophoresis and nanoLC‐ESI‐MS/MS. Plant Mol. Biol. 83, 89–103. PubMed
Budak, H. , Kantar, M. and Kurtoglu, K.Y. (2013b) Drought tolerance in modern and wild wheat. Scientific World J. 2013, 548246. PubMed PMC
Cagirici, H.B. , Alptekin, B. and Budak, H. (2017) RNA sequencing and co‐expressed long non‐coding RNA in modern and wild wheats. Sci. Rep. 7, 10670. PubMed PMC
Camacho, C. , Coulouris, G. , Avagyan, V. , Ma, N. , Papadopoulos, J. , Bealer, K. and Madden, T.L. (2009) BLAST+: architecture and applications. BMC Bioinform. 10, 421. PubMed PMC
Chikhi, R. and Medvedev, P. (2014) Informed and automated k‐mer size selection for genome assembly. Bioinformatics, 30, 31–37. PubMed
Choulet, F. , Wicker, T. , Rustenholz, C. , Paux, E. , Salse, J. , Leroy, P. , Schlub, S. et al. (2010) Megabase level sequencing reveals contrasted organization and evolution patterns of the wheat gene and transposable element spaces. Plant Cell, 22, 1686–1701. PubMed PMC
Choulet, F. , Alberti, A. , Theil, S. , Glover, N. , Barbe, V. , Daron, J. , Pingault, L. et al. (2014) Structural and functional partitioning of bread wheat chromosome 3B. Science, 345, 1249721. PubMed
Conesa, A. and Götz, S. (2008) Blast2GO: A comprehensive suite for functional analysis in plant genomics. Int. J. Plant Genomics, 2008, 619832. PubMed PMC
Distelfeld, A. (2016) Assembly and Validation of the Wild Emmer Wheat Genome. In Plant and Animal Genome XXIV Conference. Plant and Animal Genome. Available at: https://pag.confex.com/pag/xxiv/webprogram/Paper18477.html [Accessed May 11, 2016].
Distelfeld, A. , Tranquilli, G. , Li, C. , Yan, L. and Dubcovsky, J. (2009) Genetic and molecular characterization of the VRN2 loci in tetraploid wheat. Plant Physiol. 149, 245–257. PubMed PMC
Ergen, N.Z. and Budak, H. (2009) Sequencing over 13 000 expressed sequence tags from six subtractive cDNA libraries of wild and modern wheats following slow drought stress. Plant, Cell Environ. 32, 220–236. PubMed
Ergen, N.Z. , Thimmapuram, J. , Bohnert, H.J. and Budak, H. (2009) Transcriptome pathways unique to dehydration tolerant relatives of modern wheat. Funct. Integr. Genomics, 9, 377–396. PubMed
Feuillet, C. , Leach, J.E. , Rogers, J. , Schnable, P.S. and Eversole, K. (2011) Crop genome sequencing: lessons and rationales. Trends Plant Sci. 16, 77–88. PubMed
Hao, M. , Luo, J. , Zhang, L. , Yuan, Z. , Zheng, Y. , Zhang, H. and Liu, D. (2013) In situ hybridization analysis indicates that 4AL‐5AL‐7BS translocation preceded subspecies differentiation of Triticum turgidum. Genome, 56, 303–305. PubMed
Henry, R.J. , Rangan, P. and Furtado, A. (2016) Functional cereals for production in new and variable climates. Curr. Opin. Plant Biol. 30, 11–18. PubMed
Hernandez, P. , Martis, M. , Dorado, G. , Pfeifer, M. , Gálvez, S. , Schaaf, S. , Jouve, N. et al. (2012) Next‐generation sequencing and syntenic integration of flow‐sorted arms of wheat chromosome 4A exposes the chromosome structure and gene content. Plant J. 69, 377–386. PubMed
Iizumi, T. , Yokozawa, M. , Sakurai, G. , Travasso, M.I. , Romanenkov, V. , Oettli, P. , Newby, T. et al. (2014) Historical changes in global yields: major cereal and legume crops from 1982 to 2006. Glob. Ecol. Biogeogr. 23, 346–357.
Jia, J. , Zhao, S. , Kong, X. , Li, Y. , Zhao, G. , He, W. , Appels, R. et al. (2013) Aegilops tauschii draft genome sequence reveals a gene repertoire for wheat adaptation. Nature, 496, 91–95. PubMed
Kantar, M. , Akpınar, B.A. , Valárik, M. , Lucas, S.J. , Doležel, J. , Hernández, P. and Budak, H. (2012) Subgenomic analysis of microRNAs in polyploid wheat. Funct. Integr. Genomics, 12, 465–479. PubMed
Klionsky, D. , Agholme, L. , Agnello, M. , Agostinis, P. , Aguirre‐Ghiso, J.A. , Ahn, H.J. , Ait‐Mohamed, O. et al. (2016) Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 8, 445–544. PubMed PMC
Krzywinski, M. , Schein, J. , Birol, I. , Connors, J. , Gascoyne, R. , Horsman, D. , Jones, S.J. et al. (2009) Circos: an information aesthetic for comparative genomics. Genome Res. 19, 1639–1645. PubMed PMC
Kurtoglu, K.Y. , Kantar, M. , Lucas, S.J. and Budak, H. (2013) Unique and conserved microRNAs in wheat chromosome 5D revealed by next‐generation sequencing. PLoS ONE, 8, e69801. PubMed PMC
Kurtoglu, K.Y. , Kantar, M. and Budak, H. (2014) New wheat microRNA using whole‐genome sequence. Funct. Integr. Genomics, 14, 363–379. PubMed
Kuzuoglu‐Ozturk, D. , Cebeci Yalcinkaya, O. , Akpinar, B.A. , Mitou, G. , Korkmaz, G. , Gozuacik, D. and Budak, H. (2012) Autophagy‐related gene, TdAtg8, in wild emmer wheat plays a role in drought and osmotic stress response. Planta, 236, 1081–1092. PubMed
Li, L. , Stoeckert, C.J. and Roos, D.S. (2003) OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res. 13, 2178–2189. PubMed PMC
Li, F. , Pignatta, D. , Bendix, C. , Brunkard, J.O. , Cohn, M.M. , Tung, J. and Sun, H. (2011a) MicroRNA regulation of plant innate immune receptors. Proc. Natl. Acad. Sci. USA, 109, 1790–1795. PubMed PMC
Li, Y. , Li, C. , Xia, J. and Jin, Y. (2011b) Domestication of transposable elements into MicroRNA genes in plants. PLoS ONE, 6, e19212. PubMed PMC
Ling, H.‐Q. , Zhao, S. , Liu, D. , Wang, J. , Sun, H. , Zhang, C. , Fan, H. et al. (2013) Draft genome of the wheat A‐genome progenitor Triticum urartu. Nature, 496, 87–90. PubMed
Liu, H. , Searle, I.R. , Watson‐Haigh, N.S. , Baumann, U. , Mather, D.E. , Able, A.J. et al. (2015) Genome‐wide identification of MicroRNAs in leaves and the developing head of four durum genotypes during water deficit stress T. Unver, ed. PLoS ONE, 10, e0142799. PubMed PMC
Lowe, T.M. and Eddy, S.R. (1997) tRNAscan‐SE: A program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 25, 0955–0964. PubMed PMC
Lucas, S.J. and Budak, H. (2012) Sorting the wheat from the chaff: identifying miRNAs in genomic survey sequences of Triticum aestivum chromosome 1AL. A. A. Aboobaker, ed. PLoS ONE, 7, e40859. PubMed PMC
Lucas, S.J. , Akpinar, B.A. , Šimková, H. , Kubaláková, M. , Doležel, J. and Budak, H. (2014) Next‐generation sequencing of flow‐sorted wheat chromosome 5D reveals lineage‐specific translocations and widespread gene duplications. BMC Genom. 15, 1–18. PubMed PMC
Luo, M. , Gu, Y.Q. , You, F.M. , Deal, K.R. , Ma, Y. , Hu, Y. et al. (2013) A 4‐gigabase physical map unlocks the structure and evolution of the complex genome of Aegilops tauschii, the wheat D‐genome progenitor. Proc. Natl. Acad. Sci. USA, 110, 7940–7945. PubMed PMC
Marcussen, T. , Sandve, S.R. , Heier, L. , Spannagl, M. , Pfeifer, M. , International Wheat Genome Sequencing Consortium , Jakobsen, K.S. et al. (2014) Ancient hybridizations among the ancestral genomes of bread wheat. Science, 345, 1250092. PubMed
Mayer, K.F. , Waugh, R. , Brown, J.W. , Schulman, A. , Langridge, P. , Platzer, M. , Fincher, G.B. et al. (2012) A physical, genetic and functional sequence assembly of the barley genome. Nature, 491, 711–716. PubMed
Mayer, K.F. , Rogers, J. , Doležel, J. , Pozniak, C. , Eversole, K. , Feuillet, C. , Gill, B. et al. (2014) A chromosome‐based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science, 345, 1251788. PubMed
Nagy, P. , Hegedus, K. , Pircs, K. , Varga, Á. and Juhász, G. (2014) Different effects of Atg2 and Atg18 mutations on Atg8a and Atg9 trafficking during starvation in Drosophila. FEBS Lett. 588, 408–413. PubMed PMC
Nevo, E. and Chen, G. (2010) Drought and salt tolerances in wild relatives for wheat and barley improvement. Plant, Cell Environ. 33, 670–685. PubMed
Nussbaumer, T. , Martis, M.M. , Roessner, S.K. , Pfeifer, M. , Bader, K.C. , Sharma, S. , Gundlach, H. et al. (2013) MIPS PlantsDB: a database framework for comparative plant genome research. Nucleic Acids Res. 41, D1144–D1151. PubMed PMC
Paterson, A.H. , Bowers, J.E. , Bruggmann, R. , Dubchak, I. , Grimwood, J. , Gundlach, H. , Haberer, G. et al. (2009) The Sorghum bicolor genome and the diversification of grasses. Nature, 457, 551–556. PubMed
Paux, E. , Faure, S. , Choulet, F. , Roger, D. , Gauthier, V. , Martinant, J.P. , Sourdille, P. et al. (2010) Insertion site‐based polymorphism markers open new perspectives for genome saturation and marker‐assisted selection in wheat. Plant Biotechnol. J. 8, 196–210. PubMed
Pei, D. , Zhang, W. , Sun, H. , Wei, X. , Yue, J. and Wang, H. (2014) Identification of autophagy‐related genes ATG4 and ATG8 from wheat (Triticum aestivum L.) and profiling of their expression patterns responding to biotic and abiotic stresses. Plant Cell Rep. 33, 1697–1710. PubMed
Pourkheirandish, M. , Hensel, G. , Kilian, B. , Senthil, N. , Chen, G. , Sameri, M. , Azhaguvel, P. et al. (2015) Evolution of the grain dispersal system in barley. Cell, 162, 527–539. PubMed
Sahoo, R.K. , Gill, S.S. and Tuteja, N. (2012) Pea DNA helicase 45 promotes salinity stress tolerance in IR64 rice with improved yield. Plant Signal. Behav. 7, 1042–1046. PubMed PMC
Sela, H. , Spiridon, L.N. , Petrescu, A.J. , Akerman, M. , Mandel‐Gutfreund, Y. , Nevo, E. , Loutre, C. et al. (2012) Ancient diversity of splicing motifs and protein surfaces in the wild emmer wheat (Triticum dicoccoides) LR10 coiled coil (CC) and leucine‐rich repeat (LRR) domains. Mol. Plant Pathol. 13, 276–287. PubMed PMC
Simpson, J.T. , Wong, K. , Jackman, S.D. , Schein, J.E. , Jones, S.J.M. and Birol, I. (2009) ABySS: a parallel assembler for short read sequence data. Genome Res. 19, 1117–1123. PubMed PMC
Sun, L. , Luo, H. , Bu, D. , Zhao, G. , Yu, K. , Zhang, C. , Liu, Y. et al. (2013) Utilizing sequence intrinsic composition to classify protein‐coding and long non‐coding transcripts. Nucleic Acids Res. 41, e166. PubMed PMC
Tanaka, T. , Antonio, B.A. , Kikuchi, S. , Matsumoto, T. , Nagamura, Y. , Numa, H. , Sakai, H. et al. (2008) The rice annotation project database (RAP‐DB): 2008 update. Nucleic Acids Res. 36, D1028–D1033. PubMed PMC
Tanaka, T.S. , Kobayashi, F.U. , Joshi, G.I.R.I.P.R. , Onuki, R. , Sakai, H. , Kanamori, H. , Wu, J. et al. (2013) Next‐generation survey sequencing and the molecular organization of wheat chromosome 6B. DNA Res., 21, 103–114. PubMed PMC
The International Brachypodium Initiative (2010) Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature, 463, 763–768. PubMed
Tuteja, N. (2010) A Method to Confer Salinity Stress Tolerance to Plants by Helicase Overexpression. In Helicases. pp. 377–387. Available at: http://link.springer.com/10.1007/978-1-60327-355-8. PubMed DOI
Vatansever, R. , Filiz, E. and Eroglu, S. (2017) Genome‐wide exploration of metal tolerance protein (MTP) genes in common wheat (Triticum aestivum): insights into metal homeostasis and biofortification. Biometals, 30, 217–235. PubMed
Venora, G. , Blangiforti, S. , Castiglione, M.R. , Pignone, D. , Losavio, F. and Cremonini, R. (2002) Chromatin organisation and computer aided karyotyping of Triticum durum Desf. cv. Timilia. Caryologia, 55, 91–98.
Vitulo, N. , Albiero, A. , Forcato, C. , Campagna, D. , Dal Pero, F. , Bagnaresi, P. , Colaiacovo, M. et al. (2011) First survey of the wheat chromosome 5A composition through a next generation sequencing approach. E. Newbigin, ed. PLoS ONE, 6, e26421. PubMed PMC
Wu, T.D. and Watanabe, C.K. (2005) GMAP: a genomic mapping and alignment program for mRNA and EST sequences. Bioinformatics, 21, 1859–1875. PubMed
Xie, W. and Nevo, E. (2008) Wild emmer: genetic resources, gene mapping and potential for wheat improvement. Euphytica, 164, 603–614.
Yan, L. (2004) The wheat VRN2 gene is a flowering repressor down‐regulated by vernalization. Science, 303, 1640–1644. PubMed PMC
Yue, J. , Sun, H. , Zhang, W. , Pei, D. , He, Y. and Wang, H. (2015) Wheat homologs of yeast ATG6 function in autophagy and are implicated in powdery mildew immunity. BMC Plant Biol. 15, 1–15. PubMed PMC
Zhai, J. , Jeong, D.‐H. , De Paoli, E. , Park, S. , Rosen, B.D. , Li, Y. , González, A.J. et al. (2011) MicroRNAs as master regulators of the plant NB‐LRR defense gene family via the production of phased, trans‐acting siRNAs. Genes Dev. 25, 2540–2553. PubMed PMC
Zhu, Q.H. , Fan, L. , Liu, Y. , Xu, H. , Llewellyn, D. and Wilson, I. (2013) miR482 regulation of NBS‐LRR defense genes during fungal pathogen infection in cotton. PLoS ONE, 8, e84390. PubMed PMC
Zimin, A.V. , Puiu, D. , Hall, R. , Kingan, S. , Clavijo, B.J. and Salzberg, S.L. (2017) The first near‐complete assembly of the hexaploid bread wheat genome, Triticum aestivum. Gigascience, 6, 1–7. PubMed PMC