Molecular organization and comparative analysis of chromosome 5B of the wild wheat ancestor Triticum dicoccoides
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu srovnávací studie, časopisecké články, práce podpořená grantem
PubMed
26084265
PubMed Central
PMC4471722
DOI
10.1038/srep10763
PII: srep10763
Knihovny.cz E-zdroje
- MeSH
- chromozomy rostlin genetika MeSH
- mikro RNA genetika MeSH
- molekulární evoluce * MeSH
- pšenice genetika MeSH
- RNA rostlin genetika MeSH
- RNA transferová genetika MeSH
- vysoce účinné nukleotidové sekvenování MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
- Názvy látek
- mikro RNA MeSH
- RNA rostlin MeSH
- RNA transferová MeSH
Wild emmer wheat, Triticum turgidum ssp. dicoccoides is the wild relative of Triticum turgidum, the progenitor of durum and bread wheat, and maintains a rich allelic diversity among its wild populations. The lack of adequate genetic and genomic resources, however, restricts its exploitation in wheat improvement. Here, we report next-generation sequencing of the flow-sorted chromosome 5B of T. dicoccoides to shed light into its genome structure, function and organization by exploring the repetitive elements, protein-encoding genes and putative microRNA and tRNA coding sequences. Comparative analyses with its counterparts in modern and wild wheats suggest clues into the B-genome evolution. Syntenic relationships of chromosome 5B with the model grasses can facilitate further efforts for fine-mapping of traits of interest. Mapping of 5B sequences onto the root transcriptomes of two additional T. dicoccoides genotypes, with contrasting drought tolerances, revealed several thousands of single nucleotide polymorphisms, of which 584 shared polymorphisms on 228 transcripts were specific to the drought-tolerant genotype. To our knowledge, this study presents the largest genomics resource currently available for T. dicoccoides, which, we believe, will encourage the exploitation of its genetic and genomic potential for wheat improvement to meet the increasing demand to feed the world.
Zobrazit více v PubMed
Feuillet C., Langridge P. & Waugh R. Cereal breeding takes a walk on the wild side. Trends Genet. 24, 24–32 (2008). PubMed
Nevo E. & Chen G. Drought and salt tolerances in wild relatives for wheat and barley improvement. Plant. Cell Environ. 33, 670–85 (2010). PubMed
Paux E., Sourdille P., Mackay I. & Feuillet C. Sequence-based marker development in wheat: advances and applications to breeding. Biotechnol. Adv. 30, 1071–88 (2012). PubMed
Marcussen T. PubMed
Budak H., Kantar M. & Kurtoglu K. Y. Drought tolerance in modern and wild wheat. ScientificWorld Journal. 2013, 548246 (2013). PubMed PMC
Xie W. & Nevo E. Wild emmer: genetic resources, gene mapping and potential for wheat improvement. Euphytica 164, 603–614 (2008).
Ergen N. Z. & Budak H. Sequencing over 13 000 expressed sequence tags from six subtractive cDNA libraries of wild and modern wheats following slow drought stress. Plant. Cell Environ. 32, 220–36 (2009). PubMed
Ergen N. Z., Thimmapuram J., Bohnert H. J. & Budak H. Transcriptome pathways unique to dehydration tolerant relatives of modern wheat. Funct. Integr. Genomics 9, 377–96 (2009). PubMed
Budak H., Akpinar B. A., Unver T. & Turktas M. Proteome changes in wild and modern wheat leaves upon drought stress by two-dimensional electrophoresis and nanoLC-ESI-MS/MS. Plant Mol. Biol. 83, 89–103 (2013). PubMed
Kubaláková M., Vrána J., Cíhalíková J., Simková H. & Dolezel J. Flow karyotyping and chromosome sorting in bread wheat (Triticum aestivum L.). Theor. Appl. Genet. 104, 1362–1372 (2002). PubMed
Safár J. PubMed
Mayer K. F. X. PubMed
Ling H.-Q. PubMed
Jia J. PubMed
Venora G.
Smith D. B. & Flavell R. B. Characterisation of the wheat genome by renaturation kinetics. Chromosoma 50, 223–242 (1975).
Akpinar B. A., Lucas S. J., Vrána J., Doležel J. & Budak H. Sequencing chromosome 5D of Aegilops tauschii and comparison with its allopolyploid descendant bread wheat (Triticum aestivum). Plant Biotechnol. J. doi:10.1111/pbi.12302 (2014). PubMed
Choulet F. PubMed
Senerchia N., Felber F. & Parisod C. Contrasting evolutionary trajectories of multiple retrotransposons following independent allopolyploidy in wild wheats. New Phytol. 202, 975–985 (2014). PubMed
International Brachypodium Initiative. Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature 463, 763–8 (2010). PubMed
Paterson A. H. PubMed
Mayer K. F. X. PubMed
Wicker T., Buchmann J. P. & Keller B. Patching gaps in plant genomes results in gene movement and erosion of colinearity. Genome Res. 20, 1229–37 (2010). PubMed PMC
Kojima K. K. & Jurka J. A superfamily of DNA transposons targeting multicopy small RNA genes. PLoS One 8, e68260 (2013). PubMed PMC
Budak H., Khan Z. & Kantar M. History and current status of wheat miRNAs using next-generation sequencing and their roles in development and stress. Brief. Funct. Genomics doi:10.1093/bfgp/elu021 (2014). PubMed
Kantar M., Unver T. & Budak H. Regulation of barley miRNAs upon dehydration stress correlated with target gene expression. Funct. Integr. Genomics 10, 493–507 (2010). PubMed
Pfeifer M. PubMed
Zhang H. PubMed
Xue F., Ji W., Wang C., Zhang H. & Yang B. High-density mapping and marker development for the powdery mildew resistance gene PmAS846 derived from wild emmer wheat (Triticum turgidum var. dicoccoides). Theor. Appl. Genet. 124, 1549–60 (2012). PubMed
Abdollahi Mandoulakani B. PubMed
Wang Z. PubMed
Blanco A. PubMed
Qi L., Friebe B. & Gill B. S. Meiotic metaphase I pairing behavior of a 5BL recombinant isochromosome in wheat. Chromosome Res. 8, 671–6 (2000). PubMed
Griffiths S. PubMed
Sergeeva E. M.
Renny-Byfield S. PubMed
Kurtoglu K. Y., Kantar M., Lucas S. J. & Budak H. Unique and conserved microRNAs in wheat chromosome 5D revealed by next-generation sequencing. PLoS One 8, e69801 (2013). PubMed PMC
Sela H. PubMed
Kubaláková M. PubMed
Conesa A. & Götz S. Blast2GO: A comprehensive suite for functional analysis in plant genomics. Int. J. Plant Genomics 2008, 619832 (2008). PubMed PMC
Lowe T. M. & Eddy S. R. tRNAscan-SE: A Program for Improved Detection of Transfer RNA Genes in Genomic Sequence. Nucleic Acids Res. 25, 0955–964 (1997). PubMed PMC
Chromosome analysis and sorting
Hotspots in the genomic architecture of field drought responses in wheat as breeding targets