Molecular organization and comparative analysis of chromosome 5B of the wild wheat ancestor Triticum dicoccoides

. 2015 Jun 18 ; 5 () : 10763. [epub] 20150618

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu srovnávací studie, časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid26084265

Wild emmer wheat, Triticum turgidum ssp. dicoccoides is the wild relative of Triticum turgidum, the progenitor of durum and bread wheat, and maintains a rich allelic diversity among its wild populations. The lack of adequate genetic and genomic resources, however, restricts its exploitation in wheat improvement. Here, we report next-generation sequencing of the flow-sorted chromosome 5B of T. dicoccoides to shed light into its genome structure, function and organization by exploring the repetitive elements, protein-encoding genes and putative microRNA and tRNA coding sequences. Comparative analyses with its counterparts in modern and wild wheats suggest clues into the B-genome evolution. Syntenic relationships of chromosome 5B with the model grasses can facilitate further efforts for fine-mapping of traits of interest. Mapping of 5B sequences onto the root transcriptomes of two additional T. dicoccoides genotypes, with contrasting drought tolerances, revealed several thousands of single nucleotide polymorphisms, of which 584 shared polymorphisms on 228 transcripts were specific to the drought-tolerant genotype. To our knowledge, this study presents the largest genomics resource currently available for T. dicoccoides, which, we believe, will encourage the exploitation of its genetic and genomic potential for wheat improvement to meet the increasing demand to feed the world.

Zobrazit více v PubMed

Feuillet C., Langridge P. & Waugh R. Cereal breeding takes a walk on the wild side. Trends Genet. 24, 24–32 (2008). PubMed

Nevo E. & Chen G. Drought and salt tolerances in wild relatives for wheat and barley improvement. Plant. Cell Environ. 33, 670–85 (2010). PubMed

Paux E., Sourdille P., Mackay I. & Feuillet C. Sequence-based marker development in wheat: advances and applications to breeding. Biotechnol. Adv. 30, 1071–88 (2012). PubMed

Marcussen T. PubMed

Hao M. PubMed PMC

Budak H., Kantar M. & Kurtoglu K. Y. Drought tolerance in modern and wild wheat. ScientificWorld Journal. 2013, 548246 (2013). PubMed PMC

Xie W. & Nevo E. Wild emmer: genetic resources, gene mapping and potential for wheat improvement. Euphytica 164, 603–614 (2008).

Ergen N. Z. & Budak H. Sequencing over 13 000 expressed sequence tags from six subtractive cDNA libraries of wild and modern wheats following slow drought stress. Plant. Cell Environ. 32, 220–36 (2009). PubMed

Ergen N. Z., Thimmapuram J., Bohnert H. J. & Budak H. Transcriptome pathways unique to dehydration tolerant relatives of modern wheat. Funct. Integr. Genomics 9, 377–96 (2009). PubMed

Budak H., Akpinar B. A., Unver T. & Turktas M. Proteome changes in wild and modern wheat leaves upon drought stress by two-dimensional electrophoresis and nanoLC-ESI-MS/MS. Plant Mol. Biol. 83, 89–103 (2013). PubMed

Kubaláková M., Vrána J., Cíhalíková J., Simková H. & Dolezel J. Flow karyotyping and chromosome sorting in bread wheat (Triticum aestivum L.). Theor. Appl. Genet. 104, 1362–1372 (2002). PubMed

Safár J. PubMed

Vitulo N. PubMed PMC

Mayer K. F. X. PubMed

Ling H.-Q. PubMed

Jia J. PubMed

Venora G.

Smith D. B. & Flavell R. B. Characterisation of the wheat genome by renaturation kinetics. Chromosoma 50, 223–242 (1975).

Lucas S. J. PubMed PMC

Akpinar B. A., Lucas S. J., Vrána J., Doležel J. & Budak H. Sequencing chromosome 5D of Aegilops tauschii and comparison with its allopolyploid descendant bread wheat (Triticum aestivum). Plant Biotechnol. J. doi:10.1111/pbi.12302 (2014). PubMed

Choulet F. PubMed

Senerchia N., Felber F. & Parisod C. Contrasting evolutionary trajectories of multiple retrotransposons following independent allopolyploidy in wild wheats. New Phytol. 202, 975–985 (2014). PubMed

International Brachypodium Initiative. Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature 463, 763–8 (2010). PubMed

Tanaka T. PubMed PMC

Paterson A. H. PubMed

Mayer K. F. X. PubMed

Wicker T. PubMed PMC

Wicker T., Buchmann J. P. & Keller B. Patching gaps in plant genomes results in gene movement and erosion of colinearity. Genome Res. 20, 1229–37 (2010). PubMed PMC

Tanaka T. PubMed PMC

Kojima K. K. & Jurka J. A superfamily of DNA transposons targeting multicopy small RNA genes. PLoS One 8, e68260 (2013). PubMed PMC

Budak H., Khan Z. & Kantar M. History and current status of wheat miRNAs using next-generation sequencing and their roles in development and stress. Brief. Funct. Genomics doi:10.1093/bfgp/elu021 (2014). PubMed

Kantar M., Unver T. & Budak H. Regulation of barley miRNAs upon dehydration stress correlated with target gene expression. Funct. Integr. Genomics 10, 493–507 (2010). PubMed

Pfeifer M. PubMed

You F. M. PubMed PMC

Zhang H. PubMed

Xue F., Ji W., Wang C., Zhang H. & Yang B. High-density mapping and marker development for the powdery mildew resistance gene PmAS846 derived from wild emmer wheat (Triticum turgidum var. dicoccoides). Theor. Appl. Genet. 124, 1549–60 (2012). PubMed

Abdollahi Mandoulakani B. PubMed

Ouyang S. PubMed PMC

Wang Z. PubMed

Blanco A. PubMed

Qi L., Friebe B. & Gill B. S. Meiotic metaphase I pairing behavior of a 5BL recombinant isochromosome in wheat. Chromosome Res. 8, 671–6 (2000). PubMed

Griffiths S. PubMed

Bhullar R. PubMed PMC

Sergeeva E. M.

Renny-Byfield S. PubMed

Wu H. PubMed PMC

Kurtoglu K. Y., Kantar M., Lucas S. J. & Budak H. Unique and conserved microRNAs in wheat chromosome 5D revealed by next-generation sequencing. PLoS One 8, e69801 (2013). PubMed PMC

Luan M. PubMed PMC

Shivaprasad P. V PubMed PMC

Brenchley R. PubMed PMC

Sela H. PubMed

Trick M. PubMed PMC

Giorgi D. PubMed PMC

Kubaláková M. PubMed

Simková H. PubMed PMC

Nussbaumer T. PubMed PMC

Camacho C. PubMed PMC

Krzywinski M. PubMed PMC

Conesa A. & Götz S. Blast2GO: A comprehensive suite for functional analysis in plant genomics. Int. J. Plant Genomics 2008, 619832 (2008). PubMed PMC

Lowe T. M. & Eddy S. R. tRNAscan-SE: A Program for Improved Detection of Transfer RNA Genes in Genomic Sequence. Nucleic Acids Res. 25, 0955–964 (1997). PubMed PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...