Hotspots in the genomic architecture of field drought responses in wheat as breeding targets

. 2019 Mar ; 19 (2) : 295-309. [epub] 20181116

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid30446876

Grantová podpora
P12-AGR-0482 Consejería de Economía, Innovación, Ciencia y Empleo, Junta de Andalucía
BIO2011-15237-E Comisión Interministerial de Ciencia y Tecnología
AGL2016-77149-C2-1-P Comisión Interministerial de Ciencia y Tecnología
CGL2016-79790-P Comisión Interministerial de Ciencia y Tecnología
Salvador-Madariaga Comisión Interministerial de Ciencia y Tecnología
(BB/P016855/1), GEN (BB/P013511/1) Biotechnology and Biological Sciences Research Council - United Kingdom
BB/M014045/1 Biotechnology and Biological Sciences Research Council - United Kingdom
-- University of Montana

Odkazy

PubMed 30446876
PubMed Central PMC6394720
DOI 10.1007/s10142-018-0639-3
PII: 10.1007/s10142-018-0639-3
Knihovny.cz E-zdroje

Wheat can adapt to most agricultural conditions across temperate regions. This success is the result of phenotypic plasticity conferred by a large and complex genome composed of three homoeologous genomes (A, B, and D). Although drought is a major cause of yield and quality loss in wheat, the adaptive mechanisms and gene networks underlying drought responses in the field remain largely unknown. Here, we addressed this by utilizing an interdisciplinary approach involving field water status phenotyping, sampling, and gene expression analyses. Overall, changes at the transcriptional level were reflected in plant spectral traits amenable to field-level physiological measurements, although changes in photosynthesis-related pathways were found likely to be under more complex post-transcriptional control. Examining homoeologous genes with a 1:1:1 relationship across the A, B, and D genomes (triads), we revealed a complex genomic architecture for drought responses under field conditions, involving gene homoeolog specialization, multiple gene clusters, gene families, miRNAs, and transcription factors coordinating these responses. Our results provide a new focus for genomics-assisted breeding of drought-tolerant wheat cultivars.

Zobrazit více v PubMed

Acuña-Galindo MA, Mason RE, Subramanian NK, Hays DB. Meta-analysis of wheat QTL regions associated with adaptation to drought and heat stress. Crop Sci. 2015;55:477–492. doi: 10.2135/cropsci2013.11.0793. DOI

Akpinar A, Yuce M, Lucas S, Vrána J, Burešová V, Doležel J, Budak H. Molecular organization and comparative analysis of chromosome 5B of the wild wheat ancestor Triticum dicoccoides. Sci Rep. 2015;5:10763. doi: 10.1038/srep10763. PubMed DOI PMC

Alptekin B, Budak H. Wheat miRNA ancestors: evident by transcriptome analysis of A, B, and D genome donors. Funct Integr Genomic. 2017;17:171–187. doi: 10.1007/s10142-016-0487-y. PubMed DOI

Borrill P, Ramirez-Gonzalez R, Uauy C. expVIP: a customizable RNA-seq data analysis and visualization, platform. Plant Physiol. 2016;170:2172–2186. doi: 10.1104/pp.15.01667. PubMed DOI PMC

Budak H, Hussain B, Khan Z, Ozturk NZ, Ullah N. From genetics to functional genomics: improvement in drought signaling and tolerance in wheat. Front Plant Sci. 2015;6:1012. doi: 10.3389/fpls.2015.01012. PubMed DOI PMC

Clavijo BJ, Venturini L, Schudoma C, Accinelli GG, Kaithakottil G, Wright J, Borrill P, Kettleborough G, Heavens D, Chapman H, Lipscombe J, Barker T, Lu FH, McKenzie N, Raats D, Ramirez-Gonzalez RH, Coince A, Peel N, Percival-Alwyn L, Duncan O, Trösch J, Yu G, Bolser DM, Namaati G, Kerhornou A, Spannagl M, Gundlach H, Haberer G, Davey RP, Fosker C, Palma FD, Phillips AL, Millar AH, Kersey PJ, Uauy C, Krasileva KV, Swarbreck D, Bevan MW, Clark MD. An improved assembly and annotation of the allohexaploid wheat genome identifies complete families of agronomic genes and provides genomic evidence for chromosomal translocations. Genome Res. 2017;27:885–896. doi: 10.1101/gr.217117.116. PubMed DOI PMC

Close TJ. Dehydrins: emergence of a biochemical role of a family of plant dehydration proteins. Physiol Plant. 1996;97:795–803. doi: 10.1111/j.1399-3054.1996.tb00546.x. DOI

Condorelli GE, Maccaferri M, Newcomb M, Andrade-Sanchez P, White JW, French AN, Sciara G, Ward R, Tuberosa R. Comparative aerial and ground based high throughput phenotyping for the genetic dissection of NDVI as a proxy for drought adaptive traits in durum wheat. Front Plant Sci. 2018;9:893. doi: 10.3389/fpls.2018.00893. PubMed DOI PMC

Costa M-CD, et al. A footprint of desiccation tolerance in the genome of Xerophyta viscosa. Nat Plants. 2017;3:17038. doi: 10.1038/nplants.2017.38. PubMed DOI

Dai X, Zhao PX. psRNATarget: a plant small RNA target analysis server. Nucleic Acids Res. 2011;39:W155–W159. doi: 10.1093/nar/gkr319. PubMed DOI PMC

Díaz A, Zikhali M, Turner AS, Isaac P, Laurie DA. Copy number variation affecting the photoperiod-B1 and vernalization-A1 genes is associated with altered flowering time in wheat (Triticum aestivum) PLoS One. 2012;7:e33234. doi: 10.1371/journal.pone.0033234. PubMed DOI PMC

Fankhauser N, Aubry S. Post-transcriptional regulation of photosynthetic genes is a key driver of C4 leaf ontogeny. J Exp Bot. 2017;68:137–146. doi: 10.1093/jxb/erw386. PubMed DOI PMC

Ferreira SJ, Sonnewald U. The mode of sucrose degradation in potato tubers determines the fate of assimilate utilization. Front Plant Sci. 2012;3:23. doi: 10.3389/fpls.2012.00023. PubMed DOI PMC

Fisher RA. On the interpretation of χ2 from contingency tables, and the calculation of P. J R Stat Soc. 1922;85:87–94. doi: 10.2307/2340521. DOI

Fleury D, Jefferies S, Kuchel H, Langridge P. Genetic and genomic tools to improve drought tolerance in wheat. J Exp Bot. 2010;61:3211–3222. doi: 10.1093/jxb/erq152. PubMed DOI

Gamon JA, Peñuelas J, Field CB. A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency. Remote Sens Environ. 1992;41:35–44. doi: 10.1016/0034-4257(92)90059-S. DOI

Gonzalez-Dugo V, Hernandez P, Solis I, Zarco-Tejada JP. Using high-resolution hyperspectral and thermal airborne imagery to assess physiological condition in the context of wheat phenotyping. Remote Sens. 2015;7:13586–13605. doi: 10.3390/rs71013586. DOI

Guanter L, Zhang Y, Jung M, Joiner J, Voigt M, Berry JA, Frankenberg C, Huete AR, Zarco-Tejada P, Lee JE, Moran MS, Ponce-Campos G, Beer C, Camps-Valls G, Buchmann N, Gianelle D, Klumpp K, Cescatti A, Baker JM, Griffis TJ. Global and time-resolved monitoring of crop photosynthesis with chlorophyll fluorescence. Proc Natl Acad Sci. 2014;111:E1327–E1333. doi: 10.1073/pnas.1320008111. PubMed DOI PMC

Herrmann I, Karnieli A, Bonfil DJ, Cohen Y, Alchanatis V. SWIR-based spectral indices for assessing nitrogen content in potato fields. Int J Remote Sens. 2010;31:5127–5143. doi: 10.1080/01431160903283892. DOI

Huynh-Thu VA, Irrthum A, Wehenkel L, Geurts P. Inferring regulatory networks from expression data using tree-based methods. PLoS One. 2010;5:e12776. doi: 10.1371/journal.pone.0012776. PubMed DOI PMC

IRGSP The map-based sequence of the rice genome. Nature. 2005;436:793–800. doi: 10.1038/nature03895. PubMed DOI

Iuchi S, Kobayashi M, Taji T, Naramoto M, Seki M, Kato T, Tabata S, Kakubari Y, Yamaguchi-Shinozaki K, Shinozaki K. Regulation of drought tolerance by gene manipulation of 9-cis-epoxycarotenoid dioxygenase, a key enzyme in abscisic acid biosynthesis in Arabidopsis. Plant J. 2001;27:325–333. doi: 10.1046/j.1365-313x.2001.01096.x. PubMed DOI

Joshi R, et al. Transcription factors and plants response to drought stress: current understanding and future directions. Front Plant Sci. 2016;7:1029. doi: 10.3389/fpls.2016.01029. PubMed DOI PMC

Knox AK, Dhillon T, Cheng H, Tondelli A, Pecchioni N, Stockinger EJ. CBF gene copy number variation at frost Resistance-2 is associated with levels of freezing tolerance in temperate-climate cereals. Theor Appl Genet. 2010;121:21–35. doi: 10.1007/s00122-010-1288-7. PubMed DOI

Kozomara A, Griffiths-Jones S. miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res. 2011;39:D152–D157. doi: 10.1093/nar/gkq1027. PubMed DOI PMC

Krzywinski MI, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, Jones SJ, Marra MA. Circos: an information aesthetic for comparative genomics. Genome Res. 2009;19:1639–1645. doi: 10.1101/gr.092759.109. PubMed DOI PMC

Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics. 2008;9:559. doi: 10.1186/1471-2105-9-559. PubMed DOI PMC

Lee S-C, Kim S-H, Kim S-R. Drought inducible OsDhn1 promoter is activated by OsDREB1A and OsDREB1D. J Plant Biol. 2013;56:115–121. doi: 10.1007/s12374-012-0377-3. DOI

Li H, Li M, Wei X, Zhang X, Xue R, Zhao Y, Zhao H. Transcriptome analysis of drought-responsive genes regulated by hydrogen sulfide in wheat (Triticum aestivum L.) leaves. Mol Gen Genomics. 2017;292:1091–1110. doi: 10.1007/s00438-017-1330-4. PubMed DOI

Liu Z, Xin M, Qin J, Peng H, Ni Z, Yao Y, Sun Q. Temporal transcriptome profiling reveals expression partitioning of homeologous genes contributing to heat and drought acclimation in wheat (Triticum aestivum L.) BMC Plant Biol. 2015;15:1–20. doi: 10.1186/s12870-014-0410-4. PubMed DOI PMC

Lucas SJ, Budak H. Sorting the wheat from the chaff: identifying miRNAs in genomic survey sequences of Triticum aestivum chromosome 1AL. PLoS One. 2012;7:e40859. doi: 10.1371/journal.pone.0040859. PubMed DOI PMC

Ma J, Li R, Wang H, Li D, Wang X, Zhang Y, Zhen W, Duan H, Yan G, Li Y. Transcriptomics analyses reveal wheat responses to drought stress during reproductive stages under field conditions. Front Plant Sci. 2017;8:592. doi: 10.3389/fpls.2017.00592. PubMed DOI PMC

Malik AA, Veltri M, Boddington KF, Singh KK, Graether SP. Genome analysis of conserved dehydrin motifs in vascular plants. Front Plant Sci. 2017;8:709. doi: 10.3389/fpls.2017.00709. PubMed DOI PMC

Markham N, Zuker M. DINAMelt web server for nucleic acid melting prediction. Nucleic Acids Res. 2005;33:W577–W581. doi: 10.1093/nar/gki591. PubMed DOI PMC

Mascher M, et al. A chromosome conformation capture ordered sequence of the barley genome. Nature. 2017;544:427. doi: 10.1038/nature22043. PubMed DOI

McIntosh RA, Dubcovsky J, Rogers WJ, Morris C, Appels R, Xia XC (2013) Catalogue of gene symbols for wheat. 12th International Wheat Genetics Symposium. Yokohama, Japan

McWilliam J. The dimensions of drought. In: Baker F, editor. Drought resistance in cereals. Wallingford: CAB International; 1989. pp. 1–11.

Passioura J. The drought environment: physical, biological and agricultural perspectives. J Exp Bot. 2007;58:113–117. doi: 10.1093/jxb/erl212. PubMed DOI

Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J, Gundlach H, Haberer G, Hellsten U, Mitros T, Poliakov A, Schmutz J, Spannagl M, Tang H, Wang X, Wicker T, Bharti AK, Chapman J, Feltus FA, Gowik U, Grigoriev IV, Lyons E, Maher CA, Martis M, Narechania A, Otillar RP, Penning BW, Salamov AA, Wang Y, Zhang L, Carpita NC, Freeling M, Gingle AR, Hash CT, Keller B, Klein P, Kresovich S, McCann MC, Ming R, Peterson DG, Mehboob-ur-Rahman, Ware D, Westhoff P, Mayer KFX, Messing J, Rokhsar DS. The sorghum bicolor genome and the diversification of grasses. Nature. 2009;457:551–556. doi: 10.1038/nature07723. PubMed DOI

Qiu Z, Yuan M, He Y, Li Y, Zhang L. Physiological and transcriptome analysis of He-Ne laser pretreated wheat seedlings in response to drought stress. Sci Rep. 2017;7:6108. doi: 10.1038/s41598-017-06518-z. PubMed DOI PMC

Quarrie SA, Gulli M, Calestani C, Steed A, Marmiroli N. Location of a gene regulating drought-induced abscisic acid production on the long arm of chromosome 5A of wheat. Theor Appl Genet. 1994;89:794–800. doi: 10.1007/BF00223721. PubMed DOI

Ramírez-González R, et al. The transcriptional landscape of hexaploid wheat across tissues and cultivars. Science. 2018;361(6403):eaar6089. doi: 10.1126/science.aar6089. PubMed DOI

Reynolds MP, Pask AJD, Mullan D. Physiological breeding I: interdisciplinary approaches to improve crop adaptation. Mexico: CIMMYT; 2012.

Russo PST, Ferreira GR, Cardozo LE, Bürger MC, Arias-Carrasco R, Maruyama SR, Hirata TDC, Lima DS, Passos FM, Fukutani KF, Lever M, Silva JS, Maracaja-Coutinho V, Nakaya HI. CEMiTool: a bioconductor package for performing comprehensive modular co-expression analyses. BMC Bioinformatics. 2018;19:56. doi: 10.1186/s12859-018-2053-1. PubMed DOI PMC

Supek F, Bošnjak M, Škunca N, Šmuc T. REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS One. 2011;6:e21800. doi: 10.1371/journal.pone.0021800. PubMed DOI PMC

The International Brachypodium Initiative Genome sequencing and analysis of the model grass, Brachypodium distachyon. Nature. 2010;463:763. doi: 10.1038/nature08747. PubMed DOI

The International Wheat Genome Sequencing Consortium (IWGSC) (2018) Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science 361(6403). 10.1126/science.aar7191 PubMed

Törönen P, Kolehmainen M, Wong G, Castrén E. Analysis of gene expression data using self-organizing maps. FEBS Lett. 1999;451:142–146. doi: 10.1016/S0014-5793(99)00524-4. PubMed DOI

Voss-Fels KP et al (2017) VERNALIZATION1 modulates root system architecture in wheat and barley, molecular plant. 10.1016/j.molp.2017.10.005 PubMed

Wang Y, Tang H, DeBarry JD, Tan X, Li J, Wang X, Lee TH, Jin H, Marler B, Guo H, Kissinger JC, Paterson AH. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res. 2012;40:e49. doi: 10.1093/nar/gkr1293. PubMed DOI PMC

Würschum T, Boeven PHG, Langer SM, Longin CFH, Leiser WL. Multiply to conquer: copy number variations at Ppd-B1 and Vrn-A1 facilitate global adaptation in wheat. BMC Genet. 2015;16:96. doi: 10.1186/s12863-015-0258-0. PubMed DOI PMC

Yamamoto E, J-i Y, Yamamoto T, Yano M. OGRO: the overview of functionally characterized genes in Rice online database. Rice. 2012;5:26. doi: 10.1186/1939-8433-5-26. PubMed DOI PMC

Yan L, Loukoianov A, Tranquilli G, Helguera M, Fahima T, Dubcovsky J. Positional cloning of the wheat vernalization gene VRN1. Proc Natl Acad Sci. 2003;100:6263–6268. doi: 10.1073/pnas.0937399100. PubMed DOI PMC

Yonemaru JI, Yamamoto T, Fukuoka S, Uga Y, Hori K, Yano M. Q-TARO: QTL annotation Rice online database. Rice. 2010;3:194–203. doi: 10.1007/s12284-010-9041-z. DOI

You L, Wood-Sichra U, Fritz S, Guo Z, See L, Koo J (2014) Spatial production allocation model (SPAM) 2005 v2.0. October 23, 2017. Available from <http://mapspam.info/>

Young MD, Wakefield MJ, Smyth GK, Oshlack A. Gene ontology analysis for RNA-seq: accounting for selection bias. Genome Biol. 2010;11:R14. doi: 10.1186/gb-2010-11-2-r14. PubMed DOI PMC

Zadoks JC, Chang TT, Konzak CF. A decimal code for the growth stages of cereals. Weed Res. 1974;14:415–421. doi: 10.1111/j.1365-3180.1974.tb01084.x. DOI

Zarco-Tejada PJ, Guillén-Climent ML, Hernández-Clemente R, Catalina A, González MR, Martín P. Estimating leaf carotenoid content in vineyards using high resolution hyperspectral imagery acquired from an unmanned aerial vehicle (UAV) Agric For Meteorol. 2013;171–172:281–294. doi: 10.1016/j.agrformet.2012.12.013. DOI

Zarco-Tejada PJ, Morales A, Testi L, Villalobos FJ. Spatio-temporal patterns of chlorophyll fluorescence and physiological and structural indices acquired from hyperspectral imagery as compared with carbon fluxes measured with eddy covariance. Remote Sens Environ. 2013;133:102–115. doi: 10.1016/j.rse.2013.02.003. DOI

Zarco-Tejada PJ, Camino C, Beck PSA, Calderon R, Hornero A, Hernández-Clemente R, Kattenborn T, Montes-Borrego M, Susca L, Morelli M, Gonzalez-Dugo V, North PRJ, Landa BB, Boscia D, Saponari M, Navas-Cortes JA. Previsual symptoms of Xylella fastidiosa infection revealed in spectral plant-trait alterations. Nat Plants. 2018;4:432–439. doi: 10.1038/s41477-018-0189-7. PubMed DOI

Zhang J, Zheng HG, Aarti A, Pantuwan G, Nguyen TT, Tripathy JN, Sarial AK, Robin S, Babu RC, Nguyen BD, Sarkarung S, Blum A, Nguyen HT. Locating genomic regions associated with components of drought resistance in rice: comparative mapping within and across species. Theor Appl Genet. 2001;103:19–29. doi: 10.1007/s001220000534. DOI

Zhu J, Pearce S, Burke A, See DR, Skinner DZ, Dubcovsky J, Garland-Campbell K. Copy number and haplotype variation at the VRN-A1 and central FR-A2 loci are associated with frost tolerance in hexaploid wheat. Theor Appl Genet. 2014;127:1183–1197. doi: 10.1007/s00122-014-2290-2. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Capturing Wheat Phenotypes at the Genome Level

. 2022 ; 13 () : 851079. [epub] 20220704

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace