Capturing Wheat Phenotypes at the Genome Level

. 2022 ; 13 () : 851079. [epub] 20220704

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid35860541

Recent technological advances in next-generation sequencing (NGS) technologies have dramatically reduced the cost of DNA sequencing, allowing species with large and complex genomes to be sequenced. Although bread wheat (Triticum aestivum L.) is one of the world's most important food crops, efficient exploitation of molecular marker-assisted breeding approaches has lagged behind that achieved in other crop species, due to its large polyploid genome. However, an international public-private effort spanning 9 years reported over 65% draft genome of bread wheat in 2014, and finally, after more than a decade culminated in the release of a gold-standard, fully annotated reference wheat-genome assembly in 2018. Shortly thereafter, in 2020, the genome of assemblies of additional 15 global wheat accessions was released. As a result, wheat has now entered into the pan-genomic era, where basic resources can be efficiently exploited. Wheat genotyping with a few hundred markers has been replaced by genotyping arrays, capable of characterizing hundreds of wheat lines, using thousands of markers, providing fast, relatively inexpensive, and reliable data for exploitation in wheat breeding. These advances have opened up new opportunities for marker-assisted selection (MAS) and genomic selection (GS) in wheat. Herein, we review the advances and perspectives in wheat genetics and genomics, with a focus on key traits, including grain yield, yield-related traits, end-use quality, and resistance to biotic and abiotic stresses. We also focus on reported candidate genes cloned and linked to traits of interest. Furthermore, we report on the improvement in the aforementioned quantitative traits, through the use of (i) clustered regularly interspaced short-palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9)-mediated gene-editing and (ii) positional cloning methods, and of genomic selection. Finally, we examine the utilization of genomics for the next-generation wheat breeding, providing a practical example of using in silico bioinformatics tools that are based on the wheat reference-genome sequence.

Atta ur Rahman School of Applied Biosciences National University of Sciences and Technology Islamabad Pakistan

Center of Plant Genome Engineering Heinrich Heine Universität Düsseldorf Germany

Commonwealth Scientific and Industrial Research Organization Agriculture and Food Canberra ACT Australia

Council for Agricultural Research and Economics Research Centre for Genomics and Bioinformatics Fiorenzuola d'Arda Italy

Crop and Soil Science Texas A and M University College Station TX United States

Crop Improvement and Genetics Research USDA Agricultural Research Service Albany CA United States

Department of Biological Sciences Middle East Technical University Ankara Turkey

Department of Bioquímica y Biología Molecular Campus Rabanales C6 1 E17 Campus de Excelencia Internacional Agroalimentario Universidad de Córdoba Córdoba Spain

Department of Biotechnology Faculty of Life Sciences University of Central Punjab Lahore Pakistan

Department of Crop Science Washington State University Pullman WA United States

Department of Environment and Bio Agriculture Faculty of Agriculture Al Azhar University Cairo Egypt

Department of Genetics and Bioengineering Yeditepe University Istanbul Turkey

Department of Languages and Computer Science ETSI Informática Campus de Teatinos Universidad de Málaga Andalucía Tech Málaga Spain

Department of Pathology The National Institute of Agricultural Botany Cambridge United Kingdom

Department of Plant Pathology Faculty of Agriculture Assiut University Assiut Egypt

Division of Molecular Biology Centre of Region Haná for Biotechnological and Agriculture Research Czech Advanced Technology and Research Institute Palacký University Olomouc Czechia

Ficus Biotechnology Ostim Teknopark Ankara Turkey

Food and Agriculture Organization of the United Nations Riyadh Saudi Arabia

French National Research Institute for Agriculture Food and the Environment INRAE GDEC Clermont Ferrand France

French Plant Genomic Resource Center INRAE CNRGV Castanet Tolosan France

General Directorate of Research Ministry of Agriculture Ankara Turkey

Global Crop Diversity Trust Bonn Germany

Institute for Resistance Research and Stress Tolerance Julius Kühn Institute Quedlinburg Germany

Institute for Sustainable Agriculture Córdoba Spain

Institute of Biological Sciences Gomal University D 1 Khan Pakistan

Institute of Evolution and Department of Environmental and Evolutionary Biology University of Haifa Haifa Israel

Institute of Plant Breeding and Biotechnology MNS University of Agriculture Multan Pakistan

International Maize and Wheat Improvement Center Texcoco Mexico

International Wheat Genome Sequencing Consortium Bethesda MD United States

KWS SAAT SE and Co KGaA Einbeck Germany

Leibniz Institute of Plant Genetics and Crop Plant Research Gatersleben Germany

Molecular Biology Genetics and Bioengineering Sabanci University Istanbul Turkey

Montana BioAgriculture Inc Missoula MT United States

Murdoch University Perth WA Australia

Research and Innovation Florimond Desprez Group Cappelle en Pévèle France

School of Biological Sciences and Institute of Agriculture University of Western Australia Perth WA Australia

State Plant Breeding Institute The University of Hohenheim Stuttgart Germany

The John Bingham Laboratory The National Institute of Agricultural Botany Cambridge United Kingdom

Université Paris Saclay INRAE URGI Versailles France

University of Maryland Baltimore MD United States

University of Western Australia Perth WA Australia

USDA Agricultural Research Service Edward T Schafer Agricultural Research Center Fargo ND United States

USDA Agricultural Research Service Southern Insect Management Research Unit Stoneville MS United States

Zobrazit více v PubMed

Addison C. K., Mason R. E., Brown-Guedira G., Guedira M., Hao Y., Miller R. G., et al. . (2016). QTL and major genes influencing grain yield potential in soft red winter wheat adapted to the southern United States. Euphytica 209, 665–677. doi: 10.1007/s10681-016-1650-1 DOI

Adhikari A., Basnet B. R., Crossa J., Dreisigacker S., Camarillo F., Bhati P. K., et al. . (2020). Genome-wide association mapping and genomic prediction of anther extrusion in CIMMYT hybrid wheat breeding program via modeling pedigree, genomic relationship, and interaction with the environment. Front. Genet. 11:586687. doi: 10.3389/fgene.2020.586687, PMID: PubMed DOI PMC

Agarwal P., Baranwal V. K., Khurana P. (2019). Genome-wide analysis of bZIP transcription factors in wheat and functional characterization of a TabZIP under abiotic stress. Sci. Rep. 9, 1–18. doi: 10.1038/s41598-019-40659-7 PubMed DOI PMC

Akpinar B. A., Lucas S. J., Vrána J., Doležel J., Budak H. (2015). Sequencing chromosome 5D of Aegilops tauschii and comparison with its allopolyploid descendant bread wheat (Triticum aestivum). Plant Biotechnol. J. 13, 740–752. doi: 10.1111/pbi.12302, PMID: PubMed DOI

Alaux M., Rogers J., Letellier T., Flores R., Alfama F., Pommier C., et al. . (2018). Linking the international wheat genome sequencing consortium bread wheat reference genome sequence to wheat genetic and phenomic data. Genome Biol. 19:111. doi: 10.1186/s13059-018-1491-4, PMID: PubMed DOI PMC

Appels R., Eversole K., Feuillet C., Keller B., Rogers J., Stein N., et al. . (2018). Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science 361:eaar7191. doi: 10.1126/science.aar7191, PMID: PubMed DOI

Arora S., Steuernagel B., Gaurav K., Chandramohan S., Long Y., Matny O., et al. . (2019). Resistance gene cloning from a wild crop relative by sequence capture and association genetics. Nat. Biotechnol. 37, 139–143. doi: 10.1038/s41587-018-0007-9, PMID: PubMed DOI

Asif M. A., Schilling R. K., Tilbrook J., Brien C., Dowling K., Rabie H., et al. . (2018). Mapping of novel salt tolerance QTL in an Excalibur × kukri doubled haploid wheat population. Theor. Appl. Genet. 131, 2179–2196. doi: 10.1007/s00122-018-3146-y, PMID: PubMed DOI PMC

Assanga S. O., Fuentealba M., Zhang G., Tan C. T., Dhakal S., Rudd J. C., et al. . (2017). Mapping of quantitative trait loci for grain yield and its components in a US popular winter wheat TAM 111 using 90K SNPs. PLoS One 12:e0189669. doi: 10.1371/journal.pone.0189669, PMID: PubMed DOI PMC

Babben S., Schliephake E., Janitza P., Berner T., Keilwagen J., Koch M., et al. . (2018). Association genetics studies on frost tolerance in wheat (Triticum aestivum L.) reveal new highly conserved amino acid substituations in CBF-A3, CBF-A15, VRN3 and PPD1 genes. BMC Genomics 19:409. doi: 10.1186/s12864-018-4795-6, PMID: PubMed DOI PMC

Badawi M. A., Agharbaoui Z., Zayed M., Li Q., Byrns B., Zou J., et al. . (2019). Genome-wide identification and characterization of the wheat remorin (ta REM) family during cold acclimation. Plant Genome 12:180040. doi: 10.3835/plantgenome2018.06.0040, PMID: PubMed DOI

Banerjee B. P., Joshi S., Thoday-Kennedy E., Pasam R. K., Tibbits J., Hayden M., et al. . (2020). High-throughput phenotyping using digital and hyperspectral imaging-derived biomarkers for genotypic nitrogen response. J. Exp. Bot. 71, 4604–4615. doi: 10.1093/jxb/eraa143, PMID: PubMed DOI PMC

Basnet B. R., Crossa J., Dreisigacker S., Pérez-Rodríguez P., Manes Y., Singh R. P., et al. . (2019). Hybrid wheat prediction using genomic, pedigree, and environmental covariables interaction models. Plant Genome 12:180051. doi: 10.3835/plantgenome2018.07.0051, PMID: PubMed DOI

Battenfield S. D., Guzmán C., Gaynor R. C., Singh R. P., Peña R. J., Dreisigacker S., et al. . (2016). Genomic selection for processing and end-use quality traits in the CIMMYT spring bread wheat breeding program. Plant Genome 9, 1–12. doi: 10.3835/plantgenome2016.01.0005, PMID: PubMed DOI

Baxter I. (2020). We aren’t good at picking candidate genes, and it’s slowing us down. Curr. Opin. Plant Biol. 54, 57–60. doi: 10.1016/j.pbi.2020.01.006, PMID: PubMed DOI

Bayer P. E., Golicz A. A., Scheben A., Batley J., Edwards D. (2020). Plant pan-genomes are the new reference. Nat. Plants 6, 914–920. doi: 10.1038/s41477-020-0733-0, PMID: PubMed DOI

Berkman P. J., Skarshewski A., Lorenc M. T., Lai K., Duran C., Ling E. Y. S., et al. . (2011). Sequencing and assembly of low copy and genic regions of isolated Triticum aestivum chromosome arm 7DS. Plant Biotechnol. J. 9, 768–775. doi: 10.1111/j.1467-7652.2010.00587.x, PMID: PubMed DOI

Berkman P. J., Skarshewski A., Manoli S., Lorenc M. T., Stiller J., Smits L., et al. . (2012). Sequencing wheat chromosome arm 7BS delimits the 7BS/4AL translocation and reveals homoeologous gene conservation. Theor. Appl. Genet. 124, 423–432. doi: 10.1007/s00122-011-1717-2, PMID: PubMed DOI

Berkman P. J., Visendi P., Lee H. C., Stiller J., Manoli S., Lorenc M. T., et al. . (2013). Dispersion and domestication shaped the genome of bread wheat. Plant Biotechnol. J. 11, 564–571. doi: 10.1111/pbi.12044, PMID: PubMed DOI

Bernardo R. (2014). Genomewide selection when major genes are known. Crop. Sci. 54, 68–75. doi: 10.2135/cropsci2013.05.0315, PMID: PubMed DOI

Bhatta M., Shamanin V., Shepelev S., Stephen Baenziger P., Pozherukova V., Pototskaya I., et al. . (2019). Marker-trait associations for enhancing agronomic performance, disease resistance, and grain quality in synthetic and bread wheat accessions in Western Siberia. G3 9, 4209–4222. doi: 10.1534/g3.119.400811 PubMed DOI PMC

Boehm J. D., Ibba M. I., Kiszonas A. M., See D. R., Skinner D. Z., Morris C. F. (2017). Identification of genotyping-by-sequencing sequence tags associated with milling performance and end-use quality traits in hard red spring wheat (Triticum aestivum L.). J. Cereal Sci. 77, 73–83. doi: 10.1016/j.jcs.2017.07.007 DOI

Brunner S., Hurni S., Streckeisen P., Mayr G., Albrecht M., Yahiaoui N., et al. . (2010). Intragenic allele pyramiding combines different specificities of wheat Pm3 resistance alleles. Plant J. 64, 433–445. doi: 10.1111/j.1365-313X.2010.04342.x, PMID: PubMed DOI

Budak H., Hussain B., Khan Z., Ozturk N. Z., Ullah N. (2015). From genetics to functional genomics: improvement in drought signaling and tolerance in wheat. Front. Plant Sci. 6, 1–13. doi: 10.3389/fpls.2015.01012 PubMed DOI PMC

Budhagatapalli N., Halbach T., Hiekel S., Büchner H., Müller A. E., Kumlehn J. (2020). Site-directed mutagenesis in bread and durum wheat via pollination by cas9/guide RNA-transgenic maize used as haploidy inducer. Plant Biotechnol. J. 18, 2376–2378. doi: 10.1111/pbi.13415, PMID: PubMed DOI PMC

Cagirici H. B., Biyiklioglu S., Budak H. (2017). Assembly and annotation of transcriptome provided evidence of miRNA mobility between wheat and wheat stem sawfly. Front. Plant Sci. 8:1653. doi: 10.3389/fpls.2017.01653, PMID: PubMed DOI PMC

Cao X., Dong Z., Tian D., Dong L., Qian W., Liu J., et al. . (2020). Development and characterization of marker-free and transgene insertion site-defined transgenic wheat with improved grain storability and fatty acid content. Plant Biotechnol. J. 18, 129–140. doi: 10.1111/pbi.13178 PubMed DOI PMC

Carter A. H., Garland-Campbell K., Morris C. F., Kidwell K. K. (2012). Chromosomes 3B and 4D are associated with several milling and baking quality traits in a soft white spring wheat (Triticum aestivum L.) population. Theor. Appl. Genet. 124, 1079–1096. doi: 10.1007/s00122-011-1770-x, PMID: PubMed DOI

Case A. J., Skinner D. Z., Garland-Campbell K. A., Carter A. H. (2014). Freezing tolerance-associated quantitative trait loci in the brundage × coda wheat recombinant inbred line population. Crop. Sci. 54, 982–992. doi: 10.2135/cropsci2013.08.0526 DOI

Chaurasia S., Singh A. K., Songachan L. S., Sharma A. D., Bhardwaj R., Singh K. (2020). Multi-locus genome-wide association studies reveal novel genomic regions associated with vegetative stage salt tolerance in bread wheat (Triticum aestivum L.). Genomics 112, 4608–4621. doi: 10.1016/j.ygeno.2020.08.006, PMID: PubMed DOI

Chen S., Rouse M. N., Zhang W., Zhang X., Guo Y., Briggs J., et al. . (2020). Wheat gene Sr60 encodes a protein with two putative kinase domains that confers resistance to stem rust. New Phytol. 225, 948–959. doi: 10.1111/nph.16169, PMID: PubMed DOI

Chen P., You C., Hu Y., Chen S., Zhou B., Cao A., et al. . (2013). Radiation-induced translocations with reduced Haynaldia villosa chromatin at the Pm21 locus for powdery mildew resistance in wheat. Mol. Breed. 31, 477–484. doi: 10.1007/s11032-012-9804-x DOI

Cheng B., Ding Y. Q., Gao X., Cao N., Xin Z. H., Zhang L. Y. (2020). The diversity of powdery mildew resistance gene loci among wheat germplasm in Southwest China. Cereal Res. Commun. 48, 65–70. doi: 10.1007/s42976-020-00015-2 DOI

Chhetri M., Bariana H., Wong D., Sohail Y., Hayden M., Bansal U. (2017). Development of robust molecular markers for marker-assisted selection of leaf rust resistance gene Lr23 in common and durum wheat breeding programs. Mol. Breed. 37, 1–8. doi: 10.1007/s11032-017-0628-6 PubMed DOI

Chu C., Wang S., Paetzold L., Wang Z., Hui K., Rudd J. C., et al. . (2021). RNA-seq analysis reveals different drought tolerance mechanisms in two broadly adapted wheat cultivars ‘TAM 111’ and ‘TAM 112’. Sci. Rep. 11:4301. doi: 10.1038/s41598-021-83372-0, PMID: PubMed DOI PMC

Corredor-Moreno P., Minter F., Davey P. E., Wegel E., Kular B., Brett P., et al. . (2021). The branched-chain amino acid aminotransferase TaBCAT1 modulates amino acid metabolism and positively regulates wheat rust susceptibility. Plant Cell 33, 1728–1747. doi: 10.1093/plcell/koab049, PMID: PubMed DOI PMC

Corsi B., Obinu L., Zanella C. M., Cutrupi S., Day R., Geyer M., et al. . (2021). Identification of eight QTL controlling multiple yield components in a German multi-parental wheat population, including Rht24, WAPO-A1, WAPO-B1 and genetic loci on chromosomes 5A and 6A. Theor. Appl. Genet. 134, 1435–1454. doi: 10.1007/s00122-021-03781-7, PMID: PubMed DOI PMC

Crain J., Mondal S., Rutkoski J., Singh R. P., Poland J. (2018). Combining high-throughput phenotyping and genomic information to increase prediction and selection accuracy in wheat breeding. Plant Genome 11:170043. doi: 10.3835/plantgenome2017.05.0043, PMID: PubMed DOI

Crossa J., Burgueño J., Cornelius P. L., McLaren G., Trethowan R., Krishnamachari A. (2006). Modeling genotype × environment interaction using additive genetic covariances of relatives for predicting breeding values of wheat genotypes. Crop. Sci. 46, 1722–1733. doi: 10.2135/cropsci2005.11-0427 DOI

Crossa J., Jarquín D., Franco J., Pérez-Rodríguez P., Burgueño J., Saint-Pierre C., et al. . (2016). Genomic prediction of gene bank wheat landraces. G3 6, 1819–1834. doi: 10.1534/g3.116.029637 PubMed DOI PMC

Cui F., Zhang N., Fan X. L., Zhang W., Zhao C. H., Yang L. J., et al. . (2017). Utilization of a Wheat660K SNP array-derived high-density genetic map for high-resolution mapping of a major QTL for kernel number. Sci. Rep. 7, 1–12. doi: 10.1038/s41598-017-04028-6 PubMed DOI PMC

Danilevicz M. F., Tay Fernandez C. G., Marsh J. I., Bayer P. E., Edwards D. (2020). Plant pangenomics: approaches, applications and advancements. Curr. Opin. Plant Biol. 54, 18–25. doi: 10.1016/j.pbi.2019.12.005, PMID: PubMed DOI

Das S., Singh M., Srivastava R., Bajaj D., Saxena M. S., Rana J. C., et al. . (2015). MQTL-seq delineates functionally relevant candidate gene harbouring a major QTL regulating pod number in chickpea. DNA Res. 23, 53–65. doi: 10.1093/dnares/dsv036 PubMed DOI PMC

De La Fuente G. N., Frei U. K., Lübberstedt T. (2013). Accelerating plant breeding. Trends Plant Sci. 18, 667–672. doi: 10.1016/j.tplants.2013.09.001, PMID: PubMed DOI

de los Campos G., Pérez-Rodríguez P., Bogard M., Gouache D., Crossa J. (2020). A data-driven simulation platform to predict cultivars’ performances under uncertain weather conditions. Nat. Commun. 11, 1–10. doi: 10.1038/s41467-020-18480-y PubMed DOI PMC

Debernardi J. M., Tricoli D. M., Ercoli M. F., Hayta S., Ronald P., Palatnik J. F., et al. . (2020). A GRF–GIF chimeric protein improves the regeneration efficiency of transgenic plants. Nat. Biotechnol. 38, 1274–1279. doi: 10.1038/s41587-020-0703-0, PMID: PubMed DOI PMC

Devadas R., Lamb D. W., Backhouse D., Simpfendorfer S. (2015). Sequential application of hyperspectral indices for delineation of stripe rust infection and nitrogen deficiency in wheat. Precis. Agric. 16, 477–491. doi: 10.1007/s11119-015-9390-0 DOI

Devaux P., Cistué L. (2016). “Wheat doubled haploids : production to sequencing - what makes them so appealing ? What is haplodiploidisation ? Doubled haploid production in wheat,” in The World Wheat Book, A History of Wheat Breeding. eds. Bonjean A., Angus W. J., Ginkel V. M. (Paris, France: Lavoisier Tec & doc; ), 885–938.

Dinh H. X., Singh D., Periyannan S., Park R. F., Pourkheirandish M. (2020). Molecular genetics of leaf rust resistance in wheat and barley. Theor. Appl. Genet. 133, 2035–2050. doi: 10.1007/s00122-020-03570-8, PMID: PubMed DOI

Dong L., Wang F., Liu T., Dong Z., Li A., Jing R., et al. . (2014). Natural variation of TaGASR7-A1 affects grain length in common wheat under multiple cultivation conditions. Mol. Breed. 34, 937–947. doi: 10.1007/s11032-014-0087-2 DOI

Dorado G., Gálvez S., Budak H., Unver T., Hernández P. (2019). “Nucleic-acid sequencing,” in Encyclopedia of Biomedical Engineering. ed. Caplan M. (Amsterdam: Elsevier; ), 443–460.

Edwards D., Wilcox S., Barrero R. A., Fleury D., Cavanagh C. R., Forrest K. L., et al. . (2012). Bread matters: a national initiative to profile the genetic diversity of Australian wheat. Plant Biotechnol. J. 10, 703–708. doi: 10.1111/j.1467-7652.2012.00717.x, PMID: PubMed DOI

El Beji I. H. S., Mouzeyar S., Bouzidi M. F., Roche J. (2019). Expansion and functional diversification of SKP1-like genes in wheat (Triticum aestivum L.). Int. J. Mol. Sci. 20:3295. doi: 10.3390/ijms20133295, PMID: PubMed DOI PMC

ElBasyoni I., Saadalla M., Baenziger S., Bockelman H., Morsy S. (2017). Cell membrane stability and association mapping for drought and heat tolerance in a worldwide wheat collection. Sustainability 9:1606. doi: 10.3390/su9091606 DOI

Fang Z.-W., He Y.-Q., Liu Y.-K., Jiang W.-Q., Song J.-H., Wang S. P., et al. . (2020a). Bioinformatic identification and analyses of the non-specific lipid transfer proteins in wheat. J. Integr. Agric. 19, 1170–1185. doi: 10.1016/S2095-3119(19)62776-0, PMID: PubMed DOI

Fang Z., Jiang W., He Y., Ma D., Liu Y., Wang S., et al. . (2020b). Genome-wide identification, structure characterization, and expression profiling of Dof transcription factor gene family in wheat (Triticum aestivum L.). Agronomy 10:294. doi: 10.3390/agronomy10020294 DOI

Faris J. D., Zhang Z., Lu H., Lu S., Reddy L., Cloutier S., et al. . (2010). A unique wheat disease resistance-like gene governs effector-triggered susceptibility to necrotrophic pathogens. Proc. Natl. Acad. Sci. 107, 13544–13549. doi: 10.1073/pnas.1004090107, PMID: PubMed DOI PMC

Francis J., Skific N. (2015). Evidence linking rapid Arctic warming to mid-latitude weather patterns. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 373, 1–12. doi: 10.1098/rsta.2014.0170, PMID: PubMed DOI PMC

Fu D., Uauy C., Distelfeld A., Blechl A., Epstein L., Chen X., et al. . (2009). A kinase-START gene confers temperature-dependent resistance to wheat stripe rust. Science 323, 1357–1360. doi: 10.1126/science.1166289, PMID: PubMed DOI PMC

Gaggar P., Kumar M., Mukhopadhyay K. (2020). Genome-scale identification, in silico characterization and interaction study between wheat SNARE and NPSN gene families involved in vesicular transport. IEEE/ACM Trans. Comput. Biol. Bioinforma. 18, 2492–2501. doi: 10.1109/tcbb.2020.2981896 PubMed DOI

Gálvez S., Agostini F., Caselli J., Hernández P., Dorado G. (2021). BLVector: fast BLAST-like algorithm for manycore CPU with vectorization. Front. Genet. 12:100. doi: 10.3389/fgene.2021.618659, PMID: PubMed DOI PMC

Gálvez S., Ferusic A., Esteban F. J., Hernández P., Caballero J. A., Dorado G. (2016). Speeding-up bioinformatics algorithms with heterogeneous architectures: highly heterogeneous smith-waterman (HHeterSW). J. Comput. Biol. 23, 801–809. doi: 10.1089/cmb.2015.0237, PMID: PubMed DOI

Gálvez S., Mérida-García R., Camino C., Borrill P., Abrouk M., Ramírez-González R. H., et al. . (2019). Hotspots in the genomic architecture of field drought responses in wheat as breeding targets. Funct. Integr. Genomics 19, 295–309. doi: 10.1007/s10142-018-0639-3, PMID: PubMed DOI PMC

Genc Y., Oldach K., Verbyla A. P., Lott G., Hassan M., Tester M., et al. . (2010). Sodium exclusion QTL associated with improved seedling growth in bread wheat under salinity stress. Theor. Appl. Genet. 121, 877–894. doi: 10.1007/s00122-010-1357-y, PMID: PubMed DOI

Genc Y., Taylor J., Rongala J., Oldach K. (2014). A major locus for chloride accumulation on chromosome 5A in bread wheat. PLoS One 9:e98845. doi: 10.1371/journal.pone.0098845, PMID: PubMed DOI PMC

Gil-Humanes J., Wang Y., Liang Z., Shan Q., Ozuna C. V., Sánchez-León S., et al. . (2017). High-efficiency gene targeting in hexaploid wheat using DNA replicons and CRISPR/Cas9. Plant J. 89, 1251–1262. doi: 10.1111/tpj.13446, PMID: PubMed DOI PMC

Golan G., Hendel E., Méndez Espitia G. E., Schwartz N., Peleg Z. (2018). Activation of seminal root primordia during wheat domestication reveals underlying mechanisms of plant resilience. Plant Cell Environ. 41, 755–766. doi: 10.1111/pce.13138, PMID: PubMed DOI

Golicz A. A., Bayer P. E., Bhalla P. L., Batley J., Edwards D. (2020). Pangenomics comes of age: from bacteria to plant and animal applications. Trends Genet. 36, 132–145. doi: 10.1016/j.tig.2019.11.006, PMID: PubMed DOI

Guo J., Khan J., Pradhan S., Shahi D., Khan N., Avci M., et al. . (2020a). Multi-trait genomic prediction of yield-related traits in US soft wheat under variable water regimes. Genes 11:1270. doi: 10.3390/genes11111270 PubMed DOI PMC

Guo J., Ren Y., Tang Z., Shi W., Zhou M. (2019). Characterization and expression profiling of the ICE-CBF-COR genes in wheat. PeerJ 2019, 1–19. doi: 10.7717/peerj.8190 PubMed DOI PMC

Guo Y., Zhang G., Guo B., Qu C., Zhang M., Kong F., et al. . (2020b). QTL mapping for quality traits using a highdensity genetic map of wheat. PLoS One 15:e0230601. doi: 10.1371/journal.pone.0230601 PubMed DOI PMC

Henningsen E. C., Omidvar V., Coletta R. D., Michno J.-M., Gilbert E., Li F., et al. . (2021). Identification of candidate susceptibility genes to Puccinia graminis f. sp. tritici in wheat. bioRxiv [Preprint], 2021.01.23.427871. doi:10.1101/2021.01.23.427871 PubMed DOI PMC

Hiebert C. W., Moscou M. J., Hewitt T., Steuernagel B., Hernández-Pinzón I., Green P., et al. . (2020). Stem rust resistance in wheat is suppressed by a subunit of the mediator complex. Nat. Commun. 11, 1–10. doi: 10.1038/s41467-020-14937-2 PubMed DOI PMC

Holman F. H., Riche A. B., Michalski A., Castle M., Wooster M. J., Hawkesford M. J. (2016). High throughput field phenotyping of wheat plant height and growth rate in field plot trials using UAV based remote sensing. Remote Sens. (Basel) 8:1031. doi: 10.3390/rs8121031 DOI

Hourcade D., Bogard M., Bonnefoy M., Savignard F., Mohamadi F., Lafarge S., et al. . (2019). Genome-wide association analysis of resistance to wheat spindle streak mosaic virus in bread wheat. Plant Pathol. 68, 609–616. doi: 10.1111/ppa.12972 DOI

Hu M. J., Zhang H. P., Cao J. J., Zhu X. F., Wang S. X., Jiang H., et al. . (2016a). Characterization of an IAA-glucose hydrolase gene TaTGW6 associated with grain weight in common wheat (Triticum aestivum L.). Mol. Breed. 36, 1–11. doi: 10.1007/s11032-016-0449-z DOI

Hu M. J., Zhang H. P., Liu K., Cao J. J., Wang S. X., Jiang H., et al. . (2016b). Cloning and characterization of TaTGW-7A gene associated with grain weight in wheat via SLAF-seq-BSA. Front. Plant Sci. 7:1902. doi: 10.3389/fpls.2016.01902 PubMed DOI PMC

Hu P., Zheng Q., Luo Q., Teng W., Li H., Li B., et al. . (2021). Genome-wide association study of yield and related traits in common wheat under salt-stress conditions. BMC Plant Biol. 21:27. doi: 10.1186/s12870-020-02799-1, PMID: PubMed DOI PMC

Huang L., Brooks S. A., Li W., Fellers J. P., Trick H. N., Gill B. S. (2003). Map-based cloning of leaf rust resistance gene Lr21 from the large and polyploid genome of bread wheat. Genetics 164, 655–664. doi: 10.1093/genetics/164.2.655, PMID: PubMed DOI PMC

Hurni S., Brunner S., Buchmann G., Herren G., Jordan T., Krukowski P., et al. . (2013). Rye Pm8 and wheat Pm3 are orthologous genes and show evolutionary conservation of resistance function against powdery mildew. Plant J. 76, 957–969. doi: 10.1111/tpj.12345, PMID: PubMed DOI

Hussain B., Khan A. S., Ali Z. (2015). Genetic variation in wheat germplasm for salinity tolerance at seedling stage: improved statistical inference. Turkish J. Agric. For. 39, 182–192. doi: 10.3906/tar-1404-114 DOI

Hussain B., Lucas S. J., Budak H. (2018). CRISPR/Cas9 in plants: at play in the genome and at work for crop improvement. Brief. Funct. Genomics 17, 319–328. doi: 10.1093/bfgp/ely016, PMID: PubMed DOI

Hussain B., Lucas S. J., Ozturk L., Budak H. (2017a). Mapping QTLs conferring salt tolerance and micronutrient concentrations at seedling stagein wheat. Sci. Rep. 7:15662. doi: 10.1038/s41598-017-15726-6 PubMed DOI PMC

Hussain W., Stephen Baenziger P., Belamkar V., Guttieri M. J., Venegas J. P., Easterly A., et al. . (2017b). Genotyping-by-sequencing derived high-density linkage map and its application to QTL mapping of flag leaf traits in bread wheat. Sci. Rep. 7, 1–15. doi: 10.1038/s41598-017-16006-z PubMed DOI PMC

Iehisa J. C. M., Matsuura T., Mori I. C., Yokota H., Kobayashi F., Takumi S. (2014). Identification of quantitative trait loci for abscisic acid responsiveness in the D-genome of hexaploid wheat. J. Plant Physiol. 171, 830–841. doi: 10.1016/j.jplph.2014.02.003, PMID: PubMed DOI

IWGSC (2014). A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science 345:1251788. doi: 10.1126/science.1251788 PubMed DOI

Jannink J. L., Lorenz A. J., Iwata H. (2010). Genomic selection in plant breeding: from theory to practice. Brief. Funct. Genomic. Proteomic. 9, 166–177. doi: 10.1093/bfgp/elq001 PubMed DOI

Jiang Y., Schulthess A. W., Rodemann B., Ling J., Plieske J., Kollers S., et al. . (2017). Validating the prediction accuracies of marker-assisted and genomic selection of fusarium head blight resistance in wheat using an independent sample. Theor. Appl. Genet. 130, 471–482. doi: 10.1007/s00122-016-2827-7, PMID: PubMed DOI

Jiang W., Yang L., He Y., Zhang H., Li W., Chen H., et al. . (2019). Genome-wide identification and transcriptional expression analysis of superoxide dismutase (SOD) family in wheat (Triticum aestivum). PeerJ 7:e8062. doi: 10.7717/peerj.8062, PMID: PubMed DOI PMC

Jiang W., Yin J., Zhang H., He Y., Shuai S., Chen S., et al. . (2020). Genome-wide identification, characterization analysis and expression profiling of auxin-responsive GH3 family genes in wheat (Triticum aestivum L.). Mol. Biol. Rep. 47, 3885–3907. doi: 10.1007/s11033-020-05477-5, PMID: PubMed DOI

Jin J., Liu D., Qi Y., Ma J., Zhen W. (2020). Major QTL for seven yield-related traits in common wheat (Triticum aestivum L.). Front. Genet. 11:1012. doi: 10.3389/fgene.2020.01012, PMID: PubMed DOI PMC

Jin H., Wen W., Liu J., Zhai S., Zhang Y., Yan J., et al. . (2016). Genome-wide QTL mapping for wheat processing quality parameters in a Gaocheng 8901/Zhoumai 16 recombinant inbred line population. Front. Plant Sci. 7:1032. doi: 10.3389/fpls.2016.01032, PMID: PubMed DOI PMC

Jin Y., Zhai S., Wang W., Ding X., Guo Z., Bai L., et al. . (2018). Identification of genes from the ICE–CBF–COR pathway under cold stress in Aegilops–Triticum composite group and the evolution analysis with those from Triticeae. Physiol. Mol. Biol. Plants 24, 211–229. doi: 10.1007/s12298-017-0495-y, PMID: PubMed DOI PMC

Jouanin A., Boyd L., Visser R. G. F., Smulders M. J. M. (2018). Development of wheat with hypoimmunogenic gluten obstructed by the gene editing policy in europe. Front. Plant Sci. 9:1523. doi: 10.3389/fpls.2018.01523, PMID: PubMed DOI PMC

Juliana P., Singh R. P., Singh P. K., Crossa J., Huerta-Espino J., Lan C., et al. . (2017a). Genomic and pedigree-based prediction for leaf, stem, and stripe rust resistance in wheat. Theor. Appl. Genet. 130, 1415–1430. doi: 10.1007/s00122-017-2897-1 PubMed DOI PMC

Juliana P., Singh R. P., Singh P. K., Crossa J., Rutkoski J. E., Poland J. A., et al. . (2017b). Comparison of models and whole-genome profiling approaches for genomic-enabled prediction of Septoria tritici blotch, Stagonospora nodorum blotch, and tan spot resistance in wheat. Plant Genome 10, 1–16. doi: 10.3835/plantgenome2016.08.0082 PubMed DOI

Kandel J. S., Huang M., Zhang Z., Skinner D. Z., See D. R. (2018). Genetic diversity of clinal freezing tolerance variation in winter wheat landraces. Agronomy 8:95. doi: 10.3390/agronomy8060095 DOI

Kaur P., Yadav I. S., Yadav B., Mahato A., Gupta O. P., Dolezel J., et al. . (2019). In silico annotation of 458 genes identified from comparative analysis of full length cDNAs and NextGen sequence of chromosome 2A of hexaploid wheat. J. Plant Biochem. Biotechnol. 28, 25–34. doi: 10.1007/s13562-018-0460-z DOI

Kelley L. A., Mezulis S., Yates C. M., Wass M. N., Sternberg M. J. E. (2015). The Phyre2 web portal for protein modeling, prediction and analysis. Nat. Protoc. 10, 845–858. doi: 10.1038/nprot.2015.053, PMID: PubMed DOI PMC

Kim D., Alptekin B., Budak H. (2018). CRISPR/Cas9 genome editing in wheat. Funct. Integr. Genomics 18, 31–41. doi: 10.1007/s10142-017-0572-x, PMID: PubMed DOI

Klymiuk V., Fatiukha A., Fahima T. (2019). Wheat tandem kinases provide insights on disease-resistance gene flow and host–parasite co-evolution. Plant J. 98, 667–679. doi: 10.1111/tpj.14264 PubMed DOI

Klymiuk V., Fatiukha A., Raats D., Bocharova V., Huang L., Feng L., et al. . (2020). Three previously characterized resistances to yellow rust are encoded by a single locus Wtk1. J. Exp. Bot. 71, 2561–2572. doi: 10.1093/jxb/eraa020, PMID: PubMed DOI PMC

Klymiuk V., Yaniv E., Huang L., Raats D., Fatiukha A., Chen S., et al. . (2018). Cloning of the wheat Yr15 resistance gene sheds light on the plant tandem kinase-pseudokinase family. Nat. Commun. 9, 1–12. doi: 10.1038/s41467-018-06138-9 PubMed DOI PMC

Kraic J., Mihálik D., Klčová L., Gubišová M., Klempová T., Hudcovicová M., et al. . (2018). Progress in the genetic engineering of cereals to produce essential polyunsaturated fatty acids. J. Biotechnol. 284, 115–122. doi: 10.1016/j.jbiotec.2018.08.009, PMID: PubMed DOI

Krasileva K. V., Vasquez-Gross H. A., Howell T., Bailey P., Paraiso F., Clissold L., et al. . (2017). Uncovering hidden variation in polyploid wheat. Proc. Natl. Acad. Sci. U. S. A. 114, E913–E921. doi: 10.1073/pnas.1619268114, PMID: PubMed DOI PMC

Krattinger S. G., Lagudah E. S., Spielmeyer W., Singh R. P., Huerta-Espino J., McFadden H., et al. . (2009). A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. Science 323, 1360–1363. doi: 10.1126/science.1166453, PMID: PubMed DOI

Kristensen P. S., Jahoor A., Andersen J. R., Cericola F., Orabi J., Janss L. L., et al. . (2018). Genome-wide association studies and comparison of models and cross-validation strategies for genomic prediction of quality traits in advanced winter wheat breeding lines. Front. Plant Sci. 9:69. doi: 10.3389/fpls.2018.00069, PMID: PubMed DOI PMC

Kruse E. B., Carle S. W., Wen N., Skinner D. Z., Murray T. D., Garland-Campbell K. A., et al. . (2017). Genomic regions associated with tolerance to freezing stress and snow mold in winter wheat. G3 7, 775–780. doi: 10.1534/g3.116.037622 PubMed DOI PMC

Kuzay S., Xu Y., Zhang J., Katz A., Pearce S., Su Z., et al. . (2019). Identification of a candidate gene for a QTL for spikelet number per spike on wheat chromosome arm 7AL by high-resolution genetic mapping. Theor. Appl. Genet. 132, 2689–2705. doi: 10.1007/s00122-019-03382-5, PMID: PubMed DOI PMC

Lai K., Lorenc M. T., Lee H. C., Berkman P. J., Bayer P. E., Visendi P., et al. . (2015). Identification and characterization of more than 4 million intervarietal SNPs across the group 7 chromosomes of bread wheat. Plant Biotechnol. J. 13, 97–104. doi: 10.1111/pbi.12240, PMID: PubMed DOI

Lange T. M., Heinrich F., Enders M., Wolf M., Schmitt A. O. (2020). In silico quality assessment of SNPs—a case study on the axiom® wheat genotyping arrays. Curr. Plant Biol. 21:100140. doi: 10.1016/j.cpb.2020.100140 DOI

Larkin D. L., Lozada D. N., Mason R. E. (2019). Genomic selection—considerations for successful implementation in wheat breeding programs. Agronomy 9:479. doi: 10.3390/agronomy9090479 DOI

Li M., Dong L., Li B., Wang Z., Xie J., Qiu D., et al. . (2020). A CNL protein in wild emmer wheat confers powdery mildew resistance. New Phytol. 228, 1027–1037. doi: 10.1111/nph.16761, PMID: PubMed DOI

Li Y., Fu X., Zhao M., Zhang W., Li B., An D., et al. . (2018b). A genome-wide view of transcriptome dynamics during early spike development in bread wheat. Sci. Rep. 8, 1–16. doi: 10.1038/s41598-018-33718-y PubMed DOI PMC

Li M., Li B., Guo G., Chen Y., Xie J., Lu P., et al. . (2018a). Mapping a leaf senescence gene els1 by BSR-Seq in common wheat. Crop J. 6, 236–243. doi: 10.1016/j.cj.2018.01.004 DOI

Liang Z., Chen K., Li T., Zhang Y., Wang Y., Zhao Q., et al. . (2017). Efficient DNA-free genome editing of bread wheat using CRISPR/Cas9 ribonucleoprotein complexes. Nat. Commun. 8, 1–5. doi: 10.1038/ncomms14261 PubMed DOI PMC

Liang Z., Chen K., Zhang Y., Liu J., Yin K., Qiu J.-L., et al. . (2018). Genome editing of bread wheat using biolistic delivery of CRISPR/Cas9 in vitro transcripts or ribonucleoproteins. Nat. Protoc. 13, 413–430. doi: 10.1038/nprot.2017.145, PMID: PubMed DOI

Liu S., Bai G., Lin M., Luo M., Zhang D., Jin F., et al. . (2020). Identification of candidate chromosome region of Sbwm1 for soil-borne wheat mosaic virus resistance in wheat. Sci. Rep. 10, 1–11. doi: 10.1038/s41598-020-64993-3 PubMed DOI PMC

Liu S., Yang X., Zhang D., Bai G., Chao S., Bockus W. (2014). Genome-wide association analysis identified SNPs closely linked to a gene resistant to soil-borne wheat mosaic virus. Theor. Appl. Genet. 127, 1039–1047. doi: 10.1007/s00122-014-2277-z, PMID: PubMed DOI

Lopes M. S., Dreisigacker S., Peña R. J., Sukumaran S., Reynolds M. P. (2015). Genetic characterization of the wheat association mapping initiative (WAMI) panel for dissection of complex traits in spring wheat. Theor. Appl. Genet. 128, 453–464. doi: 10.1007/s00122-014-2444-2, PMID: PubMed DOI

Lu P., Guo L., Wang Z., Li B., Li J., Li Y., et al. . (2020). A rare gain of function mutation in a wheat tandem kinase confers resistance to powdery mildew. Nat. Commun. 11:680. doi: 10.1038/s41467-020-14294-0, PMID: PubMed DOI PMC

Luo M., Xie L., Chakraborty S., Wang A., Matny O., Jugovich M., et al. . (2021). A five-transgene cassette confers broad-spectrum resistance to a fungal rust pathogen in wheat. Nat. Biotechnol. 39, 561–566. doi: 10.1038/s41587-020-00770-x, PMID: PubMed DOI

Ma D., Yan J., He Z., Wu L., Xia X. (2012). Characterization of a cell wall invertase gene TaCwi-A1 on common wheat chromosome 2A and development of functional markers. Mol. Breed. 29, 43–52. doi: 10.1007/s11032-010-9524-z DOI

Mackay I. J., Cockram J., Howell P., Powell W. (2021). Understanding the classics: the unifying concepts of transgressive segregation, inbreeding depression and heterosis and their central relevance for crop breeding. Plant Biotechnol. J. 19, 26–34. doi: 10.1111/pbi.13481, PMID: PubMed DOI PMC

Manickavelu A., Hattori T., Yamaoka S., Yoshimura K., Kondou Y., Onogi A., et al. . (2017). Genetic nature of elemental contents in wheat grains and its genomic prediction: toward the effective use of wheat landraces from Afghanistan. PLoS One 12:e0169416. doi: 10.1371/journal.pone.0169416, PMID: PubMed DOI PMC

Marchal C., Zhang J., Zhang P., Fenwick P., Steuernagel B., Adamski N. M., et al. . (2018). BED-domain-containing immune receptors confer diverse resistance spectra to yellow rust. Nat. Plants 4, 662–668. doi: 10.1038/s41477-018-0236-4, PMID: PubMed DOI

Mérida-García R., Gálvez S., Paux E., Dorado G., Pascual L., Giraldo P., et al. . (2020). High resolution melting and insertion site-based polymorphism markers for wheat variability analysis and candidate genes selection at drought and heat MQTL loci. Agronomy 10:1294. doi: 10.3390/agronomy10091294 DOI

Meuwissen T. H. E. E., Hayes B. J., Goddard M. E. (2001). Prediction of total genetic value using genome-wide dense marker maps. Genetics 157, 1819–1829. doi: 10.1093/genetics/157.4.1819, PMID: PubMed DOI PMC

Michelmore R. W., Paran I., Kesseli R. V. (1991). Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc. Natl. Acad. Sci. U. S. A. 88, 9828–9832. doi: 10.1073/pnas.88.21.9828, PMID: PubMed DOI PMC

Milner S. G., Jost M., Taketa S., Mazón E. R., Himmelbach A., Oppermann M., et al. . (2019). Genebank genomics highlights the diversity of a global barley collection. Nat. Genet. 51, 319–326. doi: 10.1038/s41588-018-0266-x, PMID: PubMed DOI

Moore J. W., Herrera-Foessel S., Lan C., Schnippenkoetter W., Ayliffe M., Huerta-Espino J., et al. . (2015). A recently evolved hexose transporter variant confers resistance to multiple pathogens in wheat. Nat. Genet. 47, 1494–1498. doi: 10.1038/ng.3439, PMID: PubMed DOI

Nakaya A., Isobe S. N. (2012). Will genomic selection be a practical method for plant breeding? Ann. Bot. 110, 1303–1316. doi: 10.1093/aob/mcs109, PMID: PubMed DOI PMC

Nilsen K. T., Walkowiak S., Xiang D., Gao P., Quilichini T. D., Willick I. R., et al. . (2020). Copy number variation of TdDof controls solid-stemmed architecture in wheat. Proc. Natl. Acad. Sci. U. S. A. 117, 28708–28718. doi: 10.1073/pnas.2009418117, PMID: PubMed DOI PMC

Okada A., Arndell T., Borisjuk N., Sharma N., Watson-Haigh N. S., Tucker E. J., et al. . (2019). CRISPR/Cas9-mediated knockout of Ms1 enables the rapid generation of male-sterile hexaploid wheat lines for use in hybrid seed production. Plant Biotechnol. J. 17, 1905–1913. doi: 10.1111/pbi.13106, PMID: PubMed DOI PMC

Oyiga B. C., Sharma R. C., Baum M., Ogbonnaya F. C., Léon J., Ballvora A. (2018). Allelic variations and differential expressions detected at quantitative trait loci for salt stress tolerance in wheat. Plant Cell Environ. 41, 919–935. doi: 10.1111/pce.12898, PMID: PubMed DOI

Pang Y., Liu C., Wang D., St. Amand P., Bernardo A., Li W., et al. . (2020). High-resolution genome-wide association study identifies genomic regions and candidate genes for important agronomic traits in wheat. Mol. Plant 13, 1311–1327. doi: 10.1016/j.molp.2020.07.008, PMID: PubMed DOI

Periyannan S., Moore J., Ayliffe M., Bansal U., Wang X., Huang L., et al. . (2013). The gene Sr33, an ortholog of barley Mla genes, encodes resistance to wheat stem rust race Ug99. Science 341, 786–788. doi: 10.1126/science.1239028 PubMed DOI

Petersen G., Seberg O., Yde M., Berthelsen K. (2006). Phylogenetic relationships of Triticum and Aegilops and evidence for the origin of the A, B, and D genomes of common wheat (Triticum aestivum). Mol. Phylogenet. Evol. 39, 70–82. doi: 10.1016/j.ympev.2006.01.023, PMID: PubMed DOI

Quraishi U. M., Pont C., Ain Q., Flores R., Burlot L., Alaux M., et al. . (2017). Combined genomic and genetic data integration of major agronomical traits in bread wheat (Triticum aestivum L.). Front. Plant Sci. 8:1843. doi: 10.3389/fpls.2017.01843, PMID: PubMed DOI PMC

Raman R., Allen H., Diffey S., Raman H., Martin P., McKelvie K. (2009). Localisation of quantitative trait loci for quality attributes in a doubled haploid population of wheat (Triticum aestivum L.). Genome 52, 701–715. doi: 10.1139/G09-045, PMID: PubMed DOI

Ramirez-Gonzalez R. H., Segovia V., Bird N., Fenwick P., Holdgate S., Berry S., et al. . (2015). RNA-Seq bulked segregant analysis enables the identification of high-resolution genetic markers for breeding in hexaploid wheat. Plant Biotechnol. J. 13, 613–624. doi: 10.1111/pbi.12281, PMID: PubMed DOI

Ran Y., Patron N., Kay P., Wong D., Buchanan M., Cao Y.-Y., et al. . (2018). Zinc finger nuclease-mediated precision genome editing of an endogenous gene in hexaploid bread wheat (Triticum aestivum) using a DNA repair template. Plant Biotechnol. J. 16, 2088–2101. doi: 10.1111/pbi.12941, PMID: PubMed DOI PMC

Raza Q., Riaz A., Atif R. M., Hussain B., Ali Z., Budak H., et al. . (2021). Genome-wide diversity of MADS-Box genes in bread wheat is associated with its rapid global adaptability. Front. Genet. 12:818880. doi: 10.3389/fgene.2021.818880, PMID: PubMed DOI PMC

Reynolds M., Langridge P. (2016). Physiological breeding. Curr. Opin. Plant Biol. 31, 162–171. doi: 10.1016/j.pbi.2016.04.005, PMID: PubMed DOI

Rocha-Meneses L., Ferreira J. A., Mushtaq M., Karimi S., Orupõld K., Kikas T. (2020). Genetic modification of cereal plants: a strategy to enhance bioethanol yields from agricultural waste. Ind. Crop Prod. 150:112408. doi: 10.1016/j.indcrop.2020.112408 DOI

Ru Z., Juhasz A., Li D., Deng P., Zhao J., Gao L., et al. . (2020). 1RS.1BL molecular resolution provides novel contributions to wheat improvement. bioRxiv [Preprint], 1–35. doi:10.1101/2020.09.14.295733 DOI

Rutkoski J., Poland J., Mondal S., Autrique E., Pérez L. G., Crossa J., et al. . (2016). Canopy temperature and vegetation indices from high-throughput phenotyping improve accuracy of pedigree and genomic selection for grain yield in wheat. G3 6, 2799–2808. doi: 10.1534/g3.116.032888 PubMed DOI PMC

Saint Pierre C., Burgueño J., Crossa J., Fuentes Dávila G., Figueroa López P., Solís Moya E., et al. . (2016). Genomic prediction models for grain yield of spring bread wheat in diverse agro-ecological zones. Sci. Rep. 6, 1–11. doi: 10.1038/srep27312 PubMed DOI PMC

Saintenac C., Cambon F., Aouini L., Verstappen E., Ghaffary S. M. T., Poucet T., et al. . (2021). A wheat cysteine-rich receptor-like kinase confers broad-spectrum resistance against Septoria tritici blotch. Nat. Commun. 12:433. doi: 10.1038/s41467-020-20685-0, PMID: PubMed DOI PMC

Saintenac C., Lee W.-S., Cambon F., Rudd J. J., King R. C., Marande W., et al. . (2018). Wheat receptor-kinase-like protein Stb6 controls gene-for-gene resistance to fungal pathogen Zymoseptoria tritici. Nat. Genet. 50, 368–374. doi: 10.1038/s41588-018-0051-x, PMID: PubMed DOI

Saintenac C., Zhang W., Salcedo A., Rouse M. N., Trick H. N., Akhunov E., et al. . (2013). Identification of wheat gene Sr35 that confers resistance to Ug99 stem rust race group. Science 341, 783–786. doi: 10.1126/science.1239022, PMID: PubMed DOI PMC

Sánchez-León S., Gil-Humanes J., Ozuna C. V., Giménez M. J., Sousa C., Voytas D. F., et al. . (2018). Low-gluten, nontransgenic wheat engineered with CRISPR/Cas9. Plant Biotechnol. J. 16, 902–910. doi: 10.1111/pbi.12837, PMID: PubMed DOI PMC

Sánchez-Martín J., Steuernagel B., Ghosh S., Herren G., Hurni S., Adamski N., et al. . (2016). Rapid gene isolation in barley and wheat by mutant chromosome sequencing. Genome Biol. 17, 221. doi: 10.1186/s13059-016-1082-1 PubMed DOI PMC

Scheben A., Edwards D. (2017). Genome editors take on crops. Science 355, 1122–1123. doi: 10.1126/science.aal4680, PMID: PubMed DOI

Scheben A., Wolter F., Batley J., Puchta H., Edwards D. (2017). Towards CRISPR/Cas crops—bringing together genomics and genome editing. New Phytol. 216, 682–698. doi: 10.1111/nph.14702, PMID: PubMed DOI

Schrag T. A., Westhues M., Schipprack W., Seifert F., Thiemann A., Scholten S., et al. . (2018). Beyond genomic prediction: combining different types of omics data can improve prediction of hybrid performance in maize. Genetics 208, 1373–1385. doi: 10.1534/genetics.117.300374, PMID: PubMed DOI PMC

Sehgal D., Autrique E., Singh R., Ellis M., Singh S., Dreisigacker S. (2017). Identification of genomic regions for grain yield and yield stability and their epistatic interactions. Sci. Rep. 7, 1–12. doi: 10.1038/srep41578 PubMed DOI PMC

Sehgal D., Mondal S., Crespo-Herrera L., Velu G., Juliana P., Huerta-Espino J., et al. . (2020a). Haplotype-based, genome-wide association study reveals stable genomic regions for grain yield in CIMMYT spring bread wheat. Front. Genet. 11:1427. doi: 10.3389/fgene.2020.589490 PubMed DOI PMC

Sehgal D., Rosyara U., Mondal S., Singh R., Poland J., Dreisigacker S. (2020b). Incorporating genome-wide association mapping results into genomic prediction models for grain yield and yield stability in CIMMYT spring bread wheat. Front. Plant Sci. 11:197. doi: 10.3389/fpls.2020.00197 PubMed DOI PMC

Shan Q., Wang Y., Li J., Gao C. (2014). Genome editing in rice and wheat using the CRISPR/Cas system. Nat. Protoc. 9, 2395–2410. doi: 10.1038/nprot.2014.157, PMID: PubMed DOI

Sharma D. K., Torp A. M., Rosenqvist E., Ottosen C.-O., Andersen S. B. (2017). QTLs and potential candidate genes for heat stress tolerance identified from the mapping populations specifically segregating for Fv/Fm in wheat. Front. Plant Sci. 8:1668. doi: 10.3389/fpls.2017.01668, PMID: PubMed DOI PMC

Shi G., Zhang Z., Friesen T. L., Raats D., Fahima T., Brueggeman R. S., et al. . (2016). The hijacking of a receptor kinase-driven pathway by a wheat fungal pathogen leads to disease. Sci. Adv. 2:e1600822. doi: 10.1126/sciadv.1600822, PMID: PubMed DOI PMC

Shokat S., Sehgal D., Vikram P., Liu F., Singh S. (2020). Molecular markers associated with agro-physiological traits under terminal drought conditions in bread wheat. Int. J. Mol. Sci. 21:3156. doi: 10.3390/ijms21093156, PMID: PubMed DOI PMC

Simons K., Anderson J. A., Mergoum M., Faris J. D., Klindworth D. L., Xu S. S., et al. . (2012). Genetic mapping analysis of bread-making quality traits in spring wheat. Crop. Sci. 52:2182. doi: 10.2135/cropsci2012.03.0175, PMID: PubMed DOI

Singh A. K., Singh N., Kumar S., Kumari J., Singh R., Gaba S., et al. . (2020). Identification and evolutionary analysis of polycistronic miRNA clusters in domesticated and wild wheat. Genomics 112, 2334–2348. doi: 10.1016/j.ygeno.2020.01.005, PMID: PubMed DOI

Steuernagel B., Periyannan S. K., Hernández-Pinzón I., Witek K., Rouse M. N., Yu G., et al. . (2016). Rapid cloning of disease-resistance genes in plants using mutagenesis and sequence capture. Nat. Biotechnol. 34, 652–655. doi: 10.1038/nbt.3543, PMID: PubMed DOI

Su Z., Bernardo A., Tian B., Chen H., Wang S., Ma H., et al. . (2019). A deletion mutation in TaHRC confers Fhb1 resistance to Fusarium head blight in wheat. Nat. Genet. 51, 1099–1105. doi: 10.1038/s41588-019-0425-8, PMID: PubMed DOI

Su Z., Hao C., Wang L., Dong Y., Zhang X. (2011). Identification and development of a functional marker of TaGW2 associated with grain weight in bread wheat (Triticum aestivum L.). Theor. Appl. Genet. 122, 211–223. doi: 10.1007/s00122-010-1437-z, PMID: PubMed DOI

Su Z., Jin S., Lu Y., Zhang G., Chao S., Bai G. (2016). Single nucleotide polymorphism tightly linked to a major QTL on chromosome 7A for both kernel length and kernel weight in wheat. Mol. Breed. 36:15. doi: 10.1007/s11032-016-0436-4, PMID: PubMed DOI

Sun H., Lu J., Fan Y., Zhao Y., Kong F., Li R., et al. . (2008). Quantitative trait loci (QTLs) for quality traits related to protein and starch in wheat. Prog. Nat. Sci. 18, 825–831. doi: 10.1016/j.pnsc.2007.12.013, PMID: PubMed DOI

Takagi H., Abe A., Yoshida K., Kosugi S., Natsume S., Mitsuoka C., et al. . (2013a). QTL-seq: rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations. Plant J. 74, 174–183. doi: 10.1111/tpj.12105 PubMed DOI

Takagi H., Uemura A., Yaegashi H., Tamiru M., Abe A., Mitsuoka C., et al. . (2013b). MutMap-gap: whole-genome resequencing of mutant F2 progeny bulk combined with de novo assembly of gap regions identifies the rice blast resistance gene Pii. New Phytol. 200, 276–283. doi: 10.1111/nph.12369 PubMed DOI

Talukder S. K., Babar M. A., Vijayalakshmi K., Poland J., Prasad P. V. V., Bowden R., et al. . (2014). Mapping QTL for the traits associated with heat tolerance in wheat (Triticum aestivum L.). BMC Genet. 15:97. doi: 10.1186/s12863-014-0097-4, PMID: PubMed DOI PMC

Thind A. K., Wicker T., Šimková H., Fossati D., Moullet O., Brabant C., et al. . (2017). Rapid cloning of genes in hexaploid wheat using cultivar-specific long-range chromosome assembly. Nat. Biotechnol. 35, 793–796. doi: 10.1038/nbt.3877, PMID: PubMed DOI

Trick M., Adamski N. M., Mugford S. G., Jiang C. C., Febrer M., Uauy C. (2012). Combining SNP discovery from next- generation sequencing data with bulked segregant analysis (BSA) to fine-map genes in polyploid wheat. BMC Plant Biol. 12:14. doi: 10.1186/1471-2229-12-14, PMID: PubMed DOI PMC

Uauy C., Distelfeld A., Fahima T., Blechl A., Dubcovsky J. (2006). A NAC gene regulating senescence improves grain protein, zinc, and iron content in wheat. Science 314, 1298–1301. doi: 10.1126/science.1133649, PMID: PubMed DOI PMC

Upadhyay S. K., Kumar J., Alok A., Tuli R. (2013). RNA-guided genome editing for target gene mutations in wheat. G3 3, 2233–2238. doi: 10.1534/g3.113.008847, PMID: PubMed DOI PMC

Vágújfalvi A., Galiba G., Cattivelli L., Dubcovsky J. (2003). The cold-regulated transcriptional activator Cbf3 is linked to the frost-tolerance locus Fr-A2 on wheat chromosome 5A. Mol. Genet. Genomics 269, 60–67. doi: 10.1007/s00438-003-0806-6, PMID: PubMed DOI PMC

Voss-Fels K. P., Keeble-Gagnère G., Hickey L. T., Tibbits J., Nagornyy S., Hayden M. J., et al. . (2019). High-resolution mapping of rachis nodes per rachis, a critical determinant of grain yield components in wheat. Theor. Appl. Genet. 132, 2707–2719. doi: 10.1007/s00122-019-03383-4, PMID: PubMed DOI

Walkowiak S., Gao L., Monat C., Haberer G., Kassa M. T., Brinton J., et al. . (2020). Multiple wheat genomes reveal global variation in modern breeding. Nature 2020, 1–7. doi: 10.1038/s41586-020-2961-x PubMed DOI PMC

Wang D., Cao D., Zong Y., Li Y., Wang J., Li Z., et al. . (2021). Bulked QTL-Seq identified a major QTL for the awnless trait in spring wheat cultivars in Qinghai, China. Biotechnol. Biotechnol. Equip. 35, 124–130. doi: 10.1080/13102818.2020.1857661 DOI

Wang Y., Cheng X., Shan Q., Zhang Y., Liu J., Gao C., et al. . (2014). Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat. Biotechnol. 32, 947–951. doi: 10.1038/nbt.2969, PMID: PubMed DOI

Wang Z., Li J., Chen S., Heng Y., Chen Z., Yang J., et al. . (2017). Poaceae-specific MS1 encodes a phospholipid-binding protein for male fertility in bread wheat. Proc. Natl. Acad. Sci. U. S. A. 114, 12614–12619. doi: 10.1073/pnas.1715570114, PMID: PubMed DOI PMC

Wang W., Pan Q., He F., Akhunova A., Chao S., Trick H., et al. . (2018a). Transgenerational CRISPR-Cas9 activity facilitates multiplex gene editing in allopolyploid wheat. Cris. J. 1, 65–74. doi: 10.1089/crispr.2017.0010 PubMed DOI PMC

Wang H., Sun S., Ge W., Zhao L., Hou B., Wang K., et al. . (2020a). Horizontal gene transfer of Fhb7 from fungus underlies Fusarium head blight resistance in wheat. Science 368:eaba5435. doi: 10.1126/science.aba5435 PubMed DOI

Wang Y., Zhang H., Xie J., Guo B., Chen Y., Zhang H., et al. . (2018b). Mapping stripe rust resistance genes by BSR-Seq: YrMM58 and YrHY1 on chromosome 2AS in Chinese wheat lines Mengmai 58 and Huaiyang 1 are Yr17. Crop J. 6, 91–98. doi: 10.1016/j.cj.2017.03.002 DOI

Wang H., Zou S., Li Y., Lin F., Tang D. (2020b). An ankyrin-repeat and WRKY-domain-containing immune receptor confers stripe rust resistance in wheat. Nat. Commun. 11, 1–11. doi: 10.1038/s41467-020-15139-6 PubMed DOI PMC

Watson A., Ghosh S., Williams M. J., Cuddy W. S., Simmonds J., Rey M. D., et al. . (2018). Speed breeding is a powerful tool to accelerate crop research and breeding. Nat. Plants 4, 23–29. doi: 10.1038/s41477-017-0083-8, PMID: PubMed DOI

Wei K., Han P. (2017). Comparative functional genomics of the TPR gene family in Arabidopsis, rice and maize. Mol. Breed. 37, 1–21. doi: 10.1007/s11032-017-0751-4 PubMed DOI

Würschum T., Longin C. F. H., Hahn V., Tucker M. R., Leiser W. L. (2017). Copy number variations of CBF genes at the Fr-A2 locus are essential components of winter hardiness in wheat. Plant J. 89, 764–773. doi: 10.1111/tpj.13424, PMID: PubMed DOI

Xie J., Guo G., Wang Y., Hu T., Wang L., Li J., et al. . (2020). A rare single nucleotide variant in Pm5e confers powdery mildew resistance in common wheat. New Phytol. 228, 1011–1026. doi: 10.1111/nph.16762, PMID: PubMed DOI

Xie K., Minkenberg B., Yang Y. (2015). Boosting CRISPR/Cas9 multiplex editing capability with the endogenous tRNA- processing system. Proc. Natl. Acad. Sci. 112, 3570–3575. doi: 10.1073/pnas.1420294112, PMID: PubMed DOI PMC

Xing L., Hu P., Liu J., Witek K., Zhou S., Xu J., et al. . (2018). Pm21 from Haynaldia villosa encodes a CC-NBS-LRR protein conferring powdery mildew resistance in wheat. Mol. Plant 11, 874–878. doi: 10.1016/j.molp.2018.02.013, PMID: PubMed DOI

Yahiaoui N., Srichumpa P., Dudler R., Keller B. (2004). Genome analysis at different ploidy levels allows cloning of the powdery mildew resistance gene Pm3b from hexaploid wheat. Plant J. 37, 528–538. doi: 10.1046/j.1365-313X.2003.01977.x, PMID: PubMed DOI

Yan L., Loukoianov A., Tranquilli G., Helguera M., Fahima T., Dubcovsky J. (2003). Positional cloning of the wheat vernalization gene VRN1. Proc. Natl. Acad. Sci. U. S. A. 100, 6263–6268. doi: 10.1073/pnas.0937399100, PMID: PubMed DOI PMC

Yang Y., Zhang F., Zhou T., Fang A., Yu Y., Bi C., et al. . (2020). In Silico identification of the full complement of subtilase-encoding genes and characterization of the role of TaSBT1.7 in resistance against stripe rust in wheat. Phytopathology 111, 398–407. doi: 10.1094/phyto-05-20-0176-r PubMed DOI

Yu S., Wu J., Wang M., Shi W., Xia G., Jia J., et al. . (2020). Haplotype variations in QTL for salt tolerance in Chinese wheat accessions identified by marker-based and pedigree-based kinship analyses. Crop J. 8, 1011–1024. doi: 10.1016/j.cj.2020.03.007 DOI

Zanke C. D., Ling J., Plieske J., Kollers S., Ebmeyer E., Korzun V., et al. . (2015). Analysis of main effect QTL for thousand grain weight in European winter wheat (Triticum aestivum L.) by genome-wide association mapping. Front. Plant Sci. 6:644. doi: 10.3389/fpls.2015.00644, PMID: PubMed DOI PMC

Zeng F., Yang L., Gong S., Shi W., Zhang X., Wang H., et al. . (2014). Virulence and diversity of Blumeria graminis f. sp. tritici populations in China. J. Integr. Agric. 13, 2424–2437. doi: 10.1016/S2095-3119(13)60669-3, PMID: PubMed DOI

Zhang Y., Bai Y., Wu G., Zou S., Chen Y., Gao C., et al. . (2017). Simultaneous modification of three homoeologs of TaEDR1 by genome editing enhances powdery mildew resistance in wheat. Plant J. 91, 714–724. doi: 10.1111/tpj.13599, PMID: PubMed DOI

Zhang Y., Liu J., Xia X., He Z. (2014). TaGS-D1, an ortholog of rice OsGS3, is associated with grain weight and grain length in common wheat. Mol. Breed. 34, 1097–1107. doi: 10.1007/s11032-014-0102-7 DOI

Zhang H., Mao X., Zhang J., Chang X., Jing R. (2013). Single-nucleotide polymorphisms and association analysis of drought-resistance gene TaSnRK2.8 in common wheat. Plant Physiol. Biochem. 70, 174–181. doi: 10.1016/j.plaphy.2013.04.010, PMID: PubMed DOI

Zhang J., Zhang P., Dodds P., Lagudah E. (2020). How target-sequence enrichment and sequencing (TEnSeq) pipelines have catalyzed resistance gene cloning in the wheat-rust pathosystem. Front. Plant Sci. 11:678. doi: 10.3389/fpls.2020.00678, PMID: PubMed DOI PMC

Zhao Y., Gowda M., Würschum T., Longin C. F. H., Korzun V., Kollers S., et al. . (2013a). Dissecting the genetic architecture of frost tolerance in central European winter wheat. J. Exp. Bot. 64, 4453–4460. doi: 10.1093/jxb/ert259 PubMed DOI PMC

Zhao Y., Li Z., Liu G., Jiang Y., Maurer H. P., Würschum T., et al. . (2015). Genome-based establishment of a high-yielding heterotic pattern for hybrid wheat breeding. Proc. Natl. Acad. Sci. U. S. A. 112, 15624–15629. doi: 10.1073/pnas.1514547112, PMID: PubMed DOI PMC

Zhao Y., Mette M. F., Gowda M., Longin C. F. H., Reif J. C. (2014). Bridging the gap between marker-assisted and genomic selection of heading time and plant height in hybrid wheat. Heredity 112, 638–645. doi: 10.1038/hdy.2014.1, PMID: PubMed DOI PMC

Zhao D., Yang L., Xu K., Cao S., Tian Y., Yan J., et al. . (2020). Identification and validation of genetic loci for tiller angle in bread wheat. Theor. Appl. Genet. 133, 3037–3047. doi: 10.1007/s00122-020-03653-6, PMID: PubMed DOI

Zhao Y., Zeng J., Fernando R., Reif J. C. (2013b). Genomic prediction of hybrid wheat performance. Crop. Sci. 53, 802–810. doi: 10.2135/cropsci2012.08.0463 DOI

Zhou X., Zhu X., Shao W., Song J., Jiang W., He Y., et al. . (2020). Genome-wide mining of wheat DUF966 gene family provides new insights into salt stress responses. Front. Plant Sci. 11:1345. doi: 10.3389/fpls.2020.569838, PMID: PubMed DOI PMC

Zimin A. V., Puiu D., Hall R., Kingan S., Clavijo B. J., Salzberg S. L. (2017). The first near-complete assembly of the hexaploid bread wheat genome, Triticum aestivum. Gigascience 6, 1–7. doi: 10.1093/gigascience/gix097, PMID: PubMed DOI PMC

Zou S., Wang H., Li Y., Kong Z., Tang D. (2018). The NB-LRR gene Pm60 confers powdery mildew resistance in wheat. New Phytol. 218, 298–309. doi: 10.1111/nph.14964, PMID: PubMed DOI

Zou C., Wang P., Xu Y. (2016). Bulked sample analysis in genetics, genomics and crop improvement. Plant Biotechnol. J. 14, 1941–1955. doi: 10.1111/pbi.12559, PMID: PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...