Capturing Wheat Phenotypes at the Genome Level
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
35860541
PubMed Central
PMC9289626
DOI
10.3389/fpls.2022.851079
Knihovny.cz E-zdroje
- Klíčová slova
- CRISPR/Cas9, QTL cloning, Wheat, abiotic-stress tolerance, disease resistance, genome-wide association, genomic selection, quantitative trait locus mapping,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Recent technological advances in next-generation sequencing (NGS) technologies have dramatically reduced the cost of DNA sequencing, allowing species with large and complex genomes to be sequenced. Although bread wheat (Triticum aestivum L.) is one of the world's most important food crops, efficient exploitation of molecular marker-assisted breeding approaches has lagged behind that achieved in other crop species, due to its large polyploid genome. However, an international public-private effort spanning 9 years reported over 65% draft genome of bread wheat in 2014, and finally, after more than a decade culminated in the release of a gold-standard, fully annotated reference wheat-genome assembly in 2018. Shortly thereafter, in 2020, the genome of assemblies of additional 15 global wheat accessions was released. As a result, wheat has now entered into the pan-genomic era, where basic resources can be efficiently exploited. Wheat genotyping with a few hundred markers has been replaced by genotyping arrays, capable of characterizing hundreds of wheat lines, using thousands of markers, providing fast, relatively inexpensive, and reliable data for exploitation in wheat breeding. These advances have opened up new opportunities for marker-assisted selection (MAS) and genomic selection (GS) in wheat. Herein, we review the advances and perspectives in wheat genetics and genomics, with a focus on key traits, including grain yield, yield-related traits, end-use quality, and resistance to biotic and abiotic stresses. We also focus on reported candidate genes cloned and linked to traits of interest. Furthermore, we report on the improvement in the aforementioned quantitative traits, through the use of (i) clustered regularly interspaced short-palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9)-mediated gene-editing and (ii) positional cloning methods, and of genomic selection. Finally, we examine the utilization of genomics for the next-generation wheat breeding, providing a practical example of using in silico bioinformatics tools that are based on the wheat reference-genome sequence.
Center of Plant Genome Engineering Heinrich Heine Universität Düsseldorf Germany
Crop and Soil Science Texas A and M University College Station TX United States
Crop Improvement and Genetics Research USDA Agricultural Research Service Albany CA United States
Department of Biological Sciences Middle East Technical University Ankara Turkey
Department of Biotechnology Faculty of Life Sciences University of Central Punjab Lahore Pakistan
Department of Crop Science Washington State University Pullman WA United States
Department of Environment and Bio Agriculture Faculty of Agriculture Al Azhar University Cairo Egypt
Department of Genetics and Bioengineering Yeditepe University Istanbul Turkey
Department of Pathology The National Institute of Agricultural Botany Cambridge United Kingdom
Department of Plant Pathology Faculty of Agriculture Assiut University Assiut Egypt
Ficus Biotechnology Ostim Teknopark Ankara Turkey
Food and Agriculture Organization of the United Nations Riyadh Saudi Arabia
French Plant Genomic Resource Center INRAE CNRGV Castanet Tolosan France
General Directorate of Research Ministry of Agriculture Ankara Turkey
Global Crop Diversity Trust Bonn Germany
Institute for Resistance Research and Stress Tolerance Julius Kühn Institute Quedlinburg Germany
Institute for Sustainable Agriculture Córdoba Spain
Institute of Biological Sciences Gomal University D 1 Khan Pakistan
Institute of Plant Breeding and Biotechnology MNS University of Agriculture Multan Pakistan
International Maize and Wheat Improvement Center Texcoco Mexico
International Wheat Genome Sequencing Consortium Bethesda MD United States
KWS SAAT SE and Co KGaA Einbeck Germany
Leibniz Institute of Plant Genetics and Crop Plant Research Gatersleben Germany
Molecular Biology Genetics and Bioengineering Sabanci University Istanbul Turkey
Montana BioAgriculture Inc Missoula MT United States
Murdoch University Perth WA Australia
Research and Innovation Florimond Desprez Group Cappelle en Pévèle France
State Plant Breeding Institute The University of Hohenheim Stuttgart Germany
The John Bingham Laboratory The National Institute of Agricultural Botany Cambridge United Kingdom
Université Paris Saclay INRAE URGI Versailles France
University of Maryland Baltimore MD United States
Zobrazit více v PubMed
Addison C. K., Mason R. E., Brown-Guedira G., Guedira M., Hao Y., Miller R. G., et al. . (2016). QTL and major genes influencing grain yield potential in soft red winter wheat adapted to the southern United States. Euphytica 209, 665–677. doi: 10.1007/s10681-016-1650-1 DOI
Adhikari A., Basnet B. R., Crossa J., Dreisigacker S., Camarillo F., Bhati P. K., et al. . (2020). Genome-wide association mapping and genomic prediction of anther extrusion in CIMMYT hybrid wheat breeding program via modeling pedigree, genomic relationship, and interaction with the environment. Front. Genet. 11:586687. doi: 10.3389/fgene.2020.586687, PMID: PubMed DOI PMC
Agarwal P., Baranwal V. K., Khurana P. (2019). Genome-wide analysis of bZIP transcription factors in wheat and functional characterization of a TabZIP under abiotic stress. Sci. Rep. 9, 1–18. doi: 10.1038/s41598-019-40659-7 PubMed DOI PMC
Akpinar B. A., Lucas S. J., Vrána J., Doležel J., Budak H. (2015). Sequencing chromosome 5D of Aegilops tauschii and comparison with its allopolyploid descendant bread wheat (Triticum aestivum). Plant Biotechnol. J. 13, 740–752. doi: 10.1111/pbi.12302, PMID: PubMed DOI
Alaux M., Rogers J., Letellier T., Flores R., Alfama F., Pommier C., et al. . (2018). Linking the international wheat genome sequencing consortium bread wheat reference genome sequence to wheat genetic and phenomic data. Genome Biol. 19:111. doi: 10.1186/s13059-018-1491-4, PMID: PubMed DOI PMC
Appels R., Eversole K., Feuillet C., Keller B., Rogers J., Stein N., et al. . (2018). Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science 361:eaar7191. doi: 10.1126/science.aar7191, PMID: PubMed DOI
Arora S., Steuernagel B., Gaurav K., Chandramohan S., Long Y., Matny O., et al. . (2019). Resistance gene cloning from a wild crop relative by sequence capture and association genetics. Nat. Biotechnol. 37, 139–143. doi: 10.1038/s41587-018-0007-9, PMID: PubMed DOI
Asif M. A., Schilling R. K., Tilbrook J., Brien C., Dowling K., Rabie H., et al. . (2018). Mapping of novel salt tolerance QTL in an Excalibur × kukri doubled haploid wheat population. Theor. Appl. Genet. 131, 2179–2196. doi: 10.1007/s00122-018-3146-y, PMID: PubMed DOI PMC
Assanga S. O., Fuentealba M., Zhang G., Tan C. T., Dhakal S., Rudd J. C., et al. . (2017). Mapping of quantitative trait loci for grain yield and its components in a US popular winter wheat TAM 111 using 90K SNPs. PLoS One 12:e0189669. doi: 10.1371/journal.pone.0189669, PMID: PubMed DOI PMC
Babben S., Schliephake E., Janitza P., Berner T., Keilwagen J., Koch M., et al. . (2018). Association genetics studies on frost tolerance in wheat (Triticum aestivum L.) reveal new highly conserved amino acid substituations in CBF-A3, CBF-A15, VRN3 and PPD1 genes. BMC Genomics 19:409. doi: 10.1186/s12864-018-4795-6, PMID: PubMed DOI PMC
Badawi M. A., Agharbaoui Z., Zayed M., Li Q., Byrns B., Zou J., et al. . (2019). Genome-wide identification and characterization of the wheat remorin (ta REM) family during cold acclimation. Plant Genome 12:180040. doi: 10.3835/plantgenome2018.06.0040, PMID: PubMed DOI
Banerjee B. P., Joshi S., Thoday-Kennedy E., Pasam R. K., Tibbits J., Hayden M., et al. . (2020). High-throughput phenotyping using digital and hyperspectral imaging-derived biomarkers for genotypic nitrogen response. J. Exp. Bot. 71, 4604–4615. doi: 10.1093/jxb/eraa143, PMID: PubMed DOI PMC
Basnet B. R., Crossa J., Dreisigacker S., Pérez-Rodríguez P., Manes Y., Singh R. P., et al. . (2019). Hybrid wheat prediction using genomic, pedigree, and environmental covariables interaction models. Plant Genome 12:180051. doi: 10.3835/plantgenome2018.07.0051, PMID: PubMed DOI
Battenfield S. D., Guzmán C., Gaynor R. C., Singh R. P., Peña R. J., Dreisigacker S., et al. . (2016). Genomic selection for processing and end-use quality traits in the CIMMYT spring bread wheat breeding program. Plant Genome 9, 1–12. doi: 10.3835/plantgenome2016.01.0005, PMID: PubMed DOI
Baxter I. (2020). We aren’t good at picking candidate genes, and it’s slowing us down. Curr. Opin. Plant Biol. 54, 57–60. doi: 10.1016/j.pbi.2020.01.006, PMID: PubMed DOI
Bayer P. E., Golicz A. A., Scheben A., Batley J., Edwards D. (2020). Plant pan-genomes are the new reference. Nat. Plants 6, 914–920. doi: 10.1038/s41477-020-0733-0, PMID: PubMed DOI
Berkman P. J., Skarshewski A., Lorenc M. T., Lai K., Duran C., Ling E. Y. S., et al. . (2011). Sequencing and assembly of low copy and genic regions of isolated Triticum aestivum chromosome arm 7DS. Plant Biotechnol. J. 9, 768–775. doi: 10.1111/j.1467-7652.2010.00587.x, PMID: PubMed DOI
Berkman P. J., Skarshewski A., Manoli S., Lorenc M. T., Stiller J., Smits L., et al. . (2012). Sequencing wheat chromosome arm 7BS delimits the 7BS/4AL translocation and reveals homoeologous gene conservation. Theor. Appl. Genet. 124, 423–432. doi: 10.1007/s00122-011-1717-2, PMID: PubMed DOI
Berkman P. J., Visendi P., Lee H. C., Stiller J., Manoli S., Lorenc M. T., et al. . (2013). Dispersion and domestication shaped the genome of bread wheat. Plant Biotechnol. J. 11, 564–571. doi: 10.1111/pbi.12044, PMID: PubMed DOI
Bernardo R. (2014). Genomewide selection when major genes are known. Crop. Sci. 54, 68–75. doi: 10.2135/cropsci2013.05.0315, PMID: PubMed DOI
Bhatta M., Shamanin V., Shepelev S., Stephen Baenziger P., Pozherukova V., Pototskaya I., et al. . (2019). Marker-trait associations for enhancing agronomic performance, disease resistance, and grain quality in synthetic and bread wheat accessions in Western Siberia. G3 9, 4209–4222. doi: 10.1534/g3.119.400811 PubMed DOI PMC
Boehm J. D., Ibba M. I., Kiszonas A. M., See D. R., Skinner D. Z., Morris C. F. (2017). Identification of genotyping-by-sequencing sequence tags associated with milling performance and end-use quality traits in hard red spring wheat (Triticum aestivum L.). J. Cereal Sci. 77, 73–83. doi: 10.1016/j.jcs.2017.07.007 DOI
Brunner S., Hurni S., Streckeisen P., Mayr G., Albrecht M., Yahiaoui N., et al. . (2010). Intragenic allele pyramiding combines different specificities of wheat Pm3 resistance alleles. Plant J. 64, 433–445. doi: 10.1111/j.1365-313X.2010.04342.x, PMID: PubMed DOI
Budak H., Hussain B., Khan Z., Ozturk N. Z., Ullah N. (2015). From genetics to functional genomics: improvement in drought signaling and tolerance in wheat. Front. Plant Sci. 6, 1–13. doi: 10.3389/fpls.2015.01012 PubMed DOI PMC
Budhagatapalli N., Halbach T., Hiekel S., Büchner H., Müller A. E., Kumlehn J. (2020). Site-directed mutagenesis in bread and durum wheat via pollination by cas9/guide RNA-transgenic maize used as haploidy inducer. Plant Biotechnol. J. 18, 2376–2378. doi: 10.1111/pbi.13415, PMID: PubMed DOI PMC
Cagirici H. B., Biyiklioglu S., Budak H. (2017). Assembly and annotation of transcriptome provided evidence of miRNA mobility between wheat and wheat stem sawfly. Front. Plant Sci. 8:1653. doi: 10.3389/fpls.2017.01653, PMID: PubMed DOI PMC
Cao X., Dong Z., Tian D., Dong L., Qian W., Liu J., et al. . (2020). Development and characterization of marker-free and transgene insertion site-defined transgenic wheat with improved grain storability and fatty acid content. Plant Biotechnol. J. 18, 129–140. doi: 10.1111/pbi.13178 PubMed DOI PMC
Carter A. H., Garland-Campbell K., Morris C. F., Kidwell K. K. (2012). Chromosomes 3B and 4D are associated with several milling and baking quality traits in a soft white spring wheat (Triticum aestivum L.) population. Theor. Appl. Genet. 124, 1079–1096. doi: 10.1007/s00122-011-1770-x, PMID: PubMed DOI
Case A. J., Skinner D. Z., Garland-Campbell K. A., Carter A. H. (2014). Freezing tolerance-associated quantitative trait loci in the brundage × coda wheat recombinant inbred line population. Crop. Sci. 54, 982–992. doi: 10.2135/cropsci2013.08.0526 DOI
Chaurasia S., Singh A. K., Songachan L. S., Sharma A. D., Bhardwaj R., Singh K. (2020). Multi-locus genome-wide association studies reveal novel genomic regions associated with vegetative stage salt tolerance in bread wheat (Triticum aestivum L.). Genomics 112, 4608–4621. doi: 10.1016/j.ygeno.2020.08.006, PMID: PubMed DOI
Chen S., Rouse M. N., Zhang W., Zhang X., Guo Y., Briggs J., et al. . (2020). Wheat gene Sr60 encodes a protein with two putative kinase domains that confers resistance to stem rust. New Phytol. 225, 948–959. doi: 10.1111/nph.16169, PMID: PubMed DOI
Chen P., You C., Hu Y., Chen S., Zhou B., Cao A., et al. . (2013). Radiation-induced translocations with reduced Haynaldia villosa chromatin at the Pm21 locus for powdery mildew resistance in wheat. Mol. Breed. 31, 477–484. doi: 10.1007/s11032-012-9804-x DOI
Cheng B., Ding Y. Q., Gao X., Cao N., Xin Z. H., Zhang L. Y. (2020). The diversity of powdery mildew resistance gene loci among wheat germplasm in Southwest China. Cereal Res. Commun. 48, 65–70. doi: 10.1007/s42976-020-00015-2 DOI
Chhetri M., Bariana H., Wong D., Sohail Y., Hayden M., Bansal U. (2017). Development of robust molecular markers for marker-assisted selection of leaf rust resistance gene Lr23 in common and durum wheat breeding programs. Mol. Breed. 37, 1–8. doi: 10.1007/s11032-017-0628-6 PubMed DOI
Chu C., Wang S., Paetzold L., Wang Z., Hui K., Rudd J. C., et al. . (2021). RNA-seq analysis reveals different drought tolerance mechanisms in two broadly adapted wheat cultivars ‘TAM 111’ and ‘TAM 112’. Sci. Rep. 11:4301. doi: 10.1038/s41598-021-83372-0, PMID: PubMed DOI PMC
Corredor-Moreno P., Minter F., Davey P. E., Wegel E., Kular B., Brett P., et al. . (2021). The branched-chain amino acid aminotransferase TaBCAT1 modulates amino acid metabolism and positively regulates wheat rust susceptibility. Plant Cell 33, 1728–1747. doi: 10.1093/plcell/koab049, PMID: PubMed DOI PMC
Corsi B., Obinu L., Zanella C. M., Cutrupi S., Day R., Geyer M., et al. . (2021). Identification of eight QTL controlling multiple yield components in a German multi-parental wheat population, including Rht24, WAPO-A1, WAPO-B1 and genetic loci on chromosomes 5A and 6A. Theor. Appl. Genet. 134, 1435–1454. doi: 10.1007/s00122-021-03781-7, PMID: PubMed DOI PMC
Crain J., Mondal S., Rutkoski J., Singh R. P., Poland J. (2018). Combining high-throughput phenotyping and genomic information to increase prediction and selection accuracy in wheat breeding. Plant Genome 11:170043. doi: 10.3835/plantgenome2017.05.0043, PMID: PubMed DOI
Crossa J., Burgueño J., Cornelius P. L., McLaren G., Trethowan R., Krishnamachari A. (2006). Modeling genotype × environment interaction using additive genetic covariances of relatives for predicting breeding values of wheat genotypes. Crop. Sci. 46, 1722–1733. doi: 10.2135/cropsci2005.11-0427 DOI
Crossa J., Jarquín D., Franco J., Pérez-Rodríguez P., Burgueño J., Saint-Pierre C., et al. . (2016). Genomic prediction of gene bank wheat landraces. G3 6, 1819–1834. doi: 10.1534/g3.116.029637 PubMed DOI PMC
Cui F., Zhang N., Fan X. L., Zhang W., Zhao C. H., Yang L. J., et al. . (2017). Utilization of a Wheat660K SNP array-derived high-density genetic map for high-resolution mapping of a major QTL for kernel number. Sci. Rep. 7, 1–12. doi: 10.1038/s41598-017-04028-6 PubMed DOI PMC
Danilevicz M. F., Tay Fernandez C. G., Marsh J. I., Bayer P. E., Edwards D. (2020). Plant pangenomics: approaches, applications and advancements. Curr. Opin. Plant Biol. 54, 18–25. doi: 10.1016/j.pbi.2019.12.005, PMID: PubMed DOI
Das S., Singh M., Srivastava R., Bajaj D., Saxena M. S., Rana J. C., et al. . (2015). MQTL-seq delineates functionally relevant candidate gene harbouring a major QTL regulating pod number in chickpea. DNA Res. 23, 53–65. doi: 10.1093/dnares/dsv036 PubMed DOI PMC
De La Fuente G. N., Frei U. K., Lübberstedt T. (2013). Accelerating plant breeding. Trends Plant Sci. 18, 667–672. doi: 10.1016/j.tplants.2013.09.001, PMID: PubMed DOI
de los Campos G., Pérez-Rodríguez P., Bogard M., Gouache D., Crossa J. (2020). A data-driven simulation platform to predict cultivars’ performances under uncertain weather conditions. Nat. Commun. 11, 1–10. doi: 10.1038/s41467-020-18480-y PubMed DOI PMC
Debernardi J. M., Tricoli D. M., Ercoli M. F., Hayta S., Ronald P., Palatnik J. F., et al. . (2020). A GRF–GIF chimeric protein improves the regeneration efficiency of transgenic plants. Nat. Biotechnol. 38, 1274–1279. doi: 10.1038/s41587-020-0703-0, PMID: PubMed DOI PMC
Devadas R., Lamb D. W., Backhouse D., Simpfendorfer S. (2015). Sequential application of hyperspectral indices for delineation of stripe rust infection and nitrogen deficiency in wheat. Precis. Agric. 16, 477–491. doi: 10.1007/s11119-015-9390-0 DOI
Devaux P., Cistué L. (2016). “Wheat doubled haploids : production to sequencing - what makes them so appealing ? What is haplodiploidisation ? Doubled haploid production in wheat,” in The World Wheat Book, A History of Wheat Breeding. eds. Bonjean A., Angus W. J., Ginkel V. M. (Paris, France: Lavoisier Tec & doc; ), 885–938.
Dinh H. X., Singh D., Periyannan S., Park R. F., Pourkheirandish M. (2020). Molecular genetics of leaf rust resistance in wheat and barley. Theor. Appl. Genet. 133, 2035–2050. doi: 10.1007/s00122-020-03570-8, PMID: PubMed DOI
Dong L., Wang F., Liu T., Dong Z., Li A., Jing R., et al. . (2014). Natural variation of TaGASR7-A1 affects grain length in common wheat under multiple cultivation conditions. Mol. Breed. 34, 937–947. doi: 10.1007/s11032-014-0087-2 DOI
Dorado G., Gálvez S., Budak H., Unver T., Hernández P. (2019). “Nucleic-acid sequencing,” in Encyclopedia of Biomedical Engineering. ed. Caplan M. (Amsterdam: Elsevier; ), 443–460.
Edwards D., Wilcox S., Barrero R. A., Fleury D., Cavanagh C. R., Forrest K. L., et al. . (2012). Bread matters: a national initiative to profile the genetic diversity of Australian wheat. Plant Biotechnol. J. 10, 703–708. doi: 10.1111/j.1467-7652.2012.00717.x, PMID: PubMed DOI
El Beji I. H. S., Mouzeyar S., Bouzidi M. F., Roche J. (2019). Expansion and functional diversification of SKP1-like genes in wheat (Triticum aestivum L.). Int. J. Mol. Sci. 20:3295. doi: 10.3390/ijms20133295, PMID: PubMed DOI PMC
ElBasyoni I., Saadalla M., Baenziger S., Bockelman H., Morsy S. (2017). Cell membrane stability and association mapping for drought and heat tolerance in a worldwide wheat collection. Sustainability 9:1606. doi: 10.3390/su9091606 DOI
Fang Z.-W., He Y.-Q., Liu Y.-K., Jiang W.-Q., Song J.-H., Wang S. P., et al. . (2020a). Bioinformatic identification and analyses of the non-specific lipid transfer proteins in wheat. J. Integr. Agric. 19, 1170–1185. doi: 10.1016/S2095-3119(19)62776-0, PMID: PubMed DOI
Fang Z., Jiang W., He Y., Ma D., Liu Y., Wang S., et al. . (2020b). Genome-wide identification, structure characterization, and expression profiling of Dof transcription factor gene family in wheat (Triticum aestivum L.). Agronomy 10:294. doi: 10.3390/agronomy10020294 DOI
Faris J. D., Zhang Z., Lu H., Lu S., Reddy L., Cloutier S., et al. . (2010). A unique wheat disease resistance-like gene governs effector-triggered susceptibility to necrotrophic pathogens. Proc. Natl. Acad. Sci. 107, 13544–13549. doi: 10.1073/pnas.1004090107, PMID: PubMed DOI PMC
Francis J., Skific N. (2015). Evidence linking rapid Arctic warming to mid-latitude weather patterns. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 373, 1–12. doi: 10.1098/rsta.2014.0170, PMID: PubMed DOI PMC
Fu D., Uauy C., Distelfeld A., Blechl A., Epstein L., Chen X., et al. . (2009). A kinase-START gene confers temperature-dependent resistance to wheat stripe rust. Science 323, 1357–1360. doi: 10.1126/science.1166289, PMID: PubMed DOI PMC
Gaggar P., Kumar M., Mukhopadhyay K. (2020). Genome-scale identification, in silico characterization and interaction study between wheat SNARE and NPSN gene families involved in vesicular transport. IEEE/ACM Trans. Comput. Biol. Bioinforma. 18, 2492–2501. doi: 10.1109/tcbb.2020.2981896 PubMed DOI
Gálvez S., Agostini F., Caselli J., Hernández P., Dorado G. (2021). BLVector: fast BLAST-like algorithm for manycore CPU with vectorization. Front. Genet. 12:100. doi: 10.3389/fgene.2021.618659, PMID: PubMed DOI PMC
Gálvez S., Ferusic A., Esteban F. J., Hernández P., Caballero J. A., Dorado G. (2016). Speeding-up bioinformatics algorithms with heterogeneous architectures: highly heterogeneous smith-waterman (HHeterSW). J. Comput. Biol. 23, 801–809. doi: 10.1089/cmb.2015.0237, PMID: PubMed DOI
Gálvez S., Mérida-García R., Camino C., Borrill P., Abrouk M., Ramírez-González R. H., et al. . (2019). Hotspots in the genomic architecture of field drought responses in wheat as breeding targets. Funct. Integr. Genomics 19, 295–309. doi: 10.1007/s10142-018-0639-3, PMID: PubMed DOI PMC
Genc Y., Oldach K., Verbyla A. P., Lott G., Hassan M., Tester M., et al. . (2010). Sodium exclusion QTL associated with improved seedling growth in bread wheat under salinity stress. Theor. Appl. Genet. 121, 877–894. doi: 10.1007/s00122-010-1357-y, PMID: PubMed DOI
Genc Y., Taylor J., Rongala J., Oldach K. (2014). A major locus for chloride accumulation on chromosome 5A in bread wheat. PLoS One 9:e98845. doi: 10.1371/journal.pone.0098845, PMID: PubMed DOI PMC
Gil-Humanes J., Wang Y., Liang Z., Shan Q., Ozuna C. V., Sánchez-León S., et al. . (2017). High-efficiency gene targeting in hexaploid wheat using DNA replicons and CRISPR/Cas9. Plant J. 89, 1251–1262. doi: 10.1111/tpj.13446, PMID: PubMed DOI PMC
Golan G., Hendel E., Méndez Espitia G. E., Schwartz N., Peleg Z. (2018). Activation of seminal root primordia during wheat domestication reveals underlying mechanisms of plant resilience. Plant Cell Environ. 41, 755–766. doi: 10.1111/pce.13138, PMID: PubMed DOI
Golicz A. A., Bayer P. E., Bhalla P. L., Batley J., Edwards D. (2020). Pangenomics comes of age: from bacteria to plant and animal applications. Trends Genet. 36, 132–145. doi: 10.1016/j.tig.2019.11.006, PMID: PubMed DOI
Guo J., Khan J., Pradhan S., Shahi D., Khan N., Avci M., et al. . (2020a). Multi-trait genomic prediction of yield-related traits in US soft wheat under variable water regimes. Genes 11:1270. doi: 10.3390/genes11111270 PubMed DOI PMC
Guo J., Ren Y., Tang Z., Shi W., Zhou M. (2019). Characterization and expression profiling of the ICE-CBF-COR genes in wheat. PeerJ 2019, 1–19. doi: 10.7717/peerj.8190 PubMed DOI PMC
Guo Y., Zhang G., Guo B., Qu C., Zhang M., Kong F., et al. . (2020b). QTL mapping for quality traits using a highdensity genetic map of wheat. PLoS One 15:e0230601. doi: 10.1371/journal.pone.0230601 PubMed DOI PMC
Henningsen E. C., Omidvar V., Coletta R. D., Michno J.-M., Gilbert E., Li F., et al. . (2021). Identification of candidate susceptibility genes to Puccinia graminis f. sp. tritici in wheat. bioRxiv [Preprint], 2021.01.23.427871. doi:10.1101/2021.01.23.427871 PubMed DOI PMC
Hiebert C. W., Moscou M. J., Hewitt T., Steuernagel B., Hernández-Pinzón I., Green P., et al. . (2020). Stem rust resistance in wheat is suppressed by a subunit of the mediator complex. Nat. Commun. 11, 1–10. doi: 10.1038/s41467-020-14937-2 PubMed DOI PMC
Holman F. H., Riche A. B., Michalski A., Castle M., Wooster M. J., Hawkesford M. J. (2016). High throughput field phenotyping of wheat plant height and growth rate in field plot trials using UAV based remote sensing. Remote Sens. (Basel) 8:1031. doi: 10.3390/rs8121031 DOI
Hourcade D., Bogard M., Bonnefoy M., Savignard F., Mohamadi F., Lafarge S., et al. . (2019). Genome-wide association analysis of resistance to wheat spindle streak mosaic virus in bread wheat. Plant Pathol. 68, 609–616. doi: 10.1111/ppa.12972 DOI
Hu M. J., Zhang H. P., Cao J. J., Zhu X. F., Wang S. X., Jiang H., et al. . (2016a). Characterization of an IAA-glucose hydrolase gene TaTGW6 associated with grain weight in common wheat (Triticum aestivum L.). Mol. Breed. 36, 1–11. doi: 10.1007/s11032-016-0449-z DOI
Hu M. J., Zhang H. P., Liu K., Cao J. J., Wang S. X., Jiang H., et al. . (2016b). Cloning and characterization of TaTGW-7A gene associated with grain weight in wheat via SLAF-seq-BSA. Front. Plant Sci. 7:1902. doi: 10.3389/fpls.2016.01902 PubMed DOI PMC
Hu P., Zheng Q., Luo Q., Teng W., Li H., Li B., et al. . (2021). Genome-wide association study of yield and related traits in common wheat under salt-stress conditions. BMC Plant Biol. 21:27. doi: 10.1186/s12870-020-02799-1, PMID: PubMed DOI PMC
Huang L., Brooks S. A., Li W., Fellers J. P., Trick H. N., Gill B. S. (2003). Map-based cloning of leaf rust resistance gene Lr21 from the large and polyploid genome of bread wheat. Genetics 164, 655–664. doi: 10.1093/genetics/164.2.655, PMID: PubMed DOI PMC
Hurni S., Brunner S., Buchmann G., Herren G., Jordan T., Krukowski P., et al. . (2013). Rye Pm8 and wheat Pm3 are orthologous genes and show evolutionary conservation of resistance function against powdery mildew. Plant J. 76, 957–969. doi: 10.1111/tpj.12345, PMID: PubMed DOI
Hussain B., Khan A. S., Ali Z. (2015). Genetic variation in wheat germplasm for salinity tolerance at seedling stage: improved statistical inference. Turkish J. Agric. For. 39, 182–192. doi: 10.3906/tar-1404-114 DOI
Hussain B., Lucas S. J., Budak H. (2018). CRISPR/Cas9 in plants: at play in the genome and at work for crop improvement. Brief. Funct. Genomics 17, 319–328. doi: 10.1093/bfgp/ely016, PMID: PubMed DOI
Hussain B., Lucas S. J., Ozturk L., Budak H. (2017a). Mapping QTLs conferring salt tolerance and micronutrient concentrations at seedling stagein wheat. Sci. Rep. 7:15662. doi: 10.1038/s41598-017-15726-6 PubMed DOI PMC
Hussain W., Stephen Baenziger P., Belamkar V., Guttieri M. J., Venegas J. P., Easterly A., et al. . (2017b). Genotyping-by-sequencing derived high-density linkage map and its application to QTL mapping of flag leaf traits in bread wheat. Sci. Rep. 7, 1–15. doi: 10.1038/s41598-017-16006-z PubMed DOI PMC
Iehisa J. C. M., Matsuura T., Mori I. C., Yokota H., Kobayashi F., Takumi S. (2014). Identification of quantitative trait loci for abscisic acid responsiveness in the D-genome of hexaploid wheat. J. Plant Physiol. 171, 830–841. doi: 10.1016/j.jplph.2014.02.003, PMID: PubMed DOI
IWGSC (2014). A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science 345:1251788. doi: 10.1126/science.1251788 PubMed DOI
Jannink J. L., Lorenz A. J., Iwata H. (2010). Genomic selection in plant breeding: from theory to practice. Brief. Funct. Genomic. Proteomic. 9, 166–177. doi: 10.1093/bfgp/elq001 PubMed DOI
Jiang Y., Schulthess A. W., Rodemann B., Ling J., Plieske J., Kollers S., et al. . (2017). Validating the prediction accuracies of marker-assisted and genomic selection of fusarium head blight resistance in wheat using an independent sample. Theor. Appl. Genet. 130, 471–482. doi: 10.1007/s00122-016-2827-7, PMID: PubMed DOI
Jiang W., Yang L., He Y., Zhang H., Li W., Chen H., et al. . (2019). Genome-wide identification and transcriptional expression analysis of superoxide dismutase (SOD) family in wheat (Triticum aestivum). PeerJ 7:e8062. doi: 10.7717/peerj.8062, PMID: PubMed DOI PMC
Jiang W., Yin J., Zhang H., He Y., Shuai S., Chen S., et al. . (2020). Genome-wide identification, characterization analysis and expression profiling of auxin-responsive GH3 family genes in wheat (Triticum aestivum L.). Mol. Biol. Rep. 47, 3885–3907. doi: 10.1007/s11033-020-05477-5, PMID: PubMed DOI
Jin J., Liu D., Qi Y., Ma J., Zhen W. (2020). Major QTL for seven yield-related traits in common wheat (Triticum aestivum L.). Front. Genet. 11:1012. doi: 10.3389/fgene.2020.01012, PMID: PubMed DOI PMC
Jin H., Wen W., Liu J., Zhai S., Zhang Y., Yan J., et al. . (2016). Genome-wide QTL mapping for wheat processing quality parameters in a Gaocheng 8901/Zhoumai 16 recombinant inbred line population. Front. Plant Sci. 7:1032. doi: 10.3389/fpls.2016.01032, PMID: PubMed DOI PMC
Jin Y., Zhai S., Wang W., Ding X., Guo Z., Bai L., et al. . (2018). Identification of genes from the ICE–CBF–COR pathway under cold stress in Aegilops–Triticum composite group and the evolution analysis with those from Triticeae. Physiol. Mol. Biol. Plants 24, 211–229. doi: 10.1007/s12298-017-0495-y, PMID: PubMed DOI PMC
Jouanin A., Boyd L., Visser R. G. F., Smulders M. J. M. (2018). Development of wheat with hypoimmunogenic gluten obstructed by the gene editing policy in europe. Front. Plant Sci. 9:1523. doi: 10.3389/fpls.2018.01523, PMID: PubMed DOI PMC
Juliana P., Singh R. P., Singh P. K., Crossa J., Huerta-Espino J., Lan C., et al. . (2017a). Genomic and pedigree-based prediction for leaf, stem, and stripe rust resistance in wheat. Theor. Appl. Genet. 130, 1415–1430. doi: 10.1007/s00122-017-2897-1 PubMed DOI PMC
Juliana P., Singh R. P., Singh P. K., Crossa J., Rutkoski J. E., Poland J. A., et al. . (2017b). Comparison of models and whole-genome profiling approaches for genomic-enabled prediction of Septoria tritici blotch, Stagonospora nodorum blotch, and tan spot resistance in wheat. Plant Genome 10, 1–16. doi: 10.3835/plantgenome2016.08.0082 PubMed DOI
Kandel J. S., Huang M., Zhang Z., Skinner D. Z., See D. R. (2018). Genetic diversity of clinal freezing tolerance variation in winter wheat landraces. Agronomy 8:95. doi: 10.3390/agronomy8060095 DOI
Kaur P., Yadav I. S., Yadav B., Mahato A., Gupta O. P., Dolezel J., et al. . (2019). In silico annotation of 458 genes identified from comparative analysis of full length cDNAs and NextGen sequence of chromosome 2A of hexaploid wheat. J. Plant Biochem. Biotechnol. 28, 25–34. doi: 10.1007/s13562-018-0460-z DOI
Kelley L. A., Mezulis S., Yates C. M., Wass M. N., Sternberg M. J. E. (2015). The Phyre2 web portal for protein modeling, prediction and analysis. Nat. Protoc. 10, 845–858. doi: 10.1038/nprot.2015.053, PMID: PubMed DOI PMC
Kim D., Alptekin B., Budak H. (2018). CRISPR/Cas9 genome editing in wheat. Funct. Integr. Genomics 18, 31–41. doi: 10.1007/s10142-017-0572-x, PMID: PubMed DOI
Klymiuk V., Fatiukha A., Fahima T. (2019). Wheat tandem kinases provide insights on disease-resistance gene flow and host–parasite co-evolution. Plant J. 98, 667–679. doi: 10.1111/tpj.14264 PubMed DOI
Klymiuk V., Fatiukha A., Raats D., Bocharova V., Huang L., Feng L., et al. . (2020). Three previously characterized resistances to yellow rust are encoded by a single locus Wtk1. J. Exp. Bot. 71, 2561–2572. doi: 10.1093/jxb/eraa020, PMID: PubMed DOI PMC
Klymiuk V., Yaniv E., Huang L., Raats D., Fatiukha A., Chen S., et al. . (2018). Cloning of the wheat Yr15 resistance gene sheds light on the plant tandem kinase-pseudokinase family. Nat. Commun. 9, 1–12. doi: 10.1038/s41467-018-06138-9 PubMed DOI PMC
Kraic J., Mihálik D., Klčová L., Gubišová M., Klempová T., Hudcovicová M., et al. . (2018). Progress in the genetic engineering of cereals to produce essential polyunsaturated fatty acids. J. Biotechnol. 284, 115–122. doi: 10.1016/j.jbiotec.2018.08.009, PMID: PubMed DOI
Krasileva K. V., Vasquez-Gross H. A., Howell T., Bailey P., Paraiso F., Clissold L., et al. . (2017). Uncovering hidden variation in polyploid wheat. Proc. Natl. Acad. Sci. U. S. A. 114, E913–E921. doi: 10.1073/pnas.1619268114, PMID: PubMed DOI PMC
Krattinger S. G., Lagudah E. S., Spielmeyer W., Singh R. P., Huerta-Espino J., McFadden H., et al. . (2009). A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. Science 323, 1360–1363. doi: 10.1126/science.1166453, PMID: PubMed DOI
Kristensen P. S., Jahoor A., Andersen J. R., Cericola F., Orabi J., Janss L. L., et al. . (2018). Genome-wide association studies and comparison of models and cross-validation strategies for genomic prediction of quality traits in advanced winter wheat breeding lines. Front. Plant Sci. 9:69. doi: 10.3389/fpls.2018.00069, PMID: PubMed DOI PMC
Kruse E. B., Carle S. W., Wen N., Skinner D. Z., Murray T. D., Garland-Campbell K. A., et al. . (2017). Genomic regions associated with tolerance to freezing stress and snow mold in winter wheat. G3 7, 775–780. doi: 10.1534/g3.116.037622 PubMed DOI PMC
Kuzay S., Xu Y., Zhang J., Katz A., Pearce S., Su Z., et al. . (2019). Identification of a candidate gene for a QTL for spikelet number per spike on wheat chromosome arm 7AL by high-resolution genetic mapping. Theor. Appl. Genet. 132, 2689–2705. doi: 10.1007/s00122-019-03382-5, PMID: PubMed DOI PMC
Lai K., Lorenc M. T., Lee H. C., Berkman P. J., Bayer P. E., Visendi P., et al. . (2015). Identification and characterization of more than 4 million intervarietal SNPs across the group 7 chromosomes of bread wheat. Plant Biotechnol. J. 13, 97–104. doi: 10.1111/pbi.12240, PMID: PubMed DOI
Lange T. M., Heinrich F., Enders M., Wolf M., Schmitt A. O. (2020). In silico quality assessment of SNPs—a case study on the axiom® wheat genotyping arrays. Curr. Plant Biol. 21:100140. doi: 10.1016/j.cpb.2020.100140 DOI
Larkin D. L., Lozada D. N., Mason R. E. (2019). Genomic selection—considerations for successful implementation in wheat breeding programs. Agronomy 9:479. doi: 10.3390/agronomy9090479 DOI
Li M., Dong L., Li B., Wang Z., Xie J., Qiu D., et al. . (2020). A CNL protein in wild emmer wheat confers powdery mildew resistance. New Phytol. 228, 1027–1037. doi: 10.1111/nph.16761, PMID: PubMed DOI
Li Y., Fu X., Zhao M., Zhang W., Li B., An D., et al. . (2018b). A genome-wide view of transcriptome dynamics during early spike development in bread wheat. Sci. Rep. 8, 1–16. doi: 10.1038/s41598-018-33718-y PubMed DOI PMC
Li M., Li B., Guo G., Chen Y., Xie J., Lu P., et al. . (2018a). Mapping a leaf senescence gene els1 by BSR-Seq in common wheat. Crop J. 6, 236–243. doi: 10.1016/j.cj.2018.01.004 DOI
Liang Z., Chen K., Li T., Zhang Y., Wang Y., Zhao Q., et al. . (2017). Efficient DNA-free genome editing of bread wheat using CRISPR/Cas9 ribonucleoprotein complexes. Nat. Commun. 8, 1–5. doi: 10.1038/ncomms14261 PubMed DOI PMC
Liang Z., Chen K., Zhang Y., Liu J., Yin K., Qiu J.-L., et al. . (2018). Genome editing of bread wheat using biolistic delivery of CRISPR/Cas9 in vitro transcripts or ribonucleoproteins. Nat. Protoc. 13, 413–430. doi: 10.1038/nprot.2017.145, PMID: PubMed DOI
Liu S., Bai G., Lin M., Luo M., Zhang D., Jin F., et al. . (2020). Identification of candidate chromosome region of Sbwm1 for soil-borne wheat mosaic virus resistance in wheat. Sci. Rep. 10, 1–11. doi: 10.1038/s41598-020-64993-3 PubMed DOI PMC
Liu S., Yang X., Zhang D., Bai G., Chao S., Bockus W. (2014). Genome-wide association analysis identified SNPs closely linked to a gene resistant to soil-borne wheat mosaic virus. Theor. Appl. Genet. 127, 1039–1047. doi: 10.1007/s00122-014-2277-z, PMID: PubMed DOI
Lopes M. S., Dreisigacker S., Peña R. J., Sukumaran S., Reynolds M. P. (2015). Genetic characterization of the wheat association mapping initiative (WAMI) panel for dissection of complex traits in spring wheat. Theor. Appl. Genet. 128, 453–464. doi: 10.1007/s00122-014-2444-2, PMID: PubMed DOI
Lu P., Guo L., Wang Z., Li B., Li J., Li Y., et al. . (2020). A rare gain of function mutation in a wheat tandem kinase confers resistance to powdery mildew. Nat. Commun. 11:680. doi: 10.1038/s41467-020-14294-0, PMID: PubMed DOI PMC
Luo M., Xie L., Chakraborty S., Wang A., Matny O., Jugovich M., et al. . (2021). A five-transgene cassette confers broad-spectrum resistance to a fungal rust pathogen in wheat. Nat. Biotechnol. 39, 561–566. doi: 10.1038/s41587-020-00770-x, PMID: PubMed DOI
Ma D., Yan J., He Z., Wu L., Xia X. (2012). Characterization of a cell wall invertase gene TaCwi-A1 on common wheat chromosome 2A and development of functional markers. Mol. Breed. 29, 43–52. doi: 10.1007/s11032-010-9524-z DOI
Mackay I. J., Cockram J., Howell P., Powell W. (2021). Understanding the classics: the unifying concepts of transgressive segregation, inbreeding depression and heterosis and their central relevance for crop breeding. Plant Biotechnol. J. 19, 26–34. doi: 10.1111/pbi.13481, PMID: PubMed DOI PMC
Manickavelu A., Hattori T., Yamaoka S., Yoshimura K., Kondou Y., Onogi A., et al. . (2017). Genetic nature of elemental contents in wheat grains and its genomic prediction: toward the effective use of wheat landraces from Afghanistan. PLoS One 12:e0169416. doi: 10.1371/journal.pone.0169416, PMID: PubMed DOI PMC
Marchal C., Zhang J., Zhang P., Fenwick P., Steuernagel B., Adamski N. M., et al. . (2018). BED-domain-containing immune receptors confer diverse resistance spectra to yellow rust. Nat. Plants 4, 662–668. doi: 10.1038/s41477-018-0236-4, PMID: PubMed DOI
Mérida-García R., Gálvez S., Paux E., Dorado G., Pascual L., Giraldo P., et al. . (2020). High resolution melting and insertion site-based polymorphism markers for wheat variability analysis and candidate genes selection at drought and heat MQTL loci. Agronomy 10:1294. doi: 10.3390/agronomy10091294 DOI
Meuwissen T. H. E. E., Hayes B. J., Goddard M. E. (2001). Prediction of total genetic value using genome-wide dense marker maps. Genetics 157, 1819–1829. doi: 10.1093/genetics/157.4.1819, PMID: PubMed DOI PMC
Michelmore R. W., Paran I., Kesseli R. V. (1991). Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc. Natl. Acad. Sci. U. S. A. 88, 9828–9832. doi: 10.1073/pnas.88.21.9828, PMID: PubMed DOI PMC
Milner S. G., Jost M., Taketa S., Mazón E. R., Himmelbach A., Oppermann M., et al. . (2019). Genebank genomics highlights the diversity of a global barley collection. Nat. Genet. 51, 319–326. doi: 10.1038/s41588-018-0266-x, PMID: PubMed DOI
Moore J. W., Herrera-Foessel S., Lan C., Schnippenkoetter W., Ayliffe M., Huerta-Espino J., et al. . (2015). A recently evolved hexose transporter variant confers resistance to multiple pathogens in wheat. Nat. Genet. 47, 1494–1498. doi: 10.1038/ng.3439, PMID: PubMed DOI
Nakaya A., Isobe S. N. (2012). Will genomic selection be a practical method for plant breeding? Ann. Bot. 110, 1303–1316. doi: 10.1093/aob/mcs109, PMID: PubMed DOI PMC
Nilsen K. T., Walkowiak S., Xiang D., Gao P., Quilichini T. D., Willick I. R., et al. . (2020). Copy number variation of TdDof controls solid-stemmed architecture in wheat. Proc. Natl. Acad. Sci. U. S. A. 117, 28708–28718. doi: 10.1073/pnas.2009418117, PMID: PubMed DOI PMC
Okada A., Arndell T., Borisjuk N., Sharma N., Watson-Haigh N. S., Tucker E. J., et al. . (2019). CRISPR/Cas9-mediated knockout of Ms1 enables the rapid generation of male-sterile hexaploid wheat lines for use in hybrid seed production. Plant Biotechnol. J. 17, 1905–1913. doi: 10.1111/pbi.13106, PMID: PubMed DOI PMC
Oyiga B. C., Sharma R. C., Baum M., Ogbonnaya F. C., Léon J., Ballvora A. (2018). Allelic variations and differential expressions detected at quantitative trait loci for salt stress tolerance in wheat. Plant Cell Environ. 41, 919–935. doi: 10.1111/pce.12898, PMID: PubMed DOI
Pang Y., Liu C., Wang D., St. Amand P., Bernardo A., Li W., et al. . (2020). High-resolution genome-wide association study identifies genomic regions and candidate genes for important agronomic traits in wheat. Mol. Plant 13, 1311–1327. doi: 10.1016/j.molp.2020.07.008, PMID: PubMed DOI
Periyannan S., Moore J., Ayliffe M., Bansal U., Wang X., Huang L., et al. . (2013). The gene Sr33, an ortholog of barley Mla genes, encodes resistance to wheat stem rust race Ug99. Science 341, 786–788. doi: 10.1126/science.1239028 PubMed DOI
Petersen G., Seberg O., Yde M., Berthelsen K. (2006). Phylogenetic relationships of Triticum and Aegilops and evidence for the origin of the A, B, and D genomes of common wheat (Triticum aestivum). Mol. Phylogenet. Evol. 39, 70–82. doi: 10.1016/j.ympev.2006.01.023, PMID: PubMed DOI
Quraishi U. M., Pont C., Ain Q., Flores R., Burlot L., Alaux M., et al. . (2017). Combined genomic and genetic data integration of major agronomical traits in bread wheat (Triticum aestivum L.). Front. Plant Sci. 8:1843. doi: 10.3389/fpls.2017.01843, PMID: PubMed DOI PMC
Raman R., Allen H., Diffey S., Raman H., Martin P., McKelvie K. (2009). Localisation of quantitative trait loci for quality attributes in a doubled haploid population of wheat (Triticum aestivum L.). Genome 52, 701–715. doi: 10.1139/G09-045, PMID: PubMed DOI
Ramirez-Gonzalez R. H., Segovia V., Bird N., Fenwick P., Holdgate S., Berry S., et al. . (2015). RNA-Seq bulked segregant analysis enables the identification of high-resolution genetic markers for breeding in hexaploid wheat. Plant Biotechnol. J. 13, 613–624. doi: 10.1111/pbi.12281, PMID: PubMed DOI
Ran Y., Patron N., Kay P., Wong D., Buchanan M., Cao Y.-Y., et al. . (2018). Zinc finger nuclease-mediated precision genome editing of an endogenous gene in hexaploid bread wheat (Triticum aestivum) using a DNA repair template. Plant Biotechnol. J. 16, 2088–2101. doi: 10.1111/pbi.12941, PMID: PubMed DOI PMC
Raza Q., Riaz A., Atif R. M., Hussain B., Ali Z., Budak H., et al. . (2021). Genome-wide diversity of MADS-Box genes in bread wheat is associated with its rapid global adaptability. Front. Genet. 12:818880. doi: 10.3389/fgene.2021.818880, PMID: PubMed DOI PMC
Reynolds M., Langridge P. (2016). Physiological breeding. Curr. Opin. Plant Biol. 31, 162–171. doi: 10.1016/j.pbi.2016.04.005, PMID: PubMed DOI
Rocha-Meneses L., Ferreira J. A., Mushtaq M., Karimi S., Orupõld K., Kikas T. (2020). Genetic modification of cereal plants: a strategy to enhance bioethanol yields from agricultural waste. Ind. Crop Prod. 150:112408. doi: 10.1016/j.indcrop.2020.112408 DOI
Ru Z., Juhasz A., Li D., Deng P., Zhao J., Gao L., et al. . (2020). 1RS.1BL molecular resolution provides novel contributions to wheat improvement. bioRxiv [Preprint], 1–35. doi:10.1101/2020.09.14.295733 DOI
Rutkoski J., Poland J., Mondal S., Autrique E., Pérez L. G., Crossa J., et al. . (2016). Canopy temperature and vegetation indices from high-throughput phenotyping improve accuracy of pedigree and genomic selection for grain yield in wheat. G3 6, 2799–2808. doi: 10.1534/g3.116.032888 PubMed DOI PMC
Saint Pierre C., Burgueño J., Crossa J., Fuentes Dávila G., Figueroa López P., Solís Moya E., et al. . (2016). Genomic prediction models for grain yield of spring bread wheat in diverse agro-ecological zones. Sci. Rep. 6, 1–11. doi: 10.1038/srep27312 PubMed DOI PMC
Saintenac C., Cambon F., Aouini L., Verstappen E., Ghaffary S. M. T., Poucet T., et al. . (2021). A wheat cysteine-rich receptor-like kinase confers broad-spectrum resistance against Septoria tritici blotch. Nat. Commun. 12:433. doi: 10.1038/s41467-020-20685-0, PMID: PubMed DOI PMC
Saintenac C., Lee W.-S., Cambon F., Rudd J. J., King R. C., Marande W., et al. . (2018). Wheat receptor-kinase-like protein Stb6 controls gene-for-gene resistance to fungal pathogen Zymoseptoria tritici. Nat. Genet. 50, 368–374. doi: 10.1038/s41588-018-0051-x, PMID: PubMed DOI
Saintenac C., Zhang W., Salcedo A., Rouse M. N., Trick H. N., Akhunov E., et al. . (2013). Identification of wheat gene Sr35 that confers resistance to Ug99 stem rust race group. Science 341, 783–786. doi: 10.1126/science.1239022, PMID: PubMed DOI PMC
Sánchez-León S., Gil-Humanes J., Ozuna C. V., Giménez M. J., Sousa C., Voytas D. F., et al. . (2018). Low-gluten, nontransgenic wheat engineered with CRISPR/Cas9. Plant Biotechnol. J. 16, 902–910. doi: 10.1111/pbi.12837, PMID: PubMed DOI PMC
Sánchez-Martín J., Steuernagel B., Ghosh S., Herren G., Hurni S., Adamski N., et al. . (2016). Rapid gene isolation in barley and wheat by mutant chromosome sequencing. Genome Biol. 17, 221. doi: 10.1186/s13059-016-1082-1 PubMed DOI PMC
Scheben A., Edwards D. (2017). Genome editors take on crops. Science 355, 1122–1123. doi: 10.1126/science.aal4680, PMID: PubMed DOI
Scheben A., Wolter F., Batley J., Puchta H., Edwards D. (2017). Towards CRISPR/Cas crops—bringing together genomics and genome editing. New Phytol. 216, 682–698. doi: 10.1111/nph.14702, PMID: PubMed DOI
Schrag T. A., Westhues M., Schipprack W., Seifert F., Thiemann A., Scholten S., et al. . (2018). Beyond genomic prediction: combining different types of omics data can improve prediction of hybrid performance in maize. Genetics 208, 1373–1385. doi: 10.1534/genetics.117.300374, PMID: PubMed DOI PMC
Sehgal D., Autrique E., Singh R., Ellis M., Singh S., Dreisigacker S. (2017). Identification of genomic regions for grain yield and yield stability and their epistatic interactions. Sci. Rep. 7, 1–12. doi: 10.1038/srep41578 PubMed DOI PMC
Sehgal D., Mondal S., Crespo-Herrera L., Velu G., Juliana P., Huerta-Espino J., et al. . (2020a). Haplotype-based, genome-wide association study reveals stable genomic regions for grain yield in CIMMYT spring bread wheat. Front. Genet. 11:1427. doi: 10.3389/fgene.2020.589490 PubMed DOI PMC
Sehgal D., Rosyara U., Mondal S., Singh R., Poland J., Dreisigacker S. (2020b). Incorporating genome-wide association mapping results into genomic prediction models for grain yield and yield stability in CIMMYT spring bread wheat. Front. Plant Sci. 11:197. doi: 10.3389/fpls.2020.00197 PubMed DOI PMC
Shan Q., Wang Y., Li J., Gao C. (2014). Genome editing in rice and wheat using the CRISPR/Cas system. Nat. Protoc. 9, 2395–2410. doi: 10.1038/nprot.2014.157, PMID: PubMed DOI
Sharma D. K., Torp A. M., Rosenqvist E., Ottosen C.-O., Andersen S. B. (2017). QTLs and potential candidate genes for heat stress tolerance identified from the mapping populations specifically segregating for Fv/Fm in wheat. Front. Plant Sci. 8:1668. doi: 10.3389/fpls.2017.01668, PMID: PubMed DOI PMC
Shi G., Zhang Z., Friesen T. L., Raats D., Fahima T., Brueggeman R. S., et al. . (2016). The hijacking of a receptor kinase-driven pathway by a wheat fungal pathogen leads to disease. Sci. Adv. 2:e1600822. doi: 10.1126/sciadv.1600822, PMID: PubMed DOI PMC
Shokat S., Sehgal D., Vikram P., Liu F., Singh S. (2020). Molecular markers associated with agro-physiological traits under terminal drought conditions in bread wheat. Int. J. Mol. Sci. 21:3156. doi: 10.3390/ijms21093156, PMID: PubMed DOI PMC
Simons K., Anderson J. A., Mergoum M., Faris J. D., Klindworth D. L., Xu S. S., et al. . (2012). Genetic mapping analysis of bread-making quality traits in spring wheat. Crop. Sci. 52:2182. doi: 10.2135/cropsci2012.03.0175, PMID: PubMed DOI
Singh A. K., Singh N., Kumar S., Kumari J., Singh R., Gaba S., et al. . (2020). Identification and evolutionary analysis of polycistronic miRNA clusters in domesticated and wild wheat. Genomics 112, 2334–2348. doi: 10.1016/j.ygeno.2020.01.005, PMID: PubMed DOI
Steuernagel B., Periyannan S. K., Hernández-Pinzón I., Witek K., Rouse M. N., Yu G., et al. . (2016). Rapid cloning of disease-resistance genes in plants using mutagenesis and sequence capture. Nat. Biotechnol. 34, 652–655. doi: 10.1038/nbt.3543, PMID: PubMed DOI
Su Z., Bernardo A., Tian B., Chen H., Wang S., Ma H., et al. . (2019). A deletion mutation in TaHRC confers Fhb1 resistance to Fusarium head blight in wheat. Nat. Genet. 51, 1099–1105. doi: 10.1038/s41588-019-0425-8, PMID: PubMed DOI
Su Z., Hao C., Wang L., Dong Y., Zhang X. (2011). Identification and development of a functional marker of TaGW2 associated with grain weight in bread wheat (Triticum aestivum L.). Theor. Appl. Genet. 122, 211–223. doi: 10.1007/s00122-010-1437-z, PMID: PubMed DOI
Su Z., Jin S., Lu Y., Zhang G., Chao S., Bai G. (2016). Single nucleotide polymorphism tightly linked to a major QTL on chromosome 7A for both kernel length and kernel weight in wheat. Mol. Breed. 36:15. doi: 10.1007/s11032-016-0436-4, PMID: PubMed DOI
Sun H., Lu J., Fan Y., Zhao Y., Kong F., Li R., et al. . (2008). Quantitative trait loci (QTLs) for quality traits related to protein and starch in wheat. Prog. Nat. Sci. 18, 825–831. doi: 10.1016/j.pnsc.2007.12.013, PMID: PubMed DOI
Takagi H., Abe A., Yoshida K., Kosugi S., Natsume S., Mitsuoka C., et al. . (2013a). QTL-seq: rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations. Plant J. 74, 174–183. doi: 10.1111/tpj.12105 PubMed DOI
Takagi H., Uemura A., Yaegashi H., Tamiru M., Abe A., Mitsuoka C., et al. . (2013b). MutMap-gap: whole-genome resequencing of mutant F2 progeny bulk combined with de novo assembly of gap regions identifies the rice blast resistance gene Pii. New Phytol. 200, 276–283. doi: 10.1111/nph.12369 PubMed DOI
Talukder S. K., Babar M. A., Vijayalakshmi K., Poland J., Prasad P. V. V., Bowden R., et al. . (2014). Mapping QTL for the traits associated with heat tolerance in wheat (Triticum aestivum L.). BMC Genet. 15:97. doi: 10.1186/s12863-014-0097-4, PMID: PubMed DOI PMC
Thind A. K., Wicker T., Šimková H., Fossati D., Moullet O., Brabant C., et al. . (2017). Rapid cloning of genes in hexaploid wheat using cultivar-specific long-range chromosome assembly. Nat. Biotechnol. 35, 793–796. doi: 10.1038/nbt.3877, PMID: PubMed DOI
Trick M., Adamski N. M., Mugford S. G., Jiang C. C., Febrer M., Uauy C. (2012). Combining SNP discovery from next- generation sequencing data with bulked segregant analysis (BSA) to fine-map genes in polyploid wheat. BMC Plant Biol. 12:14. doi: 10.1186/1471-2229-12-14, PMID: PubMed DOI PMC
Uauy C., Distelfeld A., Fahima T., Blechl A., Dubcovsky J. (2006). A NAC gene regulating senescence improves grain protein, zinc, and iron content in wheat. Science 314, 1298–1301. doi: 10.1126/science.1133649, PMID: PubMed DOI PMC
Upadhyay S. K., Kumar J., Alok A., Tuli R. (2013). RNA-guided genome editing for target gene mutations in wheat. G3 3, 2233–2238. doi: 10.1534/g3.113.008847, PMID: PubMed DOI PMC
Vágújfalvi A., Galiba G., Cattivelli L., Dubcovsky J. (2003). The cold-regulated transcriptional activator Cbf3 is linked to the frost-tolerance locus Fr-A2 on wheat chromosome 5A. Mol. Genet. Genomics 269, 60–67. doi: 10.1007/s00438-003-0806-6, PMID: PubMed DOI PMC
Voss-Fels K. P., Keeble-Gagnère G., Hickey L. T., Tibbits J., Nagornyy S., Hayden M. J., et al. . (2019). High-resolution mapping of rachis nodes per rachis, a critical determinant of grain yield components in wheat. Theor. Appl. Genet. 132, 2707–2719. doi: 10.1007/s00122-019-03383-4, PMID: PubMed DOI
Walkowiak S., Gao L., Monat C., Haberer G., Kassa M. T., Brinton J., et al. . (2020). Multiple wheat genomes reveal global variation in modern breeding. Nature 2020, 1–7. doi: 10.1038/s41586-020-2961-x PubMed DOI PMC
Wang D., Cao D., Zong Y., Li Y., Wang J., Li Z., et al. . (2021). Bulked QTL-Seq identified a major QTL for the awnless trait in spring wheat cultivars in Qinghai, China. Biotechnol. Biotechnol. Equip. 35, 124–130. doi: 10.1080/13102818.2020.1857661 DOI
Wang Y., Cheng X., Shan Q., Zhang Y., Liu J., Gao C., et al. . (2014). Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat. Biotechnol. 32, 947–951. doi: 10.1038/nbt.2969, PMID: PubMed DOI
Wang Z., Li J., Chen S., Heng Y., Chen Z., Yang J., et al. . (2017). Poaceae-specific MS1 encodes a phospholipid-binding protein for male fertility in bread wheat. Proc. Natl. Acad. Sci. U. S. A. 114, 12614–12619. doi: 10.1073/pnas.1715570114, PMID: PubMed DOI PMC
Wang W., Pan Q., He F., Akhunova A., Chao S., Trick H., et al. . (2018a). Transgenerational CRISPR-Cas9 activity facilitates multiplex gene editing in allopolyploid wheat. Cris. J. 1, 65–74. doi: 10.1089/crispr.2017.0010 PubMed DOI PMC
Wang H., Sun S., Ge W., Zhao L., Hou B., Wang K., et al. . (2020a). Horizontal gene transfer of Fhb7 from fungus underlies Fusarium head blight resistance in wheat. Science 368:eaba5435. doi: 10.1126/science.aba5435 PubMed DOI
Wang Y., Zhang H., Xie J., Guo B., Chen Y., Zhang H., et al. . (2018b). Mapping stripe rust resistance genes by BSR-Seq: YrMM58 and YrHY1 on chromosome 2AS in Chinese wheat lines Mengmai 58 and Huaiyang 1 are Yr17. Crop J. 6, 91–98. doi: 10.1016/j.cj.2017.03.002 DOI
Wang H., Zou S., Li Y., Lin F., Tang D. (2020b). An ankyrin-repeat and WRKY-domain-containing immune receptor confers stripe rust resistance in wheat. Nat. Commun. 11, 1–11. doi: 10.1038/s41467-020-15139-6 PubMed DOI PMC
Watson A., Ghosh S., Williams M. J., Cuddy W. S., Simmonds J., Rey M. D., et al. . (2018). Speed breeding is a powerful tool to accelerate crop research and breeding. Nat. Plants 4, 23–29. doi: 10.1038/s41477-017-0083-8, PMID: PubMed DOI
Wei K., Han P. (2017). Comparative functional genomics of the TPR gene family in Arabidopsis, rice and maize. Mol. Breed. 37, 1–21. doi: 10.1007/s11032-017-0751-4 PubMed DOI
Würschum T., Longin C. F. H., Hahn V., Tucker M. R., Leiser W. L. (2017). Copy number variations of CBF genes at the Fr-A2 locus are essential components of winter hardiness in wheat. Plant J. 89, 764–773. doi: 10.1111/tpj.13424, PMID: PubMed DOI
Xie J., Guo G., Wang Y., Hu T., Wang L., Li J., et al. . (2020). A rare single nucleotide variant in Pm5e confers powdery mildew resistance in common wheat. New Phytol. 228, 1011–1026. doi: 10.1111/nph.16762, PMID: PubMed DOI
Xie K., Minkenberg B., Yang Y. (2015). Boosting CRISPR/Cas9 multiplex editing capability with the endogenous tRNA- processing system. Proc. Natl. Acad. Sci. 112, 3570–3575. doi: 10.1073/pnas.1420294112, PMID: PubMed DOI PMC
Xing L., Hu P., Liu J., Witek K., Zhou S., Xu J., et al. . (2018). Pm21 from Haynaldia villosa encodes a CC-NBS-LRR protein conferring powdery mildew resistance in wheat. Mol. Plant 11, 874–878. doi: 10.1016/j.molp.2018.02.013, PMID: PubMed DOI
Yahiaoui N., Srichumpa P., Dudler R., Keller B. (2004). Genome analysis at different ploidy levels allows cloning of the powdery mildew resistance gene Pm3b from hexaploid wheat. Plant J. 37, 528–538. doi: 10.1046/j.1365-313X.2003.01977.x, PMID: PubMed DOI
Yan L., Loukoianov A., Tranquilli G., Helguera M., Fahima T., Dubcovsky J. (2003). Positional cloning of the wheat vernalization gene VRN1. Proc. Natl. Acad. Sci. U. S. A. 100, 6263–6268. doi: 10.1073/pnas.0937399100, PMID: PubMed DOI PMC
Yang Y., Zhang F., Zhou T., Fang A., Yu Y., Bi C., et al. . (2020). In Silico identification of the full complement of subtilase-encoding genes and characterization of the role of TaSBT1.7 in resistance against stripe rust in wheat. Phytopathology 111, 398–407. doi: 10.1094/phyto-05-20-0176-r PubMed DOI
Yu S., Wu J., Wang M., Shi W., Xia G., Jia J., et al. . (2020). Haplotype variations in QTL for salt tolerance in Chinese wheat accessions identified by marker-based and pedigree-based kinship analyses. Crop J. 8, 1011–1024. doi: 10.1016/j.cj.2020.03.007 DOI
Zanke C. D., Ling J., Plieske J., Kollers S., Ebmeyer E., Korzun V., et al. . (2015). Analysis of main effect QTL for thousand grain weight in European winter wheat (Triticum aestivum L.) by genome-wide association mapping. Front. Plant Sci. 6:644. doi: 10.3389/fpls.2015.00644, PMID: PubMed DOI PMC
Zeng F., Yang L., Gong S., Shi W., Zhang X., Wang H., et al. . (2014). Virulence and diversity of Blumeria graminis f. sp. tritici populations in China. J. Integr. Agric. 13, 2424–2437. doi: 10.1016/S2095-3119(13)60669-3, PMID: PubMed DOI
Zhang Y., Bai Y., Wu G., Zou S., Chen Y., Gao C., et al. . (2017). Simultaneous modification of three homoeologs of TaEDR1 by genome editing enhances powdery mildew resistance in wheat. Plant J. 91, 714–724. doi: 10.1111/tpj.13599, PMID: PubMed DOI
Zhang Y., Liu J., Xia X., He Z. (2014). TaGS-D1, an ortholog of rice OsGS3, is associated with grain weight and grain length in common wheat. Mol. Breed. 34, 1097–1107. doi: 10.1007/s11032-014-0102-7 DOI
Zhang H., Mao X., Zhang J., Chang X., Jing R. (2013). Single-nucleotide polymorphisms and association analysis of drought-resistance gene TaSnRK2.8 in common wheat. Plant Physiol. Biochem. 70, 174–181. doi: 10.1016/j.plaphy.2013.04.010, PMID: PubMed DOI
Zhang J., Zhang P., Dodds P., Lagudah E. (2020). How target-sequence enrichment and sequencing (TEnSeq) pipelines have catalyzed resistance gene cloning in the wheat-rust pathosystem. Front. Plant Sci. 11:678. doi: 10.3389/fpls.2020.00678, PMID: PubMed DOI PMC
Zhao Y., Gowda M., Würschum T., Longin C. F. H., Korzun V., Kollers S., et al. . (2013a). Dissecting the genetic architecture of frost tolerance in central European winter wheat. J. Exp. Bot. 64, 4453–4460. doi: 10.1093/jxb/ert259 PubMed DOI PMC
Zhao Y., Li Z., Liu G., Jiang Y., Maurer H. P., Würschum T., et al. . (2015). Genome-based establishment of a high-yielding heterotic pattern for hybrid wheat breeding. Proc. Natl. Acad. Sci. U. S. A. 112, 15624–15629. doi: 10.1073/pnas.1514547112, PMID: PubMed DOI PMC
Zhao Y., Mette M. F., Gowda M., Longin C. F. H., Reif J. C. (2014). Bridging the gap between marker-assisted and genomic selection of heading time and plant height in hybrid wheat. Heredity 112, 638–645. doi: 10.1038/hdy.2014.1, PMID: PubMed DOI PMC
Zhao D., Yang L., Xu K., Cao S., Tian Y., Yan J., et al. . (2020). Identification and validation of genetic loci for tiller angle in bread wheat. Theor. Appl. Genet. 133, 3037–3047. doi: 10.1007/s00122-020-03653-6, PMID: PubMed DOI
Zhao Y., Zeng J., Fernando R., Reif J. C. (2013b). Genomic prediction of hybrid wheat performance. Crop. Sci. 53, 802–810. doi: 10.2135/cropsci2012.08.0463 DOI
Zhou X., Zhu X., Shao W., Song J., Jiang W., He Y., et al. . (2020). Genome-wide mining of wheat DUF966 gene family provides new insights into salt stress responses. Front. Plant Sci. 11:1345. doi: 10.3389/fpls.2020.569838, PMID: PubMed DOI PMC
Zimin A. V., Puiu D., Hall R., Kingan S., Clavijo B. J., Salzberg S. L. (2017). The first near-complete assembly of the hexaploid bread wheat genome, Triticum aestivum. Gigascience 6, 1–7. doi: 10.1093/gigascience/gix097, PMID: PubMed DOI PMC
Zou S., Wang H., Li Y., Kong Z., Tang D. (2018). The NB-LRR gene Pm60 confers powdery mildew resistance in wheat. New Phytol. 218, 298–309. doi: 10.1111/nph.14964, PMID: PubMed DOI
Zou C., Wang P., Xu Y. (2016). Bulked sample analysis in genetics, genomics and crop improvement. Plant Biotechnol. J. 14, 1941–1955. doi: 10.1111/pbi.12559, PMID: PubMed DOI PMC