Putative interchromosomal rearrangements in the hexaploid wheat (Triticum aestivum L.) genotype 'Chinese Spring' revealed by gene locations on homoeologous chromosomes
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
25880815
PubMed Central
PMC4364500
DOI
10.1186/s12862-015-0313-5
PII: 10.1186/s12862-015-0313-5
Knihovny.cz E-zdroje
- MeSH
- chromozomy rostlin * MeSH
- genom rostlinný MeSH
- lipnicovité genetika MeSH
- mapování chromozomů MeSH
- pšenice klasifikace genetika MeSH
- rostlinné geny MeSH
- syntenie * MeSH
- translokace genetická MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
BACKGROUND: Chromosomal rearrangements are a major driving force in shaping genome during evolution. Previous studies show that translocated genes could undergo elevated rates of evolution and recombination frequencies around these genes can be altered. Based on the recently released genome sequences of Triticum urartu, Aegilops tauschii, Brachypodium distachyon and bread wheat, an analysis of interchromosomal translocations in the hexaploid wheat genotype 'Chinese Spring' ('CS') was conducted based on chromosome shotgun sequences from individual chromosome arms of this genotype. RESULTS: A total of 720 genes representing putative interchromosomal rearrangements was identified. They were distributed across the 42 chromosome arms. About 59% of these translocated genes were those involved in the well-characterized translocations involving chromosomes 4A, 5A and 7B. The other 41% of the genes represent a large numbers of putative interchromosomal rearrangements which have not yet been described. The number of the putative translocation events in the D subgenome was about half of those presented in either the A or B subgenomes, which agreed well with that the times of interaction between the A and B subgenomes almost doubled that between either of them and the D subgenome. CONCLUSIONS: The possible existence of a large number of interchromosomal rearrangements detected in this study provide further evidence that caution should be taken when using synteny in ordering sequence contigs or in cloning genes in hexaploid wheat. The identification of these putative translocations in 'CS' also provide a base for a systematic evaluation of their presence or absence in the full spectrum of bread wheat and its close relatives, which could have significant implications in a wide array of fields ranging from studies of systematics and evolution to practical breeding.
CSIRO Agriculture Flagship 306 Carmody Road St Lucia QLD 4067 Australia
School of Plant Biology The University of Western Australia Perth WA 6009 Australia
Triticeae Research Institute Sichuan Agricultural University Wenjiang Chengdu 611130 China
Zobrazit více v PubMed
Brown JD, O’Neill RJ. Chromosomes, conflict, and epigenetics: chromosomal speciation revisited. Annu Rev Genomics Hum Genet. 2010;11:291–316. doi: 10.1146/annurev-genom-082509-141554. PubMed DOI
Burt DW, Bruley C, Dunn IC, Jones CT, Ramage A, Law AS, et al. The dynamics of chromosome evolution in birds and mammals. Nature. 1999;402(6760):411–2. doi: 10.1038/46555. PubMed DOI
Colson I, Delneri D, Oliver SG. Effects of reciprocal chromosomal translocations on the fitness of Saccharomyces cerevisiae. EMBO Rep. 2004;5(4):392–8. doi: 10.1038/sj.embor.7400123. PubMed DOI PMC
Morrow JD, Cooper VS. Evolutionary effects of translocations in bacterial genomes. Genome Biol Evol. 2012;4(12):1256–62. doi: 10.1093/gbe/evs099. PubMed DOI PMC
Sankoff D, Nadeau JH. Chromosome rearrangements in evolution: From gene order to genome sequence and back. Proc Natl Acad Sci U S A. 2003;100(20):11188–9. doi: 10.1073/pnas.2035002100. PubMed DOI PMC
Hao W, Golding GB. Does gene translocation accelerate the evolution of laterally transferred genes? Genetics. 2009;182(4):1365–75. doi: 10.1534/genetics.109.104216. PubMed DOI PMC
Law C, Worland A. The control of adult‐plant resistance to yellow rust by the translocated chromosome 5BS‐7BS of bread wheat. Plant Breed. 1997;116(1):59–63. doi: 10.1111/j.1439-0523.1997.tb00975.x. DOI
Liu C, Atkinson M, Chinoy C, Devos K, Gale M. Nonhomoeologous translocations between group 4, 5 and 7 chromosomes within wheat and rye. Theor Appl Genet. 1992;83(3):305–12. doi: 10.1007/BF00224276. PubMed DOI
Devos K, Dubcovsky J, Dvořák J, Chinoy C, Gale M. Structural evolution of wheat chromosomes 4A, 5A, and 7B and its impact on recombination. Theor Appl Genet. 1995;91(2):282–8. doi: 10.1007/BF00220890. PubMed DOI
Nelson JC, Sorrells ME, Van-Deynze A, Lu YH, Atkinson M, Bernard M, et al. Molecular mapping of wheat: major genes and rearrangements in homoeologous groups 4, 5, and 7. Genetics. 1995;141(2):721. PubMed PMC
King I, Purdie K, Liu C, Reader S, Pittaway T, Orford S, et al. Detection of interchromosomal translocations within the Triticeae by RFLP analysis. Genome. 1994;37(5):882–7. doi: 10.1139/g94-125. PubMed DOI
Riley R, Coucoli H, Chapman V. Chromosomal interchanges and the phylogeny of wheat. Heredity. 1967;22:233–48. doi: 10.1038/hdy.1967.29. DOI
Belay G, Merker A. Cytogenetic analysis of a spontaneous 5B/6B translocation in tetraploid wheat landraces from Ethiopia, and implications for breeding. Plant Breed. 1998;117(6):537–42. doi: 10.1111/j.1439-0523.1998.tb02203.x. DOI
Naranjo T, Roca A, Goicoechea P, Giraldez R. Arm homoeology of wheat and rye chromosomes. Genome. 1987;29(6):873–82. doi: 10.1139/g87-149. DOI
Valárik M, Bartoš J, Kovářová P, Kubaláková M, De Jong J, Doležel J. High‐resolution FISH on super‐stretched flow‐sorted plant chromosomes. Plant J. 2004;37(6):940–50. doi: 10.1111/j.1365-313X.2003.02010.x. PubMed DOI
Danilova TV, Friebe B, Gill BS. Development of a wheat single gene FISH map for analyzing homoeologous relationship and chromosomal rearrangements within the Triticeae. Theor Appl Genet. 2014;127(3):715–30. doi: 10.1007/s00122-013-2253-z. PubMed DOI PMC
Ling H-Q, Zhao S, Liu D, Wang J, Sun H, Zhang C, et al. Draft genome of the wheat A-genome progenitor Triticum urartu. Nature. 2013;496:87–90. doi: 10.1038/nature11997. PubMed DOI
Jia J, Zhao S, Kong X, Li Y, Zhao G, He W, et al. Aegilops tauschii draft genome sequence reveals a gene repertoire for wheat adaptation. Nature. 2013;496:91–5. doi: 10.1038/nature12028. PubMed DOI
Vogel JP, Garvin DF, Mockler TC, Schmutz J, Rokhsar D, Bevan MW, et al. Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature. 2010;463(7282):763–8. doi: 10.1038/nature08747. PubMed DOI
International-Wheat-Genome-Sequencing-Consortium A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science. 2014;345:1251788. doi: 10.1126/science.1251788. PubMed DOI
Ma J, Stiller J, Berkman PJ, Wei Y, Rogers J, Feuillet C, et al. Sequence-based analysis of translocations and inversions in bread wheat (Triticum aestivum L.) PLoS One. 2013;8(11):e79329. doi: 10.1371/journal.pone.0079329. PubMed DOI PMC
Ma J, Stiller J, Wei Y, Zheng Y-L, Devos KM, Doležel J, et al. Extensive pericentric rearrangements in the bread wheat (Triticum aestivum L.) genotype ‘Chinese Spring’ revealed from chromosome shotgun sequence data. Genome Biol Evol. 2014;6(11):3039–48. doi: 10.1093/gbe/evu237. PubMed DOI PMC
Qi L, Friebe B, Gill BS. Complex genome rearrangements reveal evolutionary dynamics of pericentromeric regions in the Triticeae. Genome. 2006;49(12):1628–39. doi: 10.1139/g06-123. PubMed DOI
Mickelson-Young L, Endo T, Gill B. A cytogenetic ladder-map of the wheat homoeologous group-4 chromosomes. Theor Appl Genet. 1995;90(7):1007–11. PubMed
Miftahudin. Ross K, Ma XF, Mahmoud A, Layton J, Milla MAR, et al. Analysis of expressed sequence tag loci on wheat chromosome group 4. Genetics. 2004;168(2):651–63. doi: 10.1534/genetics.104.034827. PubMed DOI PMC
Chardon F, Virlon B, Moreau L, Falque M, Joets J, Decousset L, et al. Genetic architecture of flowering time in maize as inferred from quantitative trait loci meta-analysis and synteny conservation with the rice genome. Genetics. 2004;168(4):2169–85. doi: 10.1534/genetics.104.032375. PubMed DOI PMC
Galvão VC, Nordström KJ, Lanz C, Sulz P, Mathieu J, Posé D, et al. Synteny‐based mapping‐by‐sequencing enabled by targeted enrichment. Plant J. 2012;71(3):517–26. PubMed
Ghedin E, Bringaud F, Peterson J, Myler P, Berriman M, Ivens A, et al. Gene synteny and evolution of genome architecture in trypanosomatids. Mol Biochem Parasitol. 2004;134(2):183–91. doi: 10.1016/j.molbiopara.2003.11.012. PubMed DOI
Grant D, Cregan P, Shoemaker RC. Genome organization in dicots: genome duplication in Arabidopsis and synteny between soybean and Arabidopsis. Proc Natl Acad Sci U S A. 2000;97(8):4168–73. doi: 10.1073/pnas.070430597. PubMed DOI PMC
Allen AM, Barker GL, Berry ST, Coghill JA, Gwilliam R, Kirby S, et al. Transcript‐specific, single‐nucleotide polymorphism discovery and linkage analysis in hexaploid bread wheat (Triticum aestivum L.) Plant Biotechnol J. 2011;9(9):1086–99. doi: 10.1111/j.1467-7652.2011.00628.x. PubMed DOI
Cadalen T, Boeuf C, Bernard S, Bernard M. An intervarietal molecular marker map in Triticum aestivum L. Em. Thell. and comparison with a map from a wide cross. Theor Appl Genet. 1997;94(3–4):367–77. doi: 10.1007/s001220050425. DOI
Marcussen T, Sandve SR, Heier L, Spannagl M, Pfeifer M, Jakobsen KS, et al. Ancient hybridizations among the ancestral genomes of bread wheat. Science. 2014;345(6194):1250092. doi: 10.1126/science.1250092. PubMed DOI
Miller T. Wheat breeding: its scientific basis. London: Chapman and Hall; 1987. Systematics and evolution; pp. 1–30.
Conley E, Nduati V, Gonzalez-Hernandez J, Mesfin A, Trudeau-Spanjers M, Chao S, et al. A 2600-locus chromosome bin map of wheat homoeologous group 2 reveals interstitial gene-rich islands and colinearity with rice. Genetics. 2004;168(2):625–37. doi: 10.1534/genetics.104.034801. PubMed DOI PMC
Linkiewicz A, Qi L, Gill B, Ratnasiri A, Echalier B, Chao S, et al. A 2500-locus bin map of wheat homoeologous group 5 provides insights on gene distribution and colinearity with rice. Genetics. 2004;168(2):665–76. doi: 10.1534/genetics.104.034835. PubMed DOI PMC
Chromosome-specific sequencing reveals an extensive dispensable genome component in wheat