Chromosome-specific sequencing reveals an extensive dispensable genome component in wheat
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
27821854
PubMed Central
PMC5099574
DOI
10.1038/srep36398
PII: srep36398
Knihovny.cz E-zdroje
- MeSH
- chromozomy rostlin genetika MeSH
- genom rostlinný MeSH
- mapování chromozomů MeSH
- polyploidie MeSH
- pšenice genetika MeSH
- sekvenční analýza DNA metody MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The hexaploid wheat genotype Chinese Spring (CS) has been used worldwide as the reference base for wheat genetics and genomics, and significant resources have been used by the international community to generate a reference wheat genome based on this genotype. By sequencing flow-sorted 3B chromosome from a hexaploid wheat genotype CRNIL1A and comparing the obtained sequences with those available for CS, we detected that a large number of sequences in the former were missing in the latter. If the distribution of such sequences in the hexaploid wheat genome is random, CRNILA sequences missing in CS could be as much as 159.3 Mb even if only fragments of 50 bp or longer were considered. Analysing RNA sequences available in the public domains also revealed that dispensable genes are common in hexaploid wheat. Together with those extensive intra- and interchromosomal rearrangements in CS, the existence of such dispensable genes is another factor highlighting potential issues with the use of reference genomes in various studies. Strong deviation in distributions of these dispensable sequences among genotypes with different geographical origins provided the first evidence indicating that they could be associated with adaptation in wheat.
CSIRO Agriculture and Food 306 Carmody Road St Lucia QLD 4067 Australia
School of Plant Biology The University of Western Australia Perth WA 6009 Australia
Triticeae Research Institute Sichuan Agricultural University Wenjiang Chengdu 611130 China
Zobrazit více v PubMed
Paux E. et al. Characterizing the composition and evolution of homoeologous genomes in hexaploid wheat through BAC-end sequencing on chromosome 3B. Plant J 48, 463–474 (2006). PubMed
Choulet F. et al. Megabase level sequencing reveals contrasted organization and evolution patterns of the wheat gene and transposable element spaces. Plant Cell. 22, 1686–1701 (2010). PubMed PMC
International Wheat Genome Sequencing Consortium. A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science. 345, 1250092–1250092 (2014). PubMed
Choulet F. et al. Structural and functional partitioning of bread wheat chromosome 3B. Science. 345, 1249721–1249721 (2014). PubMed
Liu C. & Ogbonnaya F. C. Resistance to Fusarium crown rot in wheat and barley: a review. Plant Breeding. 134, 365–372 (2015).
Li H. B. et al. Genetic relationships between resistances to Fusarium head blight and crown rot in bread wheat (Triticum aestivum L.). Theor. Appl. Genet. 121, 941–950 (2010). PubMed
Ma J. et al. Identification and validation of a major QTL conferring crown rot resistance in hexaploid wheat. Theor. Appl. Genet. 120, 1119–1128 (2010). PubMed
Ma J., Yan G. J. & Liu C. J. Development of near-isogenic lines for a major QTL on 3BL conferring Fusarium crown rot resistance in hexaploid wheat. Euphytica. 183, 147–152 (2012).
Ma J. et al. Transcriptome and allele specificity associated with a 3BL locus for Fusarium crown rot resistance in bread wheat. PLoS ONE. 9, e113309 (2014). PubMed PMC
Zheng Z. et al. Fine mapping of a large-effect QTL conferring Fusarium crown rot resistance on the long arm of chromosome 3B in hexaploid wheat. BMC Genomics. 16, 850 (2015). PubMed PMC
Cápal P., Blavet N., Vrána J., Kubaláková M. & Doležel J. Multiple displacement amplification of the DNA from single flow–sorted plant chromosome. Plant J 84, 838–844 (2015). PubMed
Brenchley R. et al. Analysis of the bread wheat genome using whole-genome shotgun sequencing. Nature. 491, 705–710 (2012). PubMed PMC
Ma J. et al. Extensive pericentric rearrangements in the bread wheat (Triticum aestivum L.) genotype ‘Chinese Spring’ revealed from chromosome shotgun sequence data. Genome Biol. Evol. 6, 3039–3048 (2014). PubMed PMC
Ma J. et al. Sequence-based analysis of translocations and inversions in bread wheat (Triticum aestivum L.). PLoS ONE. 8, e79329 (2013). PubMed PMC
Ma J. et al. Putative interchromosomal rearrangements in the hexaploid wheat (Triticum aestivum L.) genotype ‘Chinese Spring’ revealed by gene locations on homoeologous chromosomes. BMC Evol. Biol. 15, 37 (2015). PubMed PMC
Subbaiyan G. K. et al. Genome-wide DNA polymorphisms in elite indica rice inbreds discovered by whole-genome sequencing. Plant Biotechnol. J 10, 623–634 (2012). PubMed
Jia G. et al. A haplotype map of genomic variations and genome-wide association studies of agronomic traits in foxtail millet (Setaria italic). Nat. Genet. 45, 957–961 (2014). PubMed
Huang X. et al. Genomic analysis of hybrid rice varieties reveals numerous superior alleles that contribute to heterosis. Nat. Commun. 6, (2015). PubMed PMC
Lai K. et al. Identification and characterization of more than 4 million intervarietal SNPs across the group 7 chromosomes of bread wheat. Plant Biotechnol. J 13, 97–104 (2015). PubMed
Medini D., Donati C., Tettelin H., Masignani V. & Rappuoli R. The microbial pan-genome. Curr. Opin. Genet. Dev. 15, 589–594 (2005). PubMed
Hogg J. S. et al. Characterization and modeling of the Haemophilus influenzae core and supragenomes based on the complete genomic sequences of Rd and 12 clinical nontypeable strains. Genome Biol. 8, 1 (2007). PubMed PMC
Lefébure T. & Stanhope M. J. Evolution of the core and pan-genome of Streptococcus: positive selection, recombination, and genome composition. Genome Biol. 8, 1 (2007). PubMed PMC
Tettelin H., Riley D., Cattuto C. & Medini D. Comparative genomics: the bacterial pan-genome. Curr. Opin. Microbiol. 11, 472–477 (2008). PubMed
Kahlke T., Goesmann A., Hjerde E., Willassen N. P. & Haugen P. Unique core genomes of the bacterial family vibrionaceae: insights into niche adaptation and speciation. BMC genomics. 13, 179 (2012). PubMed PMC
Gore M. A. et al. A first-generation haplotype map of maize. Science. 326, 1115–1117 (2009). PubMed
Chia J. M. et al. Maize HapMap2 identifies extant variation from a genome in flux. Nat. Genet. 44, 803–807 (2012). PubMed
Read B. A. et al. Pan genome of the phytoplankton Emiliania underpins its global distribution. Nature. 499, 209–213 (2013). PubMed
Hirsch C. N. et al. Insights into the maize pan-genome and pan-transcriptome. Plant Cell. 26, 121–135 (2014). PubMed PMC
Li Y. H. et al. De novo assembly of soybean wild relatives for pan-genome analysis of diversity and agronomic traits. Nat. Biotechnol. 32, 1045–1054 (2014). PubMed
Lu F. et al. High-resolution genetic mapping of maize pan-genome sequence anchors. Nat. Commun. 6, (2015). PubMed PMC
Yao W. et al. Exploring the rice dispensable genome using a metagenome-like assembly strategy. Genome Biol. 16, 1–20 (2015). PubMed PMC
Jin M. et al. Maize pan-transcriptome provides novel insights into genome complexity and quantitative. Sci. Rep. 6, 18936 (2016). PubMed PMC
Landry C. R., Oh J., Hartl D. L. & Cavalieri D. Genome-wide scan reveals that genetic variation for transcriptional plasticity in yeast is biased towards multi-copy and dispensable genes. Gene. 366, 343–351 (2006). PubMed
Dunn B., Richter C., Kvitek D. J., Pugh T. & Sherlock G. Analysis of the Saccharomyces cerevisiae pan-genome reveals a pool of copy number variants distributed in diverse yeast strains from differing industrial environments. Genome Res. 22, 908–924 (2012). PubMed PMC
Vrána J. et al. Flow sorting of mitotic chromosomes in common wheat (Triticum aestivum L.). Genetics. 156, 2033–2041 (2000). PubMed PMC
Šimková H. et al. Coupling amplified DNA from flow-sorted chromosomes to high-density SNP mapping in barley. BMC Genomics. 9, 294 (2008). PubMed PMC
Cox M. P., Peterson D. A. & Biggs P. J. SolexaQA: At-a-glance quality assessment of Illumina second-generation sequencing data. BMC bioinformatics. 11, 1 (2010). PubMed PMC
Schmieder R. & Edwards R. Fast identification and removal of sequence contamination from genomic and metagenomic datasets. PLoS ONE. 6, e17288 (2011). PubMed PMC
Murray M. G. & Thompson W. F. Rapid isolation of high molecular weight plant DNA. Nucleic. Acids. Res. 8, 4321–4326 (1980). PubMed PMC
Van Ooijen J. JoinMap version 4.0: Software for the calculation of genetic linkage maps in experimental population. Kyazma B.V. Wageningen, Netherlands. (2006).
Conesa A. et al. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics. 21, 3674–3676 (2005). PubMed
Cavanagh C. R. et al. Genome-wide comparative diversity uncovers multiple targets of selection for improvement in hexaploid wheat landraces and cultivars. Proc. Natl. Acad. Sci. USA 110, 8057–8062 (2013). PubMed PMC
Grabherr M. G. et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 29, 644–652 (2011). PubMed PMC
Li B. & Dewey C. N. RSEM: accurate transcript quantification from RNASeq data with or without a reference genome. BMC Bioinformatics. 12, 1–16 (2011). PubMed PMC
Mortazavi A., Williams B. A., McCue K., Schaeffer L. & Wold B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat. methods. 5, 621–628 (2008). PubMed
Wu T. D. & Watanabe C. K. GMAP: a genomic mapping and alignment program for mRNA and EST sequences. Bioinformatics. 21, 1859–1875 (2005). PubMed
Li W. & Godzik A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics. 22, 1658–1659 (2006). PubMed
Chapman J. A. et al. A whole-genome shotgun approach for assembling and anchoring the hexaploid bread wheat genome. Genome Biol. 16, 26 (2015). PubMed PMC
Edwards D. et al. Bread matters: a national initiative to profile the genetic diversity of Australian wheat. Plant Biotechnol. J 10, 703–708 (2012). PubMed
Ling H. Q. et al. Draft genome of the wheat A-genome progenitor Triticum urartu. Nature. 496, 87–90 (2013). PubMed
Jia J. et al. Aegilops tauschii draft genome sequence reveals a gene repertoire for wheat adaptation. Nature. 496, 91–95 (2013). PubMed
Sequence divergence between spelt and common wheat