Sequencing flow-sorted short arm of Haynaldia villosa chromosome 4V provides insights into its molecular structure and virtual gene order

. 2017 Oct 16 ; 18 (1) : 791. [epub] 20171016

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid29037165
Odkazy

PubMed 29037165
PubMed Central PMC5644170
DOI 10.1186/s12864-017-4211-7
PII: 10.1186/s12864-017-4211-7
Knihovny.cz E-zdroje

BACKGROUND: Haynaldia villosa (H. villosa) has been recognized as a species potentially useful for wheat improvement. The availability of its genomic sequences will boost its research and application. RESULTS: In this work, the short arm of H. villosa chromosome 4V (4VS) was sorted by flow cytometry and sequenced using Illumina platform. About 170.6 Mb assembled sequences were obtained. Further analysis showed that repetitive elements accounted for about 64.6% of 4VS, while the coding fraction, which is corresponding to 1977 annotated genes, represented 1.5% of the arm. The syntenic regions of the 4VS were searched and identified on wheat group 4 chromosomes 4AL, 4BS, 4DS, Brachypodium chromosomes 1 and 4, rice chromosomes 3 and 11, and sorghum chromosomes 1, 5 and 8. Based on genome-zipper analysis, a virtual gene order comprising 735 gene loci on 4VS genome was built by referring to the Brachypodium genome, which was relatively consistent with the scaffold order determined for Ae. tauschii chromosome 4D. The homologous alleles of several cloned genes on wheat group 4 chromosomes including Rht-1 gene were identified. CONCLUSIONS: The sequences provided valuable information for mapping and positional-cloning genes located on 4VS, such as the wheat yellow mosaic virus resistance gene Wss1. The work on 4VS provided detailed insights into the genome of H. villosa, and may also serve as a model for sequencing the remaining parts of H. villosa genome.

Zobrazit více v PubMed

Schnable PS, Ware D, Fulton RS, Stein JC, Wei FS, Pasternak S, Liang CZ, Zhang JW, Fulton L, Graves TA, et al. The B73 maize genome: complexity, diversity, and dynamics. Science. 2009;326(5956):1112–1115. doi: 10.1126/science.1178534. PubMed DOI

Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J, Gundlach H, Haberer G, Hellsten U, Mitros T, Poliakov A, et al. The Sorghum Bicolor genome and the diversification of grasses. Nature. 2009;457(7229):551–556. doi: 10.1038/nature07723. PubMed DOI

Matsumoto T, Wu JZ, Kanamori H, Katayose Y, Fujisawa M, Namiki N, Mizuno H, Yamamoto K, Antonio BA, Baba T, et al. The map-based sequence of the rice genome. Nature. 2005;436(7052):793–800. doi: 10.1038/nature03895. PubMed DOI

Ling HQ, Zhao S, Liu D, Wang J, Sun H, Zhang C, Fan H, Li D, Dong L, Tao Y, et al. Draft genome of the wheat A-genome progenitor Triticum Urartu. Nature. 2013;496(7443):87–90. doi: 10.1038/nature11997. PubMed DOI

Jia JZ, Zhao SC, Kong XY, Li YR, Zhao GY, He WM, Appels R, Pfeifer M, Tao Y, Zhang XY, et al. Aegilops Tauschii draft genome sequence reveals a gene repertoire for wheat adaptation. Nature. 2013;496(7443):91–95. doi: 10.1038/nature12028. PubMed DOI

Luo MC, Gu YQ, You FM, Deal KR, Ma Y, Hu Y, Huo N, Wang Y, Wang J, Chen S, et al. A 4-gigabase physical map unlocks the structure and evolution of the complex genome of Aegilops Tauschii, the wheat D-genome progenitor. Proc Natl Acad Sci U S A. 2013;110(19):7940–7945. doi: 10.1073/pnas.1219082110. PubMed DOI PMC

Dolezel J, Kubalakova M, Paux E, Bartos J, Feuillet C. Chromosome-based genomics in the cereals. Chromosom Res. 2007;15(1):51–66. doi: 10.1007/s10577-006-1106-x. PubMed DOI

Mayer KFX, Rogers J, Dolezel J, Pozniak C, Eversole K, Feuillet C, Gill B, Friebe B, Lukaszewski AJ, Sourdille P, et al. A chromosome-based draft sequence of the hexaploid bread wheat (Triticum Aestivum) genome. Science. 2014;345(6194):1251788. PubMed

Choulet F, Alberti A, Theil S, Glover N, Barbe V, Daron J, Pingault L, Sourdille P, Couloux A, Paux E, et al. Structural and functional partitioning of bread wheat chromosome 3B. Science. 2014;345(6194) PubMed

Dolezel J, Vrana J, Capal P, Kubalakova M, Buresova V, Simkova H. Advances in plant chromosome genomics. Biotechnol Adv. 2014;32(1):122–136. doi: 10.1016/j.biotechadv.2013.12.011. PubMed DOI

Vrana J, Kubalakova M, Simkova H, Cihalikova J, Lysak MA, Dolezel J. Flow sorting of mitotic chromosomes in common wheat (Triticum Aestivum L.) Genetics. 2000;156(4):2033–2041. PubMed PMC

Kubalakova M, Vrana J, Cihalikova J, Simkova H, Dolezel J. Flow karyotyping and chromosome sorting in bread wheat ( Triticum Aestivum L.) Theor Appl Genet. 2002;104(8):1362–1372. doi: 10.1007/s00122-002-0888-2. PubMed DOI

Giorgi D, Farina A, Grosso V, Gennaro A, Ceoloni C, Lucretti S. FISHIS: fluorescence in situ hybridization in suspension and chromosome flow sorting made easy. PLoS One. 2013;8(2):e57994. doi: 10.1371/journal.pone.0057994. PubMed DOI PMC

Capal P, Blavet N, Vrana J, Kubalakova M, Dolezel J. Multiple displacement amplification of the DNA from single flow-sorted plant chromosome. Plant J. 2015;84(4):838–844. doi: 10.1111/tpj.13035. PubMed DOI

Kubaláková M, Valárik M, Barto J, Vrána J, Cihalikova J, Molnár-Láng M, Dolezel J. Analysis and sorting of rye (Secale Cereale L.) chromosomes using flow cytometry. Genome. 2003;46(5):893–905. doi: 10.1139/g03-054. PubMed DOI

Guo DW, Min DH, Xu ZS, Chen M, Li LC, Ashraf M, Ghafoor A, Ma YZ. Flow Karyotyping of wheat addition line “T240” with a Haynaldia Villosa 6VS Telosome. Plant Mol Biol Rep. 2013;31(2):289–295. doi: 10.1007/s11105-012-0492-9. DOI

Egan AN, Schlueter J, Spooner DM. Applications of next-generation sequencing in plant biology. Am J Bot. 2012;99(2):175–185. doi: 10.3732/ajb.1200020. PubMed DOI

Brenchley R, Spannagl M, Pfeifer M, Barker GLA, D’Amore R, Allen AM, McKenzie N, Kramer M, Kerhornou A, Bolser D, et al. Analysis of the bread wheat genome using whole-genome shotgun sequencing. Nature. 2012;491(7426):705–710. doi: 10.1038/nature11650. PubMed DOI PMC

Mayer KFX, Martis M, Hedley PE, Simkova H, Liu H, Morris JA, Steuernagel B, Taudien S, Roessner S, Gundlach H, et al. Unlocking the barley genome by chromosomal and comparative genomics. Plant Cell. 2011;23(4):1249–1263. doi: 10.1105/tpc.110.082537. PubMed DOI PMC

Martis MM, Zhou R, Haseneyer G, Schmutzer T, Vrana J, Kubalakova M, Konig S, Kugler KG, Scholz U, Hackauf B, et al. Reticulate evolution of the rye genome. Plant Cell. 2013;25(10):3685–3698. doi: 10.1105/tpc.113.114553. PubMed DOI PMC

Helguera M, Rivarola M, Clavijo B, Martis MM, Vanzetti LS, González S, Garbus I, Leroy P, Šimková H, Valárik M, et al. New insights into the wheat chromosome 4D structure and virtual gene order, revealed by survey pyrosequencing. Plant Sci. 2015;233:200–212. doi: 10.1016/j.plantsci.2014.12.004. PubMed DOI PMC

Tanaka T, Kobayashi F, Joshi GP, Onuki R, Sakai H, Kanamori H, Wu J, Simkova H, Nasuda S, Endo TR, et al. Next-generation survey sequencing and the molecular Organization of Wheat Chromosome 6B. DNA Res. 2013;21:103–14. PubMed PMC

Philippe R, Paux E, Bertin I, Sourdille P, Choulet F, Laugier C, Simkova H, Safar J, Bellec A, Vautrin S, et al. A high density physical map of chromosome 1BL supports evolutionary studies, map-based cloning and sequencing in wheat. Genome Biol. 2013;14(6):R64. doi: 10.1186/gb-2013-14-6-r64. PubMed DOI PMC

Hernandez P, Martis M, Dorado G, Pfeifer M, Gálvez S, Schaaf S, Jouve N, Šimková H, Valárik M, Doležel J, et al. Next-generation sequencing and syntenic integration of flow-sorted arms of wheat chromosome 4A exposes the chromosome structure and gene content. Plant J. 2012;69(3):377–386. doi: 10.1111/j.1365-313X.2011.04808.x. PubMed DOI

Gradzielewska A. The genus Dasypyrum - part 2. Dasypyrum Villosum - a wild species used in wheat improvement. Euphytica. 2006;152(3):441–454. doi: 10.1007/s10681-006-9245-x. DOI

Zhang Q, Li Q, Wang X, Wang H, Lang S, Wang Y, Wang S, Chen P, Liu D. Development and characterization of a Triticum Aestivum-Haynaldia Villosa translocation line T4VS·4DL conferring resistance to wheat spindle streak mosaic virus. Euphytica. 2005;145(3):317–320. doi: 10.1007/s10681-005-1743-8. DOI

Murray T, Rdl P, Yildirim A, Jones S, Qualset C. A new source of resistance to Pseudocercosporella herpotrichoides, cause of eyespot disease of wheat, located on chromosome 4V of Dasypyrum Villosum. Plant Breed. 1994;113(4):281–286. doi: 10.1111/j.1439-0523.1994.tb00737.x. DOI

Zhao RH, Wang HY, Xiao J, Bie TD, Cheng SH, Jia Q, Yuan CX, Zhang RQ, Cao AZ, Chen PD, et al. Induction of 4VS chromosome recombinants using the CS ph1b mutant and mapping of the wheat yellow mosaic virus resistance gene from Haynaldia Villosa. Theor Appl Genet. 2013;126(12):2921–2930. doi: 10.1007/s00122-013-2181-y. PubMed DOI

Wang H, Dai K, Xiao J, Yuan C, Zhao R, Doležel J, Wu Y, Cao A, Chen P, Zhang S, et al. Development of intron targeting (IT) markers specific for chromosome arm 4VS of Haynaldia Villosa by chromosome sorting and next-generation sequencing. BMC Genomics. 2017;18(1):167. doi: 10.1186/s12864-017-3567-z. PubMed DOI PMC

Simkova H, Svensson JT, Condamine P, Hribova E, Suchankova P, Bhat PR, Bartos J, Safar J, Close TJ, Dolezel J. Coupling amplified DNA from flow-sorted chromosomes to high-density SNP mapping in barley. BMC Genomics. 2008;9:294. doi: 10.1186/1471-2164-9-294. PubMed DOI PMC

Jurka J, Kapitonov VV, Pavlicek A, Klonowski P, Kohany O, Walichiewicz J. Repbase update, a database of eukaryotic repetitive elements. Cytogenet Genome Res. 2005;110(1-4):462–467. doi: 10.1159/000084979. PubMed DOI

Stanke M, Steinkamp R, Waack S, Morgenstern B. AUGUSTUS: a web server for gene finding in eukaryotes. Nucleic Acids Res. 2004;32(Web Server issue):W309–W312. doi: 10.1093/nar/gkh379. PubMed DOI PMC

Conesa A, Terol J, Robles M. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics. 2005;21(18):3674–3676. doi: 10.1093/bioinformatics/bti610. PubMed DOI

Ye J, Fang L, Zheng H, Zhang Y, Chen J, Zhang Z, Wang J, Li S, Li R, Bolund L, et al. WEGO: a web tool for plotting GO annotations. Nucleic Acids Res. 2006;34(Web Server issue):W293–W297. doi: 10.1093/nar/gkl031. PubMed DOI PMC

Chen PD, Qi LL, Zhou B, Zhang SZ, Liu DJ. Development and molecular cytogenetic analysis of wheat-Haynaldia Villosa 6VS/6AL translocation lines specifying resistance to powdery mildew. Theor Appl Genet. 1995;91(6-7):1125–1128. PubMed

Zhang P, Li W, Friebe B, Gill BS. Simultaneous painting of three genomes in hexaploid wheat by BAC-FISH. Genome. 2004;47(5):979–987. doi: 10.1139/g04-042. PubMed DOI

Nussbaumer T, Kugler KG, Schweiger W, Bader KC, Gundlach H, Spannagl M, Poursarebani N, Pfeifer M, Mayer KF. chromoWIZ: a web tool to query and visualize chromosome-anchored genes from cereal and model genomes. BMC Plant Biol. 2014;14:348. doi: 10.1186/s12870-014-0348-6. PubMed DOI PMC

Vitulo N, Albiero A, Forcato C, Campagna D, Dal Pero F, Bagnaresi P, Colaiacovo M, Faccioli P, Lamontanara A, Simkova H, et al. First survey of the wheat chromosome 5A composition through a next generation sequencing approach. PLoS One. 2011;6(10):e26421. doi: 10.1371/journal.pone.0026421. PubMed DOI PMC

Sergeeva EM, Afonnikov DA, Koltunova MK, Gusev VD, Miroshnichenko LA, Vrana J, Kubalakova M, Poncet C, Sourdille P, Feuillet C, et al. Common wheat chromosome 5B composition analysis using low-coverage 454 sequencing. Plant Genome Us. 2014;7(2):1–16.

Peng J, Richards DE, Hartley NM, Murphy GP, Devos KM, Flintham JE, Beales J, Fish LJ, Worland AJ, Pelica F, et al. ‘Green revolution’ genes encode mutant gibberellin response modulators. Nature. 1999;400(6741):256–261. doi: 10.1038/22307. PubMed DOI

Miftahudin RK, Ma XF, Mahmoud AA, Layton J, MAR M, Chikmawati T, Ramalingam J, Feril O, Pathan MS, et al. Analysis of expressed sequence tag loci on wheat chromosome group 4. Genetics. 2004;168(2):651–663. doi: 10.1534/genetics.104.034827. PubMed DOI PMC

Mayer KFX, Taudien S, Martis M, Simkova H, Suchankova P, Gundlach H, Wicker T, Petzold A, Felder M, Steuernagel B, et al. Gene content and virtual gene order of barley chromosome 1H. Plant Physiol. 2009;151(2):496–505. doi: 10.1104/pp.109.142612. PubMed DOI PMC

Mardis ER. Next-generation DNA sequencing methods. Annu Rev Genomics Hum Genet. 2008;9:387–402. doi: 10.1146/annurev.genom.9.081307.164359. PubMed DOI

Leroy P, Guilhot N, Sakai H, Bernard A, Choulet F, Theil S, Reboux S, Amano N, Flutre T, Pelegrin C, et al. TriAnnot: a versatile and high performance pipeline for the automated annotation of plant genomes. Front Plant Sci. 2012;3:1–14. PubMed PMC

Bolot S, Abrouk M, Masood-Quraishi U, Stein N, Messing J, Feuillet C, Salse J. The ‘inner circle’ of the cereal genomes. Curr Opin Plant Biol. 2009;12(2):119–125. doi: 10.1016/j.pbi.2008.10.011. PubMed DOI

Devos KM, Gale MD. Genome relationships: the grass model in current research. Plant Cell. 2000;12(5):637–646. doi: 10.1105/tpc.12.5.637. PubMed DOI PMC

Devos KM, Dubcovsky J, Dvorak J, Chinoy CN, Gale MD. Structural evolution of wheat chromosomes 4a, 5a, and 7b and its impact on recombination. Theor Appl Genet. 1995;91(2):282–288. doi: 10.1007/BF00220890. PubMed DOI

Montebove L, De Pace C, Jan CC, Scarascia Mugnozza GT, Qualset CO. Chromosomal location of isozyme and seed storage protein genes in Dasypyrum Villosum (L.) Candargy. Theor Appl Genet. 1987;73(6):836–845. doi: 10.1007/BF00289388. PubMed DOI

Koebner RM, Martin PK. Chromosomal control of the aminopeptidases of wheat and its close relatives. Theor Appl Genet. 1989;78(5):657–664. doi: 10.1007/BF00262561. PubMed DOI

Ciaffi M, Dominici L, Tanzarella OA, Porceddu E. Chromosomal assignment of gene sequences coding for protein disulphide isomerase (PDI) in wheat. Theor Appl Genet. 1999;98(3-4):405–410. doi: 10.1007/s001220051086. DOI

Abenavoli MR, Cacco G, Sorgona A, Marabottini R, Paolacci AR, Ciaffi M, Badiani M. The inhibitory effects of coumarin on the germination of durum wheat (Triticum Turgidum Ssp. Durum, cv. Simeto) seeds. J Chem Ecol. 2006;32(2):489–506. doi: 10.1007/s10886-005-9011-x. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...