Sequencing flow-sorted short arm of Haynaldia villosa chromosome 4V provides insights into its molecular structure and virtual gene order
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
PubMed
29037165
PubMed Central
PMC5644170
DOI
10.1186/s12864-017-4211-7
PII: 10.1186/s12864-017-4211-7
Knihovny.cz E-zdroje
- Klíčová slova
- Chromosome arm 4VS, Flow sorting, Genome zipper, Haynaldia villosa, Scaffold,
- MeSH
- chromozomy rostlin genetika MeSH
- druhová specificita MeSH
- genomika MeSH
- lipnicovité genetika MeSH
- mapování chromozomů MeSH
- pořadí genů genetika MeSH
- repetitivní sekvence nukleových kyselin genetika MeSH
- sekvenční analýza DNA * MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Haynaldia villosa (H. villosa) has been recognized as a species potentially useful for wheat improvement. The availability of its genomic sequences will boost its research and application. RESULTS: In this work, the short arm of H. villosa chromosome 4V (4VS) was sorted by flow cytometry and sequenced using Illumina platform. About 170.6 Mb assembled sequences were obtained. Further analysis showed that repetitive elements accounted for about 64.6% of 4VS, while the coding fraction, which is corresponding to 1977 annotated genes, represented 1.5% of the arm. The syntenic regions of the 4VS were searched and identified on wheat group 4 chromosomes 4AL, 4BS, 4DS, Brachypodium chromosomes 1 and 4, rice chromosomes 3 and 11, and sorghum chromosomes 1, 5 and 8. Based on genome-zipper analysis, a virtual gene order comprising 735 gene loci on 4VS genome was built by referring to the Brachypodium genome, which was relatively consistent with the scaffold order determined for Ae. tauschii chromosome 4D. The homologous alleles of several cloned genes on wheat group 4 chromosomes including Rht-1 gene were identified. CONCLUSIONS: The sequences provided valuable information for mapping and positional-cloning genes located on 4VS, such as the wheat yellow mosaic virus resistance gene Wss1. The work on 4VS provided detailed insights into the genome of H. villosa, and may also serve as a model for sequencing the remaining parts of H. villosa genome.
Zobrazit více v PubMed
Schnable PS, Ware D, Fulton RS, Stein JC, Wei FS, Pasternak S, Liang CZ, Zhang JW, Fulton L, Graves TA, et al. The B73 maize genome: complexity, diversity, and dynamics. Science. 2009;326(5956):1112–1115. doi: 10.1126/science.1178534. PubMed DOI
Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J, Gundlach H, Haberer G, Hellsten U, Mitros T, Poliakov A, et al. The Sorghum Bicolor genome and the diversification of grasses. Nature. 2009;457(7229):551–556. doi: 10.1038/nature07723. PubMed DOI
Matsumoto T, Wu JZ, Kanamori H, Katayose Y, Fujisawa M, Namiki N, Mizuno H, Yamamoto K, Antonio BA, Baba T, et al. The map-based sequence of the rice genome. Nature. 2005;436(7052):793–800. doi: 10.1038/nature03895. PubMed DOI
Ling HQ, Zhao S, Liu D, Wang J, Sun H, Zhang C, Fan H, Li D, Dong L, Tao Y, et al. Draft genome of the wheat A-genome progenitor Triticum Urartu. Nature. 2013;496(7443):87–90. doi: 10.1038/nature11997. PubMed DOI
Jia JZ, Zhao SC, Kong XY, Li YR, Zhao GY, He WM, Appels R, Pfeifer M, Tao Y, Zhang XY, et al. Aegilops Tauschii draft genome sequence reveals a gene repertoire for wheat adaptation. Nature. 2013;496(7443):91–95. doi: 10.1038/nature12028. PubMed DOI
Luo MC, Gu YQ, You FM, Deal KR, Ma Y, Hu Y, Huo N, Wang Y, Wang J, Chen S, et al. A 4-gigabase physical map unlocks the structure and evolution of the complex genome of Aegilops Tauschii, the wheat D-genome progenitor. Proc Natl Acad Sci U S A. 2013;110(19):7940–7945. doi: 10.1073/pnas.1219082110. PubMed DOI PMC
Dolezel J, Kubalakova M, Paux E, Bartos J, Feuillet C. Chromosome-based genomics in the cereals. Chromosom Res. 2007;15(1):51–66. doi: 10.1007/s10577-006-1106-x. PubMed DOI
Mayer KFX, Rogers J, Dolezel J, Pozniak C, Eversole K, Feuillet C, Gill B, Friebe B, Lukaszewski AJ, Sourdille P, et al. A chromosome-based draft sequence of the hexaploid bread wheat (Triticum Aestivum) genome. Science. 2014;345(6194):1251788. PubMed
Choulet F, Alberti A, Theil S, Glover N, Barbe V, Daron J, Pingault L, Sourdille P, Couloux A, Paux E, et al. Structural and functional partitioning of bread wheat chromosome 3B. Science. 2014;345(6194) PubMed
Dolezel J, Vrana J, Capal P, Kubalakova M, Buresova V, Simkova H. Advances in plant chromosome genomics. Biotechnol Adv. 2014;32(1):122–136. doi: 10.1016/j.biotechadv.2013.12.011. PubMed DOI
Vrana J, Kubalakova M, Simkova H, Cihalikova J, Lysak MA, Dolezel J. Flow sorting of mitotic chromosomes in common wheat (Triticum Aestivum L.) Genetics. 2000;156(4):2033–2041. PubMed PMC
Kubalakova M, Vrana J, Cihalikova J, Simkova H, Dolezel J. Flow karyotyping and chromosome sorting in bread wheat ( Triticum Aestivum L.) Theor Appl Genet. 2002;104(8):1362–1372. doi: 10.1007/s00122-002-0888-2. PubMed DOI
Giorgi D, Farina A, Grosso V, Gennaro A, Ceoloni C, Lucretti S. FISHIS: fluorescence in situ hybridization in suspension and chromosome flow sorting made easy. PLoS One. 2013;8(2):e57994. doi: 10.1371/journal.pone.0057994. PubMed DOI PMC
Capal P, Blavet N, Vrana J, Kubalakova M, Dolezel J. Multiple displacement amplification of the DNA from single flow-sorted plant chromosome. Plant J. 2015;84(4):838–844. doi: 10.1111/tpj.13035. PubMed DOI
Kubaláková M, Valárik M, Barto J, Vrána J, Cihalikova J, Molnár-Láng M, Dolezel J. Analysis and sorting of rye (Secale Cereale L.) chromosomes using flow cytometry. Genome. 2003;46(5):893–905. doi: 10.1139/g03-054. PubMed DOI
Guo DW, Min DH, Xu ZS, Chen M, Li LC, Ashraf M, Ghafoor A, Ma YZ. Flow Karyotyping of wheat addition line “T240” with a Haynaldia Villosa 6VS Telosome. Plant Mol Biol Rep. 2013;31(2):289–295. doi: 10.1007/s11105-012-0492-9. DOI
Egan AN, Schlueter J, Spooner DM. Applications of next-generation sequencing in plant biology. Am J Bot. 2012;99(2):175–185. doi: 10.3732/ajb.1200020. PubMed DOI
Brenchley R, Spannagl M, Pfeifer M, Barker GLA, D’Amore R, Allen AM, McKenzie N, Kramer M, Kerhornou A, Bolser D, et al. Analysis of the bread wheat genome using whole-genome shotgun sequencing. Nature. 2012;491(7426):705–710. doi: 10.1038/nature11650. PubMed DOI PMC
Mayer KFX, Martis M, Hedley PE, Simkova H, Liu H, Morris JA, Steuernagel B, Taudien S, Roessner S, Gundlach H, et al. Unlocking the barley genome by chromosomal and comparative genomics. Plant Cell. 2011;23(4):1249–1263. doi: 10.1105/tpc.110.082537. PubMed DOI PMC
Martis MM, Zhou R, Haseneyer G, Schmutzer T, Vrana J, Kubalakova M, Konig S, Kugler KG, Scholz U, Hackauf B, et al. Reticulate evolution of the rye genome. Plant Cell. 2013;25(10):3685–3698. doi: 10.1105/tpc.113.114553. PubMed DOI PMC
Helguera M, Rivarola M, Clavijo B, Martis MM, Vanzetti LS, González S, Garbus I, Leroy P, Šimková H, Valárik M, et al. New insights into the wheat chromosome 4D structure and virtual gene order, revealed by survey pyrosequencing. Plant Sci. 2015;233:200–212. doi: 10.1016/j.plantsci.2014.12.004. PubMed DOI PMC
Tanaka T, Kobayashi F, Joshi GP, Onuki R, Sakai H, Kanamori H, Wu J, Simkova H, Nasuda S, Endo TR, et al. Next-generation survey sequencing and the molecular Organization of Wheat Chromosome 6B. DNA Res. 2013;21:103–14. PubMed PMC
Philippe R, Paux E, Bertin I, Sourdille P, Choulet F, Laugier C, Simkova H, Safar J, Bellec A, Vautrin S, et al. A high density physical map of chromosome 1BL supports evolutionary studies, map-based cloning and sequencing in wheat. Genome Biol. 2013;14(6):R64. doi: 10.1186/gb-2013-14-6-r64. PubMed DOI PMC
Hernandez P, Martis M, Dorado G, Pfeifer M, Gálvez S, Schaaf S, Jouve N, Šimková H, Valárik M, Doležel J, et al. Next-generation sequencing and syntenic integration of flow-sorted arms of wheat chromosome 4A exposes the chromosome structure and gene content. Plant J. 2012;69(3):377–386. doi: 10.1111/j.1365-313X.2011.04808.x. PubMed DOI
Gradzielewska A. The genus Dasypyrum - part 2. Dasypyrum Villosum - a wild species used in wheat improvement. Euphytica. 2006;152(3):441–454. doi: 10.1007/s10681-006-9245-x. DOI
Zhang Q, Li Q, Wang X, Wang H, Lang S, Wang Y, Wang S, Chen P, Liu D. Development and characterization of a Triticum Aestivum-Haynaldia Villosa translocation line T4VS·4DL conferring resistance to wheat spindle streak mosaic virus. Euphytica. 2005;145(3):317–320. doi: 10.1007/s10681-005-1743-8. DOI
Murray T, Rdl P, Yildirim A, Jones S, Qualset C. A new source of resistance to Pseudocercosporella herpotrichoides, cause of eyespot disease of wheat, located on chromosome 4V of Dasypyrum Villosum. Plant Breed. 1994;113(4):281–286. doi: 10.1111/j.1439-0523.1994.tb00737.x. DOI
Zhao RH, Wang HY, Xiao J, Bie TD, Cheng SH, Jia Q, Yuan CX, Zhang RQ, Cao AZ, Chen PD, et al. Induction of 4VS chromosome recombinants using the CS ph1b mutant and mapping of the wheat yellow mosaic virus resistance gene from Haynaldia Villosa. Theor Appl Genet. 2013;126(12):2921–2930. doi: 10.1007/s00122-013-2181-y. PubMed DOI
Wang H, Dai K, Xiao J, Yuan C, Zhao R, Doležel J, Wu Y, Cao A, Chen P, Zhang S, et al. Development of intron targeting (IT) markers specific for chromosome arm 4VS of Haynaldia Villosa by chromosome sorting and next-generation sequencing. BMC Genomics. 2017;18(1):167. doi: 10.1186/s12864-017-3567-z. PubMed DOI PMC
Simkova H, Svensson JT, Condamine P, Hribova E, Suchankova P, Bhat PR, Bartos J, Safar J, Close TJ, Dolezel J. Coupling amplified DNA from flow-sorted chromosomes to high-density SNP mapping in barley. BMC Genomics. 2008;9:294. doi: 10.1186/1471-2164-9-294. PubMed DOI PMC
Jurka J, Kapitonov VV, Pavlicek A, Klonowski P, Kohany O, Walichiewicz J. Repbase update, a database of eukaryotic repetitive elements. Cytogenet Genome Res. 2005;110(1-4):462–467. doi: 10.1159/000084979. PubMed DOI
Stanke M, Steinkamp R, Waack S, Morgenstern B. AUGUSTUS: a web server for gene finding in eukaryotes. Nucleic Acids Res. 2004;32(Web Server issue):W309–W312. doi: 10.1093/nar/gkh379. PubMed DOI PMC
Conesa A, Terol J, Robles M. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics. 2005;21(18):3674–3676. doi: 10.1093/bioinformatics/bti610. PubMed DOI
Ye J, Fang L, Zheng H, Zhang Y, Chen J, Zhang Z, Wang J, Li S, Li R, Bolund L, et al. WEGO: a web tool for plotting GO annotations. Nucleic Acids Res. 2006;34(Web Server issue):W293–W297. doi: 10.1093/nar/gkl031. PubMed DOI PMC
Chen PD, Qi LL, Zhou B, Zhang SZ, Liu DJ. Development and molecular cytogenetic analysis of wheat-Haynaldia Villosa 6VS/6AL translocation lines specifying resistance to powdery mildew. Theor Appl Genet. 1995;91(6-7):1125–1128. PubMed
Zhang P, Li W, Friebe B, Gill BS. Simultaneous painting of three genomes in hexaploid wheat by BAC-FISH. Genome. 2004;47(5):979–987. doi: 10.1139/g04-042. PubMed DOI
Nussbaumer T, Kugler KG, Schweiger W, Bader KC, Gundlach H, Spannagl M, Poursarebani N, Pfeifer M, Mayer KF. chromoWIZ: a web tool to query and visualize chromosome-anchored genes from cereal and model genomes. BMC Plant Biol. 2014;14:348. doi: 10.1186/s12870-014-0348-6. PubMed DOI PMC
Vitulo N, Albiero A, Forcato C, Campagna D, Dal Pero F, Bagnaresi P, Colaiacovo M, Faccioli P, Lamontanara A, Simkova H, et al. First survey of the wheat chromosome 5A composition through a next generation sequencing approach. PLoS One. 2011;6(10):e26421. doi: 10.1371/journal.pone.0026421. PubMed DOI PMC
Sergeeva EM, Afonnikov DA, Koltunova MK, Gusev VD, Miroshnichenko LA, Vrana J, Kubalakova M, Poncet C, Sourdille P, Feuillet C, et al. Common wheat chromosome 5B composition analysis using low-coverage 454 sequencing. Plant Genome Us. 2014;7(2):1–16.
Peng J, Richards DE, Hartley NM, Murphy GP, Devos KM, Flintham JE, Beales J, Fish LJ, Worland AJ, Pelica F, et al. ‘Green revolution’ genes encode mutant gibberellin response modulators. Nature. 1999;400(6741):256–261. doi: 10.1038/22307. PubMed DOI
Miftahudin RK, Ma XF, Mahmoud AA, Layton J, MAR M, Chikmawati T, Ramalingam J, Feril O, Pathan MS, et al. Analysis of expressed sequence tag loci on wheat chromosome group 4. Genetics. 2004;168(2):651–663. doi: 10.1534/genetics.104.034827. PubMed DOI PMC
Mayer KFX, Taudien S, Martis M, Simkova H, Suchankova P, Gundlach H, Wicker T, Petzold A, Felder M, Steuernagel B, et al. Gene content and virtual gene order of barley chromosome 1H. Plant Physiol. 2009;151(2):496–505. doi: 10.1104/pp.109.142612. PubMed DOI PMC
Mardis ER. Next-generation DNA sequencing methods. Annu Rev Genomics Hum Genet. 2008;9:387–402. doi: 10.1146/annurev.genom.9.081307.164359. PubMed DOI
Leroy P, Guilhot N, Sakai H, Bernard A, Choulet F, Theil S, Reboux S, Amano N, Flutre T, Pelegrin C, et al. TriAnnot: a versatile and high performance pipeline for the automated annotation of plant genomes. Front Plant Sci. 2012;3:1–14. PubMed PMC
Bolot S, Abrouk M, Masood-Quraishi U, Stein N, Messing J, Feuillet C, Salse J. The ‘inner circle’ of the cereal genomes. Curr Opin Plant Biol. 2009;12(2):119–125. doi: 10.1016/j.pbi.2008.10.011. PubMed DOI
Devos KM, Gale MD. Genome relationships: the grass model in current research. Plant Cell. 2000;12(5):637–646. doi: 10.1105/tpc.12.5.637. PubMed DOI PMC
Devos KM, Dubcovsky J, Dvorak J, Chinoy CN, Gale MD. Structural evolution of wheat chromosomes 4a, 5a, and 7b and its impact on recombination. Theor Appl Genet. 1995;91(2):282–288. doi: 10.1007/BF00220890. PubMed DOI
Montebove L, De Pace C, Jan CC, Scarascia Mugnozza GT, Qualset CO. Chromosomal location of isozyme and seed storage protein genes in Dasypyrum Villosum (L.) Candargy. Theor Appl Genet. 1987;73(6):836–845. doi: 10.1007/BF00289388. PubMed DOI
Koebner RM, Martin PK. Chromosomal control of the aminopeptidases of wheat and its close relatives. Theor Appl Genet. 1989;78(5):657–664. doi: 10.1007/BF00262561. PubMed DOI
Ciaffi M, Dominici L, Tanzarella OA, Porceddu E. Chromosomal assignment of gene sequences coding for protein disulphide isomerase (PDI) in wheat. Theor Appl Genet. 1999;98(3-4):405–410. doi: 10.1007/s001220051086. DOI
Abenavoli MR, Cacco G, Sorgona A, Marabottini R, Paolacci AR, Ciaffi M, Badiani M. The inhibitory effects of coumarin on the germination of durum wheat (Triticum Turgidum Ssp. Durum, cv. Simeto) seeds. J Chem Ecol. 2006;32(2):489–506. doi: 10.1007/s10886-005-9011-x. PubMed DOI