High-cholesterol diet in combination with hydroxypropyl-beta-cyclodextrin induces NASH-like disorders in the liver of rats
Jazyk angličtina Země Česko Médium print
Typ dokumentu časopisecké články
PubMed
37449749
PubMed Central
PMC10668992
DOI
10.33549/physiolres.934981
PII: 934981
Knihovny.cz E-zdroje
- MeSH
- cholesterol MeSH
- dieta s vysokým obsahem tuků škodlivé účinky MeSH
- hydroxypropyl beta cyklodextrin metabolismus terapeutické užití MeSH
- hypercholesterolemie * metabolismus MeSH
- hyperlipidemie * MeSH
- játra metabolismus MeSH
- krysa rodu Rattus MeSH
- lidé MeSH
- modely nemocí na zvířatech MeSH
- nealkoholová steatóza jater * chemicky indukované MeSH
- potkani Sprague-Dawley MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- lidé MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- cholesterol MeSH
- hydroxypropyl beta cyklodextrin MeSH
Non-alcoholic fatty liver disease (NAFLD) is a general term for fatty liver disease not caused by viruses or alcohol. Fibrotic hepatitis, cirrhosis, and hepatocellular carcinoma can develop. The recent increase in NAFLD incidence worldwide has stimulated drug development efforts. However, there is still no approved treatment. This may be due in part to the fact that non-alcoholic steatohepatitis (NASH) pathogenesis is very complex, and its mechanisms are not well understood. Studies with animals are very important for understanding the pathogenesis. Due to the close association between the establishment of human NASH pathology and metabolic syndrome, several animal models have been reported, especially in the context of overnutrition. In this study, we investigated the induction of NASH-like pathology by enhancing cholesterol absorption through treatment with hydroxypropyl-beta-cyclodextrin (CDX). Female Sprague-Dawley rats were fed a normal diet with normal water (control group); a high-fat (60 kcal%), cholesterol (1.25 %), and cholic acid (0.5 %) diet with normal water (HFCC group); or HFCC diet with 2 % CDX water (HFCC+CDX group) for 16 weeks. Compared to the control group, the HFCC and HFCC+CDX groups showed increased blood levels of total cholesterol, aspartate aminotransferase, and alanine aminotransferase. At autopsy, parameters related to hepatic lipid synthesis, oxidative stress, inflammation, and fibrosis were elevated, suggesting the development of NAFLD/NASH. Elevated levels of endoplasmic reticulum stress-related genes were evident in the HFCC+CDX group. In the novel rat model, excessive cholesterol intake and accelerated absorption contributed to NAFLD/NASH pathogenesis.
Zobrazit více v PubMed
Estes C, Razavi H, Loomba R, Younossi Z, Sanyal AJ. Modeling the epidemic of nonalcoholic fatty liver disease demonstrates an exponential increase in burden of disease. Hepatology. 2018;67:123–133. doi: 10.1002/hep.29466. PubMed DOI PMC
Friedman SL, Neuschwander-Tetri BA, Rinella M, Sanyal AJ. Mechanisms of NAFLD development and therapeutic strategies. Nat Med. 2018;24:908–922. doi: 10.1038/s41591-018-0104-9. PubMed DOI PMC
Younossi ZM, Koenig AB, Abdelatif D, Fazel Y, Henry L, Wymer M. Global epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology. 2016;64:73–84. doi: 10.1002/hep.28431. PubMed DOI
Charlton MR, Burns JM, Pedersen RA, Watt KD, Heimbach JK, Dierkhising RA. Frequency and outcomes of liver transplantation for nonalcoholic steatohepatitis in the United States. Gastroenterology. 2011;141:1249–1253. doi: 10.1053/j.gastro.2011.06.061. PubMed DOI
Sheka AC, Adeyi O, Thompson J, Hameed B, Crawford PA, Ikramuddin S. Nonalcoholic steatohepatitis: a review. JAMA. 2020;323:1175. doi: 10.1001/jama.2020.2298. PubMed DOI
Fang Y-L, Chen H, Wang C-L, Liang L. Pathogenesis of non-alcoholic fatty liver disease in children and adolescence: from “two hit theory” to “multiple hit model”. World J Gastroenterol. 2018;24:2974–2983. doi: 10.3748/wjg.v24.i27.2974. PubMed DOI PMC
Buzzetti E, Pinzani M, Tsochatzis EA. The multiple-hit pathogenesis of non-alcoholic fatty liver disease (NAFLD) Metabolism. 2016;65:1038–1048. doi: 10.1016/j.metabol.2015.12.012. PubMed DOI
Eslam M, Sanyal AJ, George J, Sanyal A, Neuschwander-Tetri B, Tiribelli C, Kleiner DE, et al. MAFLD: A consensus-driven proposed nomenclature for metabolic associated fatty liver disease. Gastroenterology. 2020;158:1999–2014.e1. doi: 10.1053/j.gastro.2019.11.312. PubMed DOI
Lonardo A, Leoni S, Alswat KA, Fouad Y. History of nonalcoholic fatty liver disease. Int J Mol Sci. 2020;21:E5888. doi: 10.3390/ijms21165888. PubMed DOI PMC
Chaney A. Obesity and nonalcoholic fatty liver disease. Nurs Clin North Am. 2021;56:543–552. doi: 10.1016/j.cnur.2021.07.009. PubMed DOI
Luo Y, Lin H. Inflammation initiates a vicious cycle between obesity and nonalcoholic fatty liver disease. Immun Inflamm Dis. 2021;9:59–73. doi: 10.1002/iid3.391. PubMed DOI PMC
Younossi ZM, Golabi P, de Avila L, Paik JM, Srishord M, Fukui N, Qiu Y, Burns L, Afendy A, Nader F. The global epidemiology of NAFLD and NASH in patients with type 2 diabetes: A systematic review and meta-analysis. J Hepatol. 2019;71:793–801. doi: 10.1016/j.jhep.2019.06.021. PubMed DOI
Xu Y, Yang X, Bian H, Xia M. Metabolic dysfunction associated fatty liver disease and coronavirus disease 2019: clinical relationship and current management. Lipids Health Dis. 2021;20:126. doi: 10.1186/s12944-021-01564-z. PubMed DOI PMC
Lee WM, Bae JH, Chang Y, Lee SH, Moon JE, Jeong SW, Jang JY, Kim SG, Kim HS, Yoo J-J, Kim YS. Effect of nutrition education in NAFLD patients undergoing simultaneous hyperlipidemia pharmacotherapy: A Randomized Controlled Trial. Nutrients. 2021;13:4453. doi: 10.3390/nu13124453. PubMed DOI PMC
Byrne CD, Targher G. NAFLD as a driver of chronic kidney disease. J Hepatol. 2020;72:785–801. doi: 10.1016/j.jhep.2020.01.013. PubMed DOI
Febbraio MA, Reibe S, Shalapour S, Ooi GJ, Watt MJ, Karin M. Preclinical models for studying NASH-driven HCC: how useful are they? Cell Metab. 2019;29:18–26. doi: 10.1016/j.cmet.2018.10.012. PubMed DOI PMC
Horn CL, Morales AL, Savard C, Farrell GC, Ioannou GN. Role of cholesterol-associated steatohepatitis in the development of NASH. Hepatol Commun. 2022;6:12–35. doi: 10.1002/hep4.1801. PubMed DOI PMC
Duparc T, Briand F, Trenteseaux C, Merian J, Combes G, Najib S, Sulpice T, Martinez LO. Liraglutide improves hepatic steatosis and metabolic dysfunctions in a 3-week dietary mouse model of nonalcoholic steatohepatitis. Am J Physiol Gastrointest Liver Physiol. 2019;317:G508–G517. doi: 10.1152/ajpgi.00139.2019. PubMed DOI
Briand F, Heymes C, Bonada L, Angles T, Charpentier J, Branchereau M, Brousseau E, et al. A 3-week nonalcoholic steatohepatitis mouse model shows elafibranor benefits on hepatic inflammation and cell death. Clin Transl Sci. 2020;13:529–538. doi: 10.1111/cts.12735. PubMed DOI PMC
Gould S, Scott RC. 2-Hydroxypropyl-β-cyclodextrin (HP-β-CD): A toxicology review. Food Chem Toxicol. 2005;43:1451–1459. doi: 10.1016/j.fct.2005.03.007. PubMed DOI
Toriniwa Y, Muramatsu M, Ishii Y, Riya E, Miyajima K, Ohshida S, Kitatani K, Takekoshi S, Matsui T, Kume S, Yamada T, Ohta T. Pathophysiological characteristics of non-alcoholic steatohepatitis-like changes in cholesterol-loaded type 2 diabetic rats. Physiol Res. 2018;67:601–612. doi: 10.33549/physiolres.933784. PubMed DOI
Saito T, Muramatsu M, Ishii Y, Saigo Y, Konuma T, Toriniwa Y, Miyajima K, Ohta T. Pathophysiological analysis of the progression of hepatic lesions in STAM mice. Physiol Res. 2017;66:791–799. doi: 10.33549/physiolres.933592. PubMed DOI
Watanabe M, Houten SM, Mataki C, Christoffolete MA, Kim BW, Sato H, Messaddeq N, Harney JW, Ezaki O, Kodama T, Schoonjans K, Bianco AC, Auwerx J. Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation. Nature. 2006;439:484–489. doi: 10.1038/nature04330. PubMed DOI
Murphy C, Parini P, Wang J, Björkhem I, Eggertsen G, Gåfvels M. Cholic acid as key regulator of cholesterol synthesis, intestinal absorption and hepatic storage in mice. Biochim Biophys Acta. 2005;1735:167–175. doi: 10.1016/j.bbalip.2005.06.001. PubMed DOI
Vergnes L, Phan J, Strauss M, Tafuri S, Reue K. Cholesterol and cholate components of an atherogenic diet induce distinct stages of hepatic inflammatory gene expression. J Biol Chem. 2003;278:42774–42784. doi: 10.1074/jbc.M306022200. PubMed DOI
Jamshed H, Arslan J, Gilani A-H. Cholesterol-cholate-butterfat diet offers multi-organ dysfunction in rats. Lipids Health Dis. 2014;13:194. doi: 10.1186/1476-511X-13-194. PubMed DOI PMC
Williams RO, III, Mahaguna V, Sriwongjanya M. Characterization of an inclusion complex of cholesterol and hydroxypropyl-β-cyclodextrin. Eur J Pharm Biopharm. 1998;46:355–360. doi: 10.1016/S0939-6411(98)00033-2. PubMed DOI
Li T, Matozel M, Boehme S, Kong B, Nilsson L-M, Guo G, Ellis E, Chiang JYL. Overexpression of cholesterol 7α-hydroxylase promotes hepatic bile acid synthesis and secretion and maintains cholesterol homeostasis. Hepatology. 2011;53:996–1006. doi: 10.1002/hep.24107. PubMed DOI PMC
Lambert G, Amar MJA, Guo G, Brewer HB, Gonzalez FJ, Sinal CJ. The farnesoid X-receptor is an essential regulator of cholesterol homeostasis. J Biol Chem. 2003;278:2563–2570. doi: 10.1074/jbc.M209525200. PubMed DOI
Fiorucci S, Rizzo G, Antonelli E, Renga B, Mencarelli A, Riccardi L, Orlandi S, Pruzanski M, Morelli A, Pellicciari R. A farnesoid x receptor-small heterodimer partner regulatory cascade modulates tissue metalloproteinase inhibitor-1 and matrix metalloprotease expression in hepatic stellate cells and promotes resolution of liver fibrosis. J Pharmacol Exp Ther. 2005;314:584–595. doi: 10.1124/jpet.105.084905. PubMed DOI
Horai Y, Utsumi H, Ono Y, Kishimoto T, Ono Y, Fukunari A. Pathological characterization and morphometric analysis of hepatic lesions in SHRSP5/Dmcr, an experimental non-alcoholic steatohepatitis model, induced by high-fat and high-cholesterol diet. Int J Exp Pathol. 2016;97:75–85. doi: 10.1111/iep.12169. PubMed DOI PMC
Ichimura M, Masuzumi M, Kawase M, Sakaki M, Tamaru S, Nagata Y, Tanaka K, Suruga K, Tsuneyama K, Matsuda S, Omagari K. A diet-induced Sprague-Dawley rat model of nonalcoholic steatohepatitis-related cirrhosis. J Nutr Biochem. 2017;40:62–69. doi: 10.1016/j.jnutbio.2016.10.007. PubMed DOI
Lonardo A, Nascimbeni F, Ballestri S, Fairweather D, Win S, Than TA, Abdelmalek MF, Suzuki A. Sex differences in nonalcoholic fatty liver disease: state of the art and identification of research gaps. Hepatology. 2019;70:1457–1469. doi: 10.1002/hep.30626. PubMed DOI PMC
Farruggio S, Cocomazzi G, Marotta P, Romito R, Surico D, Calamita G, Bellan M, Pirisi M, Grossini E. Genistein and 17β-estradiol protect hepatocytes from fatty degeneration by mechanisms involving mitochondria, inflammasome and kinases activation. Cell Physiol Biochem. 2020;54:401–416. doi: 10.33594/000000227. PubMed DOI
Nakae D, Yoshiji H, Mizumoto Y, Horiguchi K, Shiraiwa K, Tamura K, Denda A, Konishi Y. High incidence of hepatocellular carcinomas induced by a choline deficient L-amino acid defined diet in rats. Cancer Res. 1992;52:5042–5045. PubMed
PINK1/Park2-Mediated Mitophagy Relieve Non-Alcoholic Fatty Liver Disease