PINK1/Park2-Mediated Mitophagy Relieve Non-Alcoholic Fatty Liver Disease

. 2024 Apr 30 ; 73 (2) : 253-263.

Jazyk angličtina Země Česko Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38710055

Up to now, there's a limited number of studies on the relationship between PINK1/Park2 pathway and mitophagy in NAFLD. To investigate the effect of Park2-mediated mitophagy on non-alcoholic fatty liver disease (NAFLD). Oleic acid was used for the establishment of NAFLD model. Oil red-dyed lipid drops and mitochondrial alternations were observed by transmission electron microscopy. Enzymatic kit was used to test lipid content. The levels of IL-8 and TNF-alpha were determined by ELISA. Lenti-Park2 and Park2-siRNA were designed to upregulate and downregulate Park2 expression, respectively. The changing expression of PINK and Park2 was detected by RT-qPCR and Western blot. Immunofluorescence staining was applied to measure the amount of LC3. Successful NAFLD modeling was featured by enhanced lipid accumulation, as well as the elevated total cholesterol (TC), triglyceride (TG), TNF-alpha and IL-8 levels. Mitochondria in NAFLD model were morphologically and functionally damaged. Park2 expression was upregulated by lenti-Park2 and downregulated through Park2-siRNA. The PINK1 expression showed the same trend as Park2 expression. Immunofluorescence staining demonstrated that the when Park2 was overexpressed, more LC3 protein on mitochondrial autophagosome membrane was detected, whereas Park2 knockdown impeded LC3' locating on the membrane. The transmission electron microscopy image exhibited that the extent of damage to the mitochondrial in NAFLD model was revered by enhanced Park2 expression but further exacerbated by reduced Park2 expression. Park2-mediated mitophagy could relive NAFLD and may be a novel therapeutic target for NAFLD treatment. Keywords: Non-alcoholic Fatty Liver Disease (NAFLD), Mitophagy, PINK1/Park2, Park2, PINK1.

Zobrazit více v PubMed

Mir HM, Stepanova M, Afendy H, Cable R, Younossi ZM. Association of sleep disorders with nonalcoholic fatty liver disease (NAFLD): A Population-based Study. J Clin Exp Hepatol. 2013;3:181–185. doi: 10.1016/j.jceh.2013.06.004. PubMed DOI PMC

Younossi ZM, Golabi P, de Avila L, Paik JM, Srishord M, Fukui N, Qiu Y, Burns L, Afendy A, Nader F. The global epidemiology of NAFLD and NASH in patients with type 2 diabetes: A systematic review and meta-analysis. J Hepatol. 2019;71:793–801. doi: 10.1016/j.jhep.2019.06.021. PubMed DOI

Chacko KR, Reinus J. Extrahepatic complications of nonalcoholic fatty liver disease. Clin Liver Dis. 2016;20:387–401. doi: 10.1016/j.cld.2015.10.004. PubMed DOI

Saigo Y, Sasase T, Tohma M, Uno K, Shinozaki Y, Maekawa T, Sano R, Miyajima K, Ohta T. High-cholesterol diet in combination with hydroxypropyl-beta-cyclodextrin induces NASH-like disorders in the liver of rats. Physiol Res. 2023;72:371–382. doi: 10.33549/physiolres.934981. PubMed DOI PMC

Hu Y, Xu J, Chen Q, Liu M, Wang S, Yu H, Zhang Y, Wang T. Regulation effects of total flavonoids in Morus alba L on hepatic cholesterol disorders in orotic acid induced NAFLD rats. BMC Complement Med Ther. 2020;20:257. doi: 10.1186/s12906-020-03052-w. PubMed DOI PMC

Younossi Z, Anstee QM, Marietti M, Hardy T, Henry L, Eslam M, George J, Bugianesi E. Global burden of NAFLD and NASH: trends, predictions, risk factors and prevention. Nat Rev Gastroenterol Hepatol. 2018;15:11–20. doi: 10.1038/nrgastro.2017.109. PubMed DOI

Sharma D, Mandal P. NAFLD: genetics and its clinical implications. Clin Res Hepatol Gastroenterol. 2022;46:102003. doi: 10.1016/j.clinre.2022.102003. PubMed DOI

Huang G, Wallace DF, Powell EE, Rahman T, Clark PJ, Subramaniam VN. Gene variants implicated in steatotic liver disease: opportunities for diagnostics and therapeutics. Biomedicines. 2023:11. doi: 10.3390/biomedicines11102809. PubMed DOI PMC

Zhang J, Xie H, Yao J, Jin W, Pan H, Pan Z, Xie D, Xie D. TRIM59 promotes steatosis and ferroptosis in non-alcoholic fatty liver disease via enhancing GPX4 ubiquitination. Hum Cell. 2023;36:209–222. doi: 10.1007/s13577-022-00820-3. PubMed DOI PMC

Ng MYW, Wai T, Simonsen A. Quality control of the mitochondrion. Developmental cell. 2021;56:881–905. doi: 10.1016/j.devcel.2021.02.009. PubMed DOI

Vyas S, Zaganjor E, Haigis MC. Mitochondria and cancer. Cell. 2016;166:555–566. doi: 10.1016/j.cell.2016.07.002. PubMed DOI PMC

Kang D, Hamasaki N. Alterations of mitochondrial DNA in common diseases and disease states: aging, neurodegeneration, heart failure, diabetes, and cancer. Curr Med Chem. 2005;12:429–441. doi: 10.2174/0929867053363081. PubMed DOI

Wen YA, Xing X, Harris JW, Zaytseva YY, Mitov MI, Napier DL, Weiss HL, Mark Evers B, Gao T. Adipocytes activate mitochondrial fatty acid oxidation and autophagy to promote tumor growth in colon cancer. Cell Death Dis. 2017;8:e2593. doi: 10.1038/cddis.2017.21. PubMed DOI PMC

Zampieri LX, Grasso D, Bouzin C, Brusa D, Rossignol R, Sonveaux P. Mitochondria participate in chemoresistance to cisplatin in human ovarian cancer cells. Mol Cancer Res. 2020;18:1379–1391. doi: 10.1158/1541-7786.MCR-19-1145. PubMed DOI

Alshehri AS, El-Kott AF, El-Kenawy AE, Khalifa HS, AlRamlawy AM. Cadmium chloride induces non-alcoholic fatty liver disease in rats by stimulating miR-34a/SIRT1/FXR/p53 axis. Science of The Total Environment. 2021;784:147182. doi: 10.1016/j.scitotenv.2021.147182. PubMed DOI

Li R, Toan S, Zhou H. Role of mitochondrial quality control in the pathogenesis of nonalcoholic fatty liver disease. Aging (Albany NY) 2020;12:6467. doi: 10.18632/aging.102972. PubMed DOI PMC

Ramanathan R, Ali AH, Ibdah JA. Mitochondrial dysfunction plays central role in nonalcoholic fatty liver disease. Int J Mol Sci. 2022:23. doi: 10.3390/ijms23137280. PubMed DOI PMC

Bingol B, Sheng M. Mechanisms of mitophagy: PINK1, Parkin, USP30 and beyond. Free Radic Biol Med. 2016;100:210–222. doi: 10.1016/j.freeradbiomed.2016.04.015. PubMed DOI

Sliter DA, Martinez J, Hao L, Chen X, Sun N, Fischer TD, Burman JL, Li Y, Zhang Z, Narendra DP, Cai H, Borsche M, Klein C, Youle RJ. Parkin and PINK1 mitigate STING-induced inflammation. Nature. 2018;561:258–262. doi: 10.1038/s41586-018-0448-9. PubMed DOI PMC

Kane LA, Lazarou M, Fogel AI, Li Y, Yamano K, Sarraf SA, Banerjee S, Youle RJ. PINK1 phosphorylates ubiquitin to activate Parkin E3 ubiquitin ligase activity. J Cell Biol. 2014;205:143–153. doi: 10.1083/jcb.201402104. PubMed DOI PMC

Kabeya Y, Mizushima N, Ueno T, Yamamoto A, Kirisako T, Noda T, Kominami E, Ohsumi Y, Yoshimori T. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J. 2000;19:5720–5728. doi: 10.1093/emboj/19.21.5720. PubMed DOI PMC

Friedman SL, Neuschwander-Tetri BA, Rinella M, Sanyal AJ. Mechanisms of NAFLD development and therapeutic strategies. Nat Med. 2018;24:908–922. doi: 10.1038/s41591-018-0104-9. PubMed DOI PMC

Yu X, Hao M, Liu Y, Ma X, Lin W, Xu Q, Zhou H, Shao N, Kuang H. Liraglutide ameliorates non-alcoholic steatohepatitis by inhibiting NLRP3 inflammasome and pyroptosis activation via mitophagy. Eur J Pharmacol. 2019;864:172715. doi: 10.1016/j.ejphar.2019.172715. PubMed DOI

Zhang NP, Liu XJ, Xie L, Shen XZ, Wu J. Impaired mitophagy triggers NLRP3 inflammasome activation during the progression from nonalcoholic fatty liver to nonalcoholic steatohepatitis. Lab Invest. 2019;99:749–763. doi: 10.1038/s41374-018-0177-6. PubMed DOI

Zhang T-s, Qin H-l, Wang T, Li H-t, Li H, Xia S-h, Xiang X-h. Global publication trends and research hotspots of nonalcoholic fatty liver disease: a bibliometric analysis and systematic review. Springerplus. 2015;4:1–9. doi: 10.1186/s40064-015-1542-1. PubMed DOI PMC

Duan Y, Pan X, Luo J, Xiao X, Li J, Bestman PL, Luo M. Association of inflammatory cytokines with non-alcoholic fatty liver disease. Front Immunol. 2022;13:880298. doi: 10.3389/fimmu.2022.880298. PubMed DOI PMC

Stojsavljević S, Palčić MG, Jukić LV, Duvnjak LS, Duvnjak M. Adipokines and proinflammatory cytokines, the key mediators in the pathogenesis of nonalcoholic fatty liver disease. World J Gastroenterol. 2014;20:18070. doi: 10.3748/wjg.v20.i48.18070. PubMed DOI PMC

Méndez-Sánchez N, Valencia-Rodríguez A, Coronel-Castillo C, Vera-Barajas A, Contreras-Carmona J, Ponciano-Rodríguez G, Zamora-Valdés D. The cellular pathways of liver fibrosis in non-alcoholic steatohepatitis. Annals of Translational Medicine. 2020:8. doi: 10.21037/atm.2020.02.184. PubMed DOI PMC

Nassir F, Ibdah JA. Role of mitochondria in nonalcoholic fatty liver disease. International journal of molecular sciences. 2014;15:8713–8742. doi: 10.3390/ijms15058713. PubMed DOI PMC

Zimmermann HW, Seidler S, Gassler N, Nattermann J, Luedde T, Trautwein C, Tacke F. Interleukin-8 is activated in patients with chronic liver diseases and associated with hepatic macrophage accumulation in human liver fibrosis. PloS one. 2011;6:e21381. doi: 10.1371/journal.pone.0021381. PubMed DOI PMC

Shen S, Wang J, Lin LM. Downregulation of long non-coding RNA AIRN promotes mitophagy in alcoholic fatty hepatocytes by promoting ubiquitination of mTOR. Physiol Res. 2021;70:245–253. doi: 10.33549/physiolres.934549. PubMed DOI PMC

Ma X, McKeen T, Zhang J, Ding WX. Role and mechanisms of mitophagy in liver diseases. Cells. 2020:9. doi: 10.3390/cells9040837. PubMed DOI PMC

Ding Q, Xie XL, Wang MM, Yin J, Tian JM, Jiang XY, Zhang D, Han J, Bai Y, Cui ZJ, Jiang HQ. The role of the apoptosis-related protein BCL-B in the regulation of mitophagy in hepatic stellate cells during the regression of liver fibrosis. Exp Mol Med. 2019;51:1–13. doi: 10.1038/s12276-018-0199-6. PubMed DOI PMC

Bueno M, Lai YC, Romero Y, Brands J, St Croix CM, Kamga C, Corey C, Herazo-Maya JD, Sembrat J, Lee JS, Duncan SR, Rojas M, Shiva S, Chu CT, Mora AL. PINK1 deficiency impairs mitochondrial homeostasis and promotes lung fibrosis. J Clin Invest. 2015;125:521–538. doi: 10.1172/JCI74942. PubMed DOI PMC

Qiu YN, Wang GH, Zhou F, Hao JJ, Tian L, Guan LF, Geng XK, Ding YC, Wu HW, Zhang KZ. PM2.5 induces liver fibrosis via triggering ROS-mediated mitophagy. Ecotoxicol Environ Saf. 2019;167:178–187. doi: 10.1016/j.ecoenv.2018.08.050. PubMed DOI

Xu ZX, Li JZ, Li Q, Xu MY, Li HY. CircRNA608-microRNA222-PINK1 axis regulates the mitophagy of hepatic stellate cells in NASH related fibrosis. Biochem Biophys Res Commun. 2022;610:35–42. doi: 10.1016/j.bbrc.2022.04.008. PubMed DOI

Nguyen TN, Padman BS, Lazarou M. Deciphering the Molecular Signals of PINK1/Parkin Mitophagy. Trends Cell Biol. 2016;26:733–744. doi: 10.1016/j.tcb.2016.05.008. PubMed DOI

Lazarou M, Sliter DA, Kane LA, Sarraf SA, Wang C, Burman JL, Sideris DP, Fogel AI, Youle RJ. The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy. Nature. 2015;524:309–314. doi: 10.1038/nature14893. PubMed DOI PMC

Piquereau J, Godin R, Deschenes S, Bessi VL, Mofarrahi M, Hussain SN, Burelle Y. Protective role of PARK2/Parkin in sepsis-induced cardiac contractile and mitochondrial dysfunction. Autophagy. 2013;9:1837–1851. doi: 10.4161/auto.26502. PubMed DOI

Padman BS, Nguyen TN, Lazarou M. Autophagosome formation and cargo sequestration in the absence of LC3/GABARAPs. Autophagy. 2017;13:772–774. doi: 10.1080/15548627.2017.1281492. PubMed DOI PMC

Bakula D, Scheibye-Knudsen M. MitophAging: Mitophagy in Aging and Disease. Front Cell Dev Biol. 2020;8:239. doi: 10.3389/fcell.2020.00239. PubMed DOI PMC

Fu ZJ, Wang ZY, Xu L, Chen XH, Li XX, Liao WT, Ma HK, Jiang MD, Xu TT, Xu J, Shen Y, Song B, Gao PJ, Han WQ, Zhang W. HIF-1alpha-BNIP3-mediated mitophagy in tubular cells protects against renal ischemia/reperfusion injury. Redox Biol. 2020;36:101671. doi: 10.1016/j.redox.2020.101671. PubMed DOI PMC

Qu F, Wang P, Zhang K, Shi Y, Li Y, Li C, Lu J, Liu Q, Wang X. Manipulation of Mitophagy by “All-in-One” nanosensitizer augments sonodynamic glioma therapy. Autophagy. 2020;16:1413–1435. doi: 10.1080/15548627.2019.1687210. PubMed DOI PMC

Li S, Lin Q, Shao X, Zhu X, Wu J, Wu B, Zhang M, Zhou W, Zhou Y, Jin H, Zhang Z, Qi C, Shen J, Mou S, Gu L, Ni Z. Drp1-regulated PARK2-dependent mitophagy protects against renal fibrosis in unilateral ureteral obstruction. Free Radic Biol Med. 2020;152:632–649. doi: 10.1016/j.freeradbiomed.2019.12.005. PubMed DOI

Yi S, Zheng B, Zhu Y, Cai Y, Sun H, Zhou J. Melatonin ameliorates excessive PINK1/Parkin-mediated mitophagy by enhancing SIRT1 expression in granulosa cells of PCOS. Am J Physiol Endocrinol Metab. 2020;319:E91–E101. doi: 10.1152/ajpendo.00006.2020. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...