PINK1/Park2-Mediated Mitophagy Relieve Non-Alcoholic Fatty Liver Disease
Jazyk angličtina Země Česko Médium print
Typ dokumentu časopisecké články
PubMed
38710055
PubMed Central
PMC11081181
DOI
10.33549/physiolres.934925
PII: 934925
Knihovny.cz E-zdroje
- MeSH
- lidé MeSH
- mitofagie * fyziologie MeSH
- myši MeSH
- nealkoholová steatóza jater * metabolismus patologie genetika MeSH
- proteinkinasy * metabolismus genetika MeSH
- ubikvitinligasy * metabolismus genetika MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- parkin protein MeSH Prohlížeč
- proteinkinasy * MeSH
- PTEN-induced putative kinase MeSH Prohlížeč
- ubikvitinligasy * MeSH
Up to now, there's a limited number of studies on the relationship between PINK1/Park2 pathway and mitophagy in NAFLD. To investigate the effect of Park2-mediated mitophagy on non-alcoholic fatty liver disease (NAFLD). Oleic acid was used for the establishment of NAFLD model. Oil red-dyed lipid drops and mitochondrial alternations were observed by transmission electron microscopy. Enzymatic kit was used to test lipid content. The levels of IL-8 and TNF-alpha were determined by ELISA. Lenti-Park2 and Park2-siRNA were designed to upregulate and downregulate Park2 expression, respectively. The changing expression of PINK and Park2 was detected by RT-qPCR and Western blot. Immunofluorescence staining was applied to measure the amount of LC3. Successful NAFLD modeling was featured by enhanced lipid accumulation, as well as the elevated total cholesterol (TC), triglyceride (TG), TNF-alpha and IL-8 levels. Mitochondria in NAFLD model were morphologically and functionally damaged. Park2 expression was upregulated by lenti-Park2 and downregulated through Park2-siRNA. The PINK1 expression showed the same trend as Park2 expression. Immunofluorescence staining demonstrated that the when Park2 was overexpressed, more LC3 protein on mitochondrial autophagosome membrane was detected, whereas Park2 knockdown impeded LC3' locating on the membrane. The transmission electron microscopy image exhibited that the extent of damage to the mitochondrial in NAFLD model was revered by enhanced Park2 expression but further exacerbated by reduced Park2 expression. Park2-mediated mitophagy could relive NAFLD and may be a novel therapeutic target for NAFLD treatment. Keywords: Non-alcoholic Fatty Liver Disease (NAFLD), Mitophagy, PINK1/Park2, Park2, PINK1.
Zobrazit více v PubMed
Mir HM, Stepanova M, Afendy H, Cable R, Younossi ZM. Association of sleep disorders with nonalcoholic fatty liver disease (NAFLD): A Population-based Study. J Clin Exp Hepatol. 2013;3:181–185. doi: 10.1016/j.jceh.2013.06.004. PubMed DOI PMC
Younossi ZM, Golabi P, de Avila L, Paik JM, Srishord M, Fukui N, Qiu Y, Burns L, Afendy A, Nader F. The global epidemiology of NAFLD and NASH in patients with type 2 diabetes: A systematic review and meta-analysis. J Hepatol. 2019;71:793–801. doi: 10.1016/j.jhep.2019.06.021. PubMed DOI
Chacko KR, Reinus J. Extrahepatic complications of nonalcoholic fatty liver disease. Clin Liver Dis. 2016;20:387–401. doi: 10.1016/j.cld.2015.10.004. PubMed DOI
Saigo Y, Sasase T, Tohma M, Uno K, Shinozaki Y, Maekawa T, Sano R, Miyajima K, Ohta T. High-cholesterol diet in combination with hydroxypropyl-beta-cyclodextrin induces NASH-like disorders in the liver of rats. Physiol Res. 2023;72:371–382. doi: 10.33549/physiolres.934981. PubMed DOI PMC
Hu Y, Xu J, Chen Q, Liu M, Wang S, Yu H, Zhang Y, Wang T. Regulation effects of total flavonoids in Morus alba L on hepatic cholesterol disorders in orotic acid induced NAFLD rats. BMC Complement Med Ther. 2020;20:257. doi: 10.1186/s12906-020-03052-w. PubMed DOI PMC
Younossi Z, Anstee QM, Marietti M, Hardy T, Henry L, Eslam M, George J, Bugianesi E. Global burden of NAFLD and NASH: trends, predictions, risk factors and prevention. Nat Rev Gastroenterol Hepatol. 2018;15:11–20. doi: 10.1038/nrgastro.2017.109. PubMed DOI
Sharma D, Mandal P. NAFLD: genetics and its clinical implications. Clin Res Hepatol Gastroenterol. 2022;46:102003. doi: 10.1016/j.clinre.2022.102003. PubMed DOI
Huang G, Wallace DF, Powell EE, Rahman T, Clark PJ, Subramaniam VN. Gene variants implicated in steatotic liver disease: opportunities for diagnostics and therapeutics. Biomedicines. 2023:11. doi: 10.3390/biomedicines11102809. PubMed DOI PMC
Zhang J, Xie H, Yao J, Jin W, Pan H, Pan Z, Xie D, Xie D. TRIM59 promotes steatosis and ferroptosis in non-alcoholic fatty liver disease via enhancing GPX4 ubiquitination. Hum Cell. 2023;36:209–222. doi: 10.1007/s13577-022-00820-3. PubMed DOI PMC
Ng MYW, Wai T, Simonsen A. Quality control of the mitochondrion. Developmental cell. 2021;56:881–905. doi: 10.1016/j.devcel.2021.02.009. PubMed DOI
Vyas S, Zaganjor E, Haigis MC. Mitochondria and cancer. Cell. 2016;166:555–566. doi: 10.1016/j.cell.2016.07.002. PubMed DOI PMC
Kang D, Hamasaki N. Alterations of mitochondrial DNA in common diseases and disease states: aging, neurodegeneration, heart failure, diabetes, and cancer. Curr Med Chem. 2005;12:429–441. doi: 10.2174/0929867053363081. PubMed DOI
Wen YA, Xing X, Harris JW, Zaytseva YY, Mitov MI, Napier DL, Weiss HL, Mark Evers B, Gao T. Adipocytes activate mitochondrial fatty acid oxidation and autophagy to promote tumor growth in colon cancer. Cell Death Dis. 2017;8:e2593. doi: 10.1038/cddis.2017.21. PubMed DOI PMC
Zampieri LX, Grasso D, Bouzin C, Brusa D, Rossignol R, Sonveaux P. Mitochondria participate in chemoresistance to cisplatin in human ovarian cancer cells. Mol Cancer Res. 2020;18:1379–1391. doi: 10.1158/1541-7786.MCR-19-1145. PubMed DOI
Alshehri AS, El-Kott AF, El-Kenawy AE, Khalifa HS, AlRamlawy AM. Cadmium chloride induces non-alcoholic fatty liver disease in rats by stimulating miR-34a/SIRT1/FXR/p53 axis. Science of The Total Environment. 2021;784:147182. doi: 10.1016/j.scitotenv.2021.147182. PubMed DOI
Li R, Toan S, Zhou H. Role of mitochondrial quality control in the pathogenesis of nonalcoholic fatty liver disease. Aging (Albany NY) 2020;12:6467. doi: 10.18632/aging.102972. PubMed DOI PMC
Ramanathan R, Ali AH, Ibdah JA. Mitochondrial dysfunction plays central role in nonalcoholic fatty liver disease. Int J Mol Sci. 2022:23. doi: 10.3390/ijms23137280. PubMed DOI PMC
Bingol B, Sheng M. Mechanisms of mitophagy: PINK1, Parkin, USP30 and beyond. Free Radic Biol Med. 2016;100:210–222. doi: 10.1016/j.freeradbiomed.2016.04.015. PubMed DOI
Sliter DA, Martinez J, Hao L, Chen X, Sun N, Fischer TD, Burman JL, Li Y, Zhang Z, Narendra DP, Cai H, Borsche M, Klein C, Youle RJ. Parkin and PINK1 mitigate STING-induced inflammation. Nature. 2018;561:258–262. doi: 10.1038/s41586-018-0448-9. PubMed DOI PMC
Kane LA, Lazarou M, Fogel AI, Li Y, Yamano K, Sarraf SA, Banerjee S, Youle RJ. PINK1 phosphorylates ubiquitin to activate Parkin E3 ubiquitin ligase activity. J Cell Biol. 2014;205:143–153. doi: 10.1083/jcb.201402104. PubMed DOI PMC
Kabeya Y, Mizushima N, Ueno T, Yamamoto A, Kirisako T, Noda T, Kominami E, Ohsumi Y, Yoshimori T. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J. 2000;19:5720–5728. doi: 10.1093/emboj/19.21.5720. PubMed DOI PMC
Friedman SL, Neuschwander-Tetri BA, Rinella M, Sanyal AJ. Mechanisms of NAFLD development and therapeutic strategies. Nat Med. 2018;24:908–922. doi: 10.1038/s41591-018-0104-9. PubMed DOI PMC
Yu X, Hao M, Liu Y, Ma X, Lin W, Xu Q, Zhou H, Shao N, Kuang H. Liraglutide ameliorates non-alcoholic steatohepatitis by inhibiting NLRP3 inflammasome and pyroptosis activation via mitophagy. Eur J Pharmacol. 2019;864:172715. doi: 10.1016/j.ejphar.2019.172715. PubMed DOI
Zhang NP, Liu XJ, Xie L, Shen XZ, Wu J. Impaired mitophagy triggers NLRP3 inflammasome activation during the progression from nonalcoholic fatty liver to nonalcoholic steatohepatitis. Lab Invest. 2019;99:749–763. doi: 10.1038/s41374-018-0177-6. PubMed DOI
Zhang T-s, Qin H-l, Wang T, Li H-t, Li H, Xia S-h, Xiang X-h. Global publication trends and research hotspots of nonalcoholic fatty liver disease: a bibliometric analysis and systematic review. Springerplus. 2015;4:1–9. doi: 10.1186/s40064-015-1542-1. PubMed DOI PMC
Duan Y, Pan X, Luo J, Xiao X, Li J, Bestman PL, Luo M. Association of inflammatory cytokines with non-alcoholic fatty liver disease. Front Immunol. 2022;13:880298. doi: 10.3389/fimmu.2022.880298. PubMed DOI PMC
Stojsavljević S, Palčić MG, Jukić LV, Duvnjak LS, Duvnjak M. Adipokines and proinflammatory cytokines, the key mediators in the pathogenesis of nonalcoholic fatty liver disease. World J Gastroenterol. 2014;20:18070. doi: 10.3748/wjg.v20.i48.18070. PubMed DOI PMC
Méndez-Sánchez N, Valencia-Rodríguez A, Coronel-Castillo C, Vera-Barajas A, Contreras-Carmona J, Ponciano-Rodríguez G, Zamora-Valdés D. The cellular pathways of liver fibrosis in non-alcoholic steatohepatitis. Annals of Translational Medicine. 2020:8. doi: 10.21037/atm.2020.02.184. PubMed DOI PMC
Nassir F, Ibdah JA. Role of mitochondria in nonalcoholic fatty liver disease. International journal of molecular sciences. 2014;15:8713–8742. doi: 10.3390/ijms15058713. PubMed DOI PMC
Zimmermann HW, Seidler S, Gassler N, Nattermann J, Luedde T, Trautwein C, Tacke F. Interleukin-8 is activated in patients with chronic liver diseases and associated with hepatic macrophage accumulation in human liver fibrosis. PloS one. 2011;6:e21381. doi: 10.1371/journal.pone.0021381. PubMed DOI PMC
Shen S, Wang J, Lin LM. Downregulation of long non-coding RNA AIRN promotes mitophagy in alcoholic fatty hepatocytes by promoting ubiquitination of mTOR. Physiol Res. 2021;70:245–253. doi: 10.33549/physiolres.934549. PubMed DOI PMC
Ma X, McKeen T, Zhang J, Ding WX. Role and mechanisms of mitophagy in liver diseases. Cells. 2020:9. doi: 10.3390/cells9040837. PubMed DOI PMC
Ding Q, Xie XL, Wang MM, Yin J, Tian JM, Jiang XY, Zhang D, Han J, Bai Y, Cui ZJ, Jiang HQ. The role of the apoptosis-related protein BCL-B in the regulation of mitophagy in hepatic stellate cells during the regression of liver fibrosis. Exp Mol Med. 2019;51:1–13. doi: 10.1038/s12276-018-0199-6. PubMed DOI PMC
Bueno M, Lai YC, Romero Y, Brands J, St Croix CM, Kamga C, Corey C, Herazo-Maya JD, Sembrat J, Lee JS, Duncan SR, Rojas M, Shiva S, Chu CT, Mora AL. PINK1 deficiency impairs mitochondrial homeostasis and promotes lung fibrosis. J Clin Invest. 2015;125:521–538. doi: 10.1172/JCI74942. PubMed DOI PMC
Qiu YN, Wang GH, Zhou F, Hao JJ, Tian L, Guan LF, Geng XK, Ding YC, Wu HW, Zhang KZ. PM2.5 induces liver fibrosis via triggering ROS-mediated mitophagy. Ecotoxicol Environ Saf. 2019;167:178–187. doi: 10.1016/j.ecoenv.2018.08.050. PubMed DOI
Xu ZX, Li JZ, Li Q, Xu MY, Li HY. CircRNA608-microRNA222-PINK1 axis regulates the mitophagy of hepatic stellate cells in NASH related fibrosis. Biochem Biophys Res Commun. 2022;610:35–42. doi: 10.1016/j.bbrc.2022.04.008. PubMed DOI
Nguyen TN, Padman BS, Lazarou M. Deciphering the Molecular Signals of PINK1/Parkin Mitophagy. Trends Cell Biol. 2016;26:733–744. doi: 10.1016/j.tcb.2016.05.008. PubMed DOI
Lazarou M, Sliter DA, Kane LA, Sarraf SA, Wang C, Burman JL, Sideris DP, Fogel AI, Youle RJ. The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy. Nature. 2015;524:309–314. doi: 10.1038/nature14893. PubMed DOI PMC
Piquereau J, Godin R, Deschenes S, Bessi VL, Mofarrahi M, Hussain SN, Burelle Y. Protective role of PARK2/Parkin in sepsis-induced cardiac contractile and mitochondrial dysfunction. Autophagy. 2013;9:1837–1851. doi: 10.4161/auto.26502. PubMed DOI
Padman BS, Nguyen TN, Lazarou M. Autophagosome formation and cargo sequestration in the absence of LC3/GABARAPs. Autophagy. 2017;13:772–774. doi: 10.1080/15548627.2017.1281492. PubMed DOI PMC
Bakula D, Scheibye-Knudsen M. MitophAging: Mitophagy in Aging and Disease. Front Cell Dev Biol. 2020;8:239. doi: 10.3389/fcell.2020.00239. PubMed DOI PMC
Fu ZJ, Wang ZY, Xu L, Chen XH, Li XX, Liao WT, Ma HK, Jiang MD, Xu TT, Xu J, Shen Y, Song B, Gao PJ, Han WQ, Zhang W. HIF-1alpha-BNIP3-mediated mitophagy in tubular cells protects against renal ischemia/reperfusion injury. Redox Biol. 2020;36:101671. doi: 10.1016/j.redox.2020.101671. PubMed DOI PMC
Qu F, Wang P, Zhang K, Shi Y, Li Y, Li C, Lu J, Liu Q, Wang X. Manipulation of Mitophagy by “All-in-One” nanosensitizer augments sonodynamic glioma therapy. Autophagy. 2020;16:1413–1435. doi: 10.1080/15548627.2019.1687210. PubMed DOI PMC
Li S, Lin Q, Shao X, Zhu X, Wu J, Wu B, Zhang M, Zhou W, Zhou Y, Jin H, Zhang Z, Qi C, Shen J, Mou S, Gu L, Ni Z. Drp1-regulated PARK2-dependent mitophagy protects against renal fibrosis in unilateral ureteral obstruction. Free Radic Biol Med. 2020;152:632–649. doi: 10.1016/j.freeradbiomed.2019.12.005. PubMed DOI
Yi S, Zheng B, Zhu Y, Cai Y, Sun H, Zhou J. Melatonin ameliorates excessive PINK1/Parkin-mediated mitophagy by enhancing SIRT1 expression in granulosa cells of PCOS. Am J Physiol Endocrinol Metab. 2020;319:E91–E101. doi: 10.1152/ajpendo.00006.2020. PubMed DOI