Beneficial Effects of High-Intensity Interval Training and Dietary Changes Intervention on Hepatic Fat Accumulation in HFD-Induced Obese Rats
Jazyk angličtina Země Česko Médium print
Typ dokumentu časopisecké články
PubMed
38710057
PubMed Central
PMC11081183
DOI
10.33549/physiolres.935195
PII: 935195
Knihovny.cz E-zdroje
- MeSH
- dieta s vysokým obsahem tuků * škodlivé účinky MeSH
- játra * metabolismus MeSH
- kondiční příprava zvířat fyziologie MeSH
- krysa rodu Rattus MeSH
- metabolismus lipidů * MeSH
- obezita * metabolismus terapie MeSH
- potkani Sprague-Dawley * MeSH
- vysoce intenzivní intervalový trénink * MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Lifestyle intervention encompassing nutrition and physical activity are effective strategies to prevent progressive lipid deposition in the liver. This study aimed to explore the effect of dietary change, and/or high-intensity interval training (HIIT) on hepatic lipid accumulation in high fat diet (HFD)-induced obese rats. We divided lean rats into lean control (LC) or HIIT groups (LH), and obese rats into obese normal chow diet (ND) control (ONC) or HIIT groups (ONH) and obese HFD control (OHC) or HIIT groups (OHH). We found that dietary or HIIT intervention significantly decreased body weight and the risk of dyslipidemia, prevented hepatic lipid accumulation. HIIT significantly improved mitochondrial fatty acid oxidation through upregulating mitochondrial enzyme activities, mitochondrial function and AMPK/PPARalpha/CPT1alpha pathway, as well as inhibiting hepatic de novo lipogenesis in obese HFD rats. These findings indicate that dietary alone or HIIT intervention powerfully improve intrahepatic storage of fat in diet induced obese rats. Keywords: Obesity, Exercise, Diet, Mitochondrial function, Lipid deposition.
Zobrazit více v PubMed
Fu S, Watkins SM, Hotamisligil GS. The role of endoplasmic reticulum in hepatic lipid homeostasis and stress signaling. Cell Metab. 2012;15:623–634. doi: 10.1016/j.cmet.2012.03.007. PubMed DOI
Takahashi H, Kotani K, Tanaka K, Egucih Y, Anzai K. Therapeutic approaches to nonalcoholic fatty liver disease: exercise intervention and related mechanisms. Front Endocrinol (Lausanne) 2018;9:588. doi: 10.3389/fendo.2018.00588. PubMed DOI PMC
De Strijcker D, Lapauw B, Ouwens DM, Van de Velde D, Hansen D, Petrovic M, Cuvelier C, et al. High intensity interval training is associated with greater impact on physical fitness, insulin sensitivity and muscle mitochondrial content in males with overweight/obesity, as opposed to continuous endurance training: a randomized controlled trial. J Musculoskelet Neuronal Interact. 2018;18(2):215–226. PubMed PMC
Marcinko K, Sikkema SR, Samaan MC, Kemp BE, Fullerton MD, Steinberg GR. High intensity interval training improves liver and adipose tissue insulin sensitivity. Mol Metab. 2015;4(12):903–915. doi: 10.1016/j.molmet.2015.09.006. PubMed DOI PMC
Araújo EP, De Souza CT, Ueno M, Cintra DE, Bertolo MB, Carvalheira JB, Saad MJ, et al. Infliximab restores glucose homeostasis in an animal model of diet-induced obesity and diabetes. Endocrinology. 2007;148(12):5991–5997. doi: 10.1210/en.2007-0132. PubMed DOI
Fernandes-Lima F, Monte TL, Nascimento FA, Gregório BM. Short exposure to a high-sucrose diet and the first ‘hit’ of nonalcoholic fatty liver disease in mice. Cells Tissues Organs. 2015;201(6):464–472. doi: 10.1159/000446514. PubMed DOI
Riazi K, Raman M, Taylor L, Swain MG, Shaheen AA. Dietary Patterns and Components in Nonalcoholic Fatty Liver Disease (NAFLD): What key messages can health care providers offer? Nutrients. 2019;11(12):2878. doi: 10.3390/nu11122878. PubMed DOI PMC
Simões ICM, Fontes A, Pinton P, Zischka H, Wieckowski MR. Mitochondria in non-alcoholic fatty liver disease. Int J Biochem Cell Biol. 2018;95:93–99. doi: 10.1016/j.biocel.2017.12.019. PubMed DOI
Hallsworth K, Thoma C, Hollingsworth KG, Cassidy S, Anstee QM, Day CP, Trenell MI. Modified high-intensity interval training reduces liver fat and improves cardiac function in non-alcoholic fatty liver disease: a randomized controlled trial. Clin Sci (Lond) 2015;129(12):1097–1105. doi: 10.1042/CS20150308. PubMed DOI
Oh S, So R, Shida T, Matsuo T, Kim B, Akiyama K, Isobe T, et al. High-intensity aerobic exercise improves both hepatic fat content and stiffness in sedentary obese men with nonalcoholic fatty liver disease. Sci Rep. 2017;7:43029. doi: 10.1038/srep43029. PubMed DOI PMC
Winn NC, Liu Y, Rector RS, Parks EJ, Ibdah JA, Kanaley JA. Energy-matched moderate and high intensity exercise training improves nonalcoholic fatty liver disease risk independent of changes in body mass or abdominal adiposity - A randomized trial. Metabolism. 2018;78:128–140. doi: 10.1016/j.metabol.2017.08.012. PubMed DOI
Abdelbasset WK, Tantawy SA, Kamel DM, Alqahtani BA, Soliman GS. A randomized controlled trial on the effectiveness of 8-week high-intensity interval exercise on intrahepatic triglycerides, visceral lipids, and health-related quality of life in diabetic obese patients with nonalcoholic fatty liver disease. Medicine (Baltimore) 2019;98(12):e14918. doi: 10.1097/MD.0000000000014918. PubMed DOI PMC
Winn NC, Liu Y, Rector RS, Parks EJ, Ibdah JA, Kanaley JA. Energy-matched moderate and high intensity exercise training improves nonalcoholic fatty liver disease risk independent of changes in body mass or abdominal adiposity - A randomized trial. Metabolism. 2018;78:128–140. doi: 10.1016/j.metabol.2017.08.012. PubMed DOI
Hamasaki H. Perspectives on interval exercise interventions for non-alcoholic fatty liver disease. Medicines (Basel) 2019;6(3):83. doi: 10.3390/medicines6030083. PubMed DOI PMC
Terada S, Tabata I, Higuchi M. Effect of high-intensity intermittent swimming training on fatty acid oxidation enzyme activity in rat skeletal muscle. Jpn J Physiol. 2004;54(1):47–52. doi: 10.2170/jjphysiol.54.47. PubMed DOI
Carnevali LC, Jr, Eder R, Lira FS, Lima WP, Gonçalves DC, Zanchi NE, Nicastro H, et al. Effects of high-intensity intermittent training on carnitine palmitoyl transferase activity in the gastrocnemius muscle of rats. Braz J Med Biol Res. 2012;45(8):777–783. doi: 10.1590/S0100-879X2012007500105. PubMed DOI PMC
Gobatto CA, de Mello MA, Sibuya CY, de Azevedo JR, dos Santos LA, Kokubun E. Maximal lactate steady state in rats submitted to swimming exercise. Comp Biochem Physiol A Mol Integr Physiol. 2001;130(1):21–27. doi: 10.1016/S1095-6433(01)00362-2. PubMed DOI
Hynes J, Swiss RL, Will Y. High-Throughput Analysis of Mitochondrial Oxygen Consumption. Methods Mol Biol. 2018;1782:71–87. doi: 10.1007/978-1-4939-7831-1_4. PubMed DOI
Saeed N, Nadeau B, Shannon C, Tincopa M. Evaluation of dietary approaches for the treatment of non-alcoholic fatty liver disease: a systematic review. Nutrients. 2019;11(12):3064. doi: 10.3390/nu11123064. PubMed DOI PMC
Saigo Y, Sasase T, Tohma M, Uno K, Shinozaki Y, Maekawa T, Sano R, et al. High-cholesterol diet in combination with hydroxypropyl-beta-cyclodextrin induces NASH-like disorders in the liver of rats. Physiol Res. 2023;72(3):371–382. doi: 10.33549/physiolres.934981. PubMed DOI PMC
Golabi P, Gerber L, Paik JM, Deshpande R, de Avila L, Younossi ZM. Contribution of sarcopenia and physical inactivity to mortality in people with non-alcoholic fatty liver disease. JHEP Rep. 2020;2(6):100171. doi: 10.1016/j.jhepr.2020.100171. PubMed DOI PMC
Naimimohasses S, O’Gorman P, Wright C, Ni Fhloinn D, Holden D, Conlon N, Monaghan A, et al. Differential effects of dietary versus exercise intervention on intrahepatic MAIT cells and histological features of NAFLD. Nutrients. 2022;14(11):2198. doi: 10.3390/nu14112198. PubMed DOI PMC
Toriniwa Y, Muramatsu M, Ishii Y, Riya E, Miyajima K, Ohshida S, Kitatani K, et al. Pathophysiological characteristics of non-alcoholic steatohepatitis-like changes in cholesterol-loaded type 2 diabetic rats. Physiol Res. 2018;67(4):601–612. doi: 10.33549/physiolres.933784. PubMed DOI
Vekic J, Zeljkovic A, Stefanovic A, Jelic-Ivanovic Z, Spasojevic-Kalimanovska V. Obesity and dyslipidemia. Metabolism. 2019;92:71–81. doi: 10.1016/j.metabol.2018.11.005. PubMed DOI
Fikenzer K, Fikenzer S, Laufs U, Werner C. Effects of endurance training on serum lipids. Vascul Pharmacol. 2018;101:9–20. doi: 10.1016/j.vph.2017.11.005. PubMed DOI
Gao Y, Zhang W, Zeng LQ, Bai H, Li J, Zhou J, Zhou GY, et al. Exercise and dietary intervention ameliorate high-fat diet-induced NAFLD and liver aging by inducing lipophagy. Redox Biol. 2020;36:101635. doi: 10.1016/j.redox.2020.101635. PubMed DOI PMC
Muscella A, Stefàno E, Marsigliante S. The effects of exercise training on lipid metabolism and coronary heart disease. Am J Physiol Heart Circ Physiol. 2020;319(1):H76–H88. doi: 10.1152/ajpheart.00708.2019. PubMed DOI
Zannis VI, Chroni A, Krieger M. Role of apoA-I, ABCA1, LCAT, and SR-BI in the biogenesis of HDL. J Mol Med (Berl) 2006;84(4):276–294. doi: 10.1007/s00109-005-0030-4. PubMed DOI
Mach F, Baigent C, Catapano AL, Koskinas KC, Casula M, Badimon L, Chapman MJ, et al. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk. Eur Heart J. 2020;41(1):111–188. doi: 10.1093/eurheartj/ehz455. PubMed DOI
Fredrickson G, Barrow F, Dietsche K, Parthiban P, Khan S, Robert S, Demirchian M, et al. Exercise of high intensity ameliorates hepatic inflammation and the progression of NASH. Mol Metab. 2021;53:101270. doi: 10.1016/j.molmet.2021.101270. PubMed DOI PMC
Wang N, Liu Y, Ma Y, Wen D. High-intensity interval versus moderate-intensity continuous training: Superior metabolic benefits in diet-induced obesity mice. Life Sci. 2017;191:122–131. doi: 10.1016/j.lfs.2017.08.023. PubMed DOI
Banitalebi E, Faramarzi M, Nasiri S, Mardaniyan M, Rabiee V. Effects of different exercise modalities on novel hepatic steatosis indices in overweight women with type 2 diabetes. Clin Mol Hepatol. 2019;25(3):294–304. doi: 10.3350/cmh.2018.0086. PubMed DOI PMC
Yuan Z, Xiao-Wei L, Juan W, Xiu-Juan L, Nian-Yun Z, Lei S. HIIT and MICT attenuate high-fat diet-induced hepatic lipid accumulation and ER stress via the PERK-ATF4-CHOP signaling pathway. J Physiol Biochem. 2022;78(3):641–652. doi: 10.1007/s13105-022-00884-7. PubMed DOI PMC
Satapati S, Kucejova B, Duarte JA, Fletcher JA, Reynolds L, Sunny NE, He T, et al. Mitochondrial metabolism mediates oxidative stress and inflammation in fatty liver. J Clin Invest. 2015;125(12):4447–4462. doi: 10.1172/JCI82204. PubMed DOI PMC
Aharoni-Simon M, Hann-Obercyger M, Pen S, Madar Z, Tirosh O. Fatty liver is associated with impaired activity of PPARγ-coactivator 1α (PGC1α) and mitochondrial biogenesis in mice. Lab Invest. 2011;91(7):1018–1028. doi: 10.1038/labinvest.2011.55. PubMed DOI
Koliaki C, Szendroedi J, Kaul K, Jelenik T, Nowotny P, Jankowiak F, Herder C, et al. Adaptation of hepatic mitochondrial function in humans with non-alcoholic fatty liver is lost in steatohepatitis. Cell Metab. 2015;21(5):739–746. doi: 10.1016/j.cmet.2015.04.004. PubMed DOI
Laye MJ, Rector RS, Borengasser SJ, Naples SP, Uptergrove GM, Ibdah JA, Booth FW, et al. Cessation of daily wheel running differentially alters fat oxidation capacity in liver, muscle, and adipose tissue. J Appl Physiol. 1985 PubMed PMC
Foulds CE, Treviño LS, York B, Walker CL. Endocrine-disrupting chemicals and fatty liver disease. Nat Rev Endocrinol. 2017;13(8):445–457. doi: 10.1038/nrendo.2017.42. PubMed DOI PMC
Garcia D, Hellberg K, Chaix A, Wallace M, Herzig S, Badur MG, Lin T, et al. Genetic liver-specific AMPK activation protects against diet-induced obesity and NAFLD. Cell Rep. 2019;26(1):192–208.e6. doi: 10.1016/j.celrep.2018.12.036. PubMed DOI PMC
Diniz TA, de Lima EA, Junior, Teixeira AA, Biondo LA, da Rocha LAF, Valadão IC, Silveira LS, et al. Aerobic training improves NAFLD markers and insulin resistance through AMPK-PPAR-α signaling in obese mice. Life Sci. 2021;266:118868. doi: 10.1016/j.lfs.2020.118868. PubMed DOI
Pawlak M, Lefebvre P, Staels B. Molecular mechanism of PPARα action and its impact on lipid metabolism, inflammation and fibrosis in non-alcoholic fatty liver disease. J Hepatol. 2015;62(3):720–733. doi: 10.1016/j.jhep.2014.10.039. PubMed DOI