Structural basis for the dynamic regulation of mTORC1 by amino acids

. 2025 Oct ; 646 (8084) : 493-500. [epub] 20250820

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40836086

Grantová podpora
T32 CA009302 NCI NIH HHS - United States
R00 CA255926 NCI NIH HHS - United States
F30 CA228229 NCI NIH HHS - United States
T32 GM007753 NIGMS NIH HHS - United States
R01 CA129105 NCI NIH HHS - United States
R35 GM150935 NIGMS NIH HHS - United States
P30 CA124435 NCI NIH HHS - United States
R01 AI047389 NIAID NIH HHS - United States
R01 CA103866 NCI NIH HHS - United States

Odkazy

PubMed 40836086
PubMed Central PMC12507694
DOI 10.1038/s41586-025-09428-7
PII: 10.1038/s41586-025-09428-7
Knihovny.cz E-zdroje

The mechanistic target of rapamycin complex 1 (mTORC1) anchors a conserved signalling pathway that regulates growth in response to nutrient availability1-5. Amino acids activate mTORC1 through the Rag GTPases, which are regulated by GATOR, a supercomplex consisting of GATOR1, KICSTOR and the nutrient-sensing hub GATOR2 (refs. 6-9). GATOR2 forms an octagonal cage, with its distinct WD40 domain β-propellers interacting with GATOR1 and the leucine sensors Sestrin1 and Sestrin2 (SESN1 and SESN2) and the arginine sensor CASTOR1 (ref. 10). The mechanisms through which these sensors regulate GATOR2 and how they detach from it upon binding their cognate amino acids remain unknown. Here, using cryo-electron microscopy, we determined the structures of a stabilized GATOR2 bound to either Sestrin2 or CASTOR1. The sensors occupy distinct and non-overlapping binding sites, disruption of which selectively impairs the ability of mTORC1 to sense individual amino acids. We also resolved the apo (leucine-free) structure of Sestrin2 and characterized the amino acid-induced structural rearrangements within Sestrin2 and CASTOR1 that trigger their dissociation from GATOR2. Binding of either sensor restricts the dynamic WDR24 β-propeller of GATOR2, a domain essential for nutrient-dependent mTORC1 activation. These findings reveal the allosteric mechanisms that convey amino acid sufficiency to GATOR2 and the ensuing structural changes that lead to mTORC1 activation.

Zobrazit více v PubMed

Liu, G. Y. & Sabatini, D. M. mTOR at the nexus of nutrition, growth, ageing and disease. PubMed PMC

Kim, J. & Guan, K.-L. mTOR as a central hub of nutrient signalling and cell growth. PubMed

Valvezan, A. J. & Manning, B. D. Molecular logic of mTORC1 signalling as a metabolic rheostat. PubMed

Melick, C. H. & Jewell, J. L. Regulation of mTORC1 by upstream stimuli. PubMed PMC

González, A. & Hall, M. N. Nutrient sensing and TOR signaling in yeast and mammals. PubMed PMC

Sancak, Y. et al. The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. PubMed PMC

Bar-Peled, L. et al. A tumor suppressor complex with GAP activity for the Rag GTPases that signal amino acid sufficiency to mTORC1. PubMed PMC

Wolfson, R. L. et al. KICSTOR recruits GATOR1 to the lysosome and is necessary for nutrients to regulate mTORC1. PubMed PMC

Valenstein, M. L. et al. Rag–Ragulator is the central organizer of the physical architecture of the mTORC1 nutrient-sensing pathway. PubMed PMC

Valenstein, M. L. et al. Structure of the nutrient-sensing hub GATOR2. PubMed PMC

Linde-Garelli, K. Y. & Rogala, K. B. Structural mechanisms of the mTOR pathway. PubMed

Sancak, Y. et al. Ragulator–Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. PubMed PMC

Anandapadamanaban, M. et al. Architecture of human Rag GTPase heterodimers and their complex with mTORC1. PubMed PMC

Rogala, K. B. et al. Structural basis for the docking of mTORC1 on the lysosomal surface. PubMed PMC

Shen, K. et al. Architecture of the human GATOR1 and GATOR1–Rag GTPases complexes. PubMed PMC

Wolfson, R. L. et al. Sestrin2 is a leucine sensor for the mTORC1 pathway. PubMed PMC

Chantranupong, L. et al. The CASTOR proteins are arginine sensors for the mTORC1 pathway. PubMed PMC

Zhou, Y., Wang, C., Xiao, Q. & Guo, L. Crystal structures of arginine sensor CASTOR1 in arginine-bound and ligand free states. PubMed

Saxton, R. A., Chantranupong, L., Knockenhauer, K. E., Schwartz, T. U. & Sabatini, D. M. Mechanism of arginine sensing by CASTOR1 upstream of mTORC1. PubMed PMC

Gai, Z. et al. Structural mechanism for the arginine sensing and regulation of CASTOR1 in the mTORC1 signaling pathway. PubMed PMC

Saxton, R. A. et al. Structural basis for leucine sensing by the Sestrin2–mTORC1 pathway. PubMed PMC

Saxton, R. A., Knockenhauer, K. E., Schwartz, T. U. & Sabatini, D. M. The apo-structure of the leucine sensor Sestrin2 is still elusive. PubMed PMC

Tafur, L. et al. Cryo-EM structure of the SEA complex. PubMed PMC

Agarwal, V. & McShan, A. C. The power and pitfalls of AlphaFold2 for structure prediction beyond rigid globular proteins. PubMed PMC

Gu, X. et al. SAMTOR is an PubMed PMC

Jiang, C. et al. Ring domains are essential for GATOR2-dependent mTORC1 activation. PubMed PMC

Liu, G. Y., Jouandin, P., Bahng, R. E., Perrimon, N. & Sabatini, D. M. An evolutionary mechanism to assimilate new nutrient sensors into the mTORC1 pathway. PubMed PMC

Cangelosi, A. L. et al. Zonated leucine sensing by Sestrin–mTORC1 in the liver controls the response to dietary leucine. PubMed PMC

Yang, C., Sun, X. & Wu, G. New insights into GATOR2-dependent interactions and its conformational changes in amino acid sensing. PubMed PMC

Boussif, O. et al. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. PubMed PMC

Tsun, Z.-Y. et al. The folliculin tumor suppressor is a GAP for the RagC/D GTPases that signal amino acid levels to mTORC1. PubMed PMC

Abraham, M. J. et al. GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers.

Nnyigide, O. S., Nnyigide, T. O., Lee, S.-G. & Hyun, K. Protein Repair and Analysis Server: a web server to repair PDB structures, add missing heavy atoms and hydrogen atoms, and assign secondary structures by amide interactions. PubMed

Huang, J. et al. CHARMM36m: an improved force field for folded and intrinsically disordered proteins. PubMed PMC

Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W. & Klein, M. L. Comparison of simple potential functions for simulating liquid water.

Sousa da Silva, A. W. & Vranken, W. F. ACPYPE — antechamber Python parser interface. PubMed PMC

Humphrey, W., Dalke, A. & Schulten, K. VMD: visual molecular dynamics. PubMed

[No authors listed.] Reliability and reproducibility checklist for molecular dynamics simulations. PubMed PMC

Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. PubMed PMC

Zivanov, J., Nakane, T. & Scheres, S. H. W. A Bayesian approach to beam-induced motion correction in cryo-EM single-particle analysis. PubMed PMC

Burt, A. et al. An image processing pipeline for electron cryo‐tomography in RELION‐5. PubMed PMC

Rohou, A. & Grigorieff, N. CTFFIND4: fast and accurate defocus estimation from electron micrographs. PubMed PMC

Bepler, T., Kelley, K., Noble, A. J. & Berger, B. Topaz-Denoise: general deep denoising models for cryoEM and cryoET. PubMed PMC

Bepler, T. et al. Positive-unlabeled convolutional neural networks for particle picking in cryo-electron micrographs. PubMed PMC

Kimanius, D., Dong, L., Sharov, G., Nakane, T. & Scheres, S. H. W. New tools for automated cryo-EM single-particle analysis in RELION-4.0. PubMed PMC

Zivanov, J., Nakane, T. & Scheres, S. H. W. Estimation of high-order aberrations and anisotropic magnification from cryo-EM data sets in RELION-3.1. PubMed PMC

Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A.cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. PubMed

Punjani, A., Zhang, H. & Fleet, D. J. Non-uniform refinement: adaptive regularization improves single-particle cryo-EM reconstruction. PubMed

Punjani, A. & Fleet, D. J. 3D variability analysis: resolving continuous flexibility and discrete heterogeneity from single particle cryo-EM. PubMed

Sanchez-Garcia, R. et al. DeepEMhancer: a deep learning solution for cryo-EM volume post-processing. PubMed PMC

Afonine, P. V. et al. New tools for the analysis and validation of cryo-EM maps and atomic models. PubMed PMC

Pettersen, E. F. et al. UCSF ChimeraX: structure visualization for researchers, educators, and developers. PubMed PMC

Casañal, A., Lohkamp, B. & Emsley, P. Current developments in Coot for macromolecular model building of electron cryo‐microscopy and crystallographic data. PubMed PMC

Afonine, P. V. et al. Real-space refinement in PHENIX for cryo-EM and crystallography. PubMed PMC

Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. PubMed PMC

Terwilliger, T. C. et al. Improved AlphaFold modeling with implicit experimental information. PubMed PMC

Prisant, M. G., Williams, C. J., Chen, V. B., Richardson, J. S. & Richardson, D. C. New tools in MolProbity validation: CaBLAM for CryoEM backbone, UnDowser to rethink “waters,” and NGL Viewer to recapture online 3D graphics. PubMed PMC

Liebschner, D. et al. Macromolecular structure determination using X‐rays, neutrons and electrons: recent developments in Phenix. PubMed PMC

Laskowski, R. A. & Swindells, M. B. LigPlot+: multiple ligand–protein interaction diagrams for drug discovery. PubMed

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...