Molecular and Cellular Mechanisms Associated with Effects of Molecular Hydrogen in Cardiovascular and Central Nervous Systems

. 2020 Dec 15 ; 9 (12) : . [epub] 20201215

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid33333951

Grantová podpora
APVV-0241-11 Slovak Research and Development Agency of Ministry of Education, Science, Research and Sport of the Slovak Republic
APVV-15-0376 Slovak Research and Development Agency of Ministry of Education, Science, Research and Sport of the Slovak Republic
APVV-19-0317 Slovak Research and Development Agency of Ministry of Education, Science, Research and Sport of the Slovak Republic
VEGA 2/0063/18 Slovak Academy of Sciences
ITMS 26230120009 European Union Structural funds
2018/7838:1-26C0 Ministry of Education, Science, Research and Sport of the Slovak Republic
2019-CEMSAV-1 Ministry of Health of The Slovak Republic

The increased production of reactive oxygen species and oxidative stress are important factors contributing to the development of diseases of the cardiovascular and central nervous systems. Molecular hydrogen is recognized as an emerging therapeutic, and its positive effects in the treatment of pathologies have been documented in both experimental and clinical studies. The therapeutic potential of hydrogen is attributed to several major molecular mechanisms. This review focuses on the effects of hydrogen on the cardiovascular and central nervous systems, and summarizes current knowledge about its actions, including the regulation of redox and intracellular signaling, alterations in gene expressions, and modulation of cellular responses (e.g., autophagy, apoptosis, and tissue remodeling). We summarize the functions of hydrogen as a regulator of nuclear factor erythroid 2-related factor 2 (Nrf2)-mediated redox signaling and the association of hydrogen with mitochondria as an important target of its therapeutic action. The antioxidant functions of hydrogen are closely associated with protein kinase signaling pathways, and we discuss possible roles of the phosphoinositide 3-kinase/protein kinase B (PI3K/Akt) and Wnt/β-catenin pathways, which are mediated through glycogen synthase kinase 3β and its involvement in the regulation of cellular apoptosis. Additionally, current knowledge about the role of molecular hydrogen in the modulation of autophagy and matrix metalloproteinases-mediated tissue remodeling, which are other responses to cellular stress, is summarized in this review.

Zobrazit více v PubMed

Hayashida K., Sano M., Kamimura N., Yokota T., Suzuki M., Maekawa Y., Kawamura A., Abe T., Ohta S., Fukuda K., et al. H2 Gas Improves Functional Outcome After Cardiac Arrest to an Extent Comparable to Therapeutic Hypothermia in a Rat Model. J. Am. Heart Assoc. 2012;1:1–13. doi: 10.1161/JAHA.112.003459. PubMed DOI PMC

Zálešák M., Kura B., Graban J., Farkašová V., Slezák J., Ravingerová T. Molecular hydrogen potentiates beneficial anti-infarct effect of hypoxic postconditioning in isolated rat hearts: A novel cardioprotective intervention. Can. J. Physiol. Pharmacol. 2017;95:888–893. doi: 10.1139/cjpp-2016-0693. PubMed DOI

Bai X., Liu S., Yuan L., Xie Y., Li T., Wang L., Wang X., Zhang T., Qin S., Song G., et al. Hydrogen-rich saline mediates neuroprotection through the regulation of endoplasmic reticulum stress and autophagy under hypoxia-ischemia neonatal brain injury in mice. Brain Res. 2016;1646:410–417. doi: 10.1016/j.brainres.2016.06.020. PubMed DOI

Yang L., Guo Y., Fan X., Chen Y., Yang B., Liu K.X., Zhou J. Amelioration of Coagulation Disorders and Inflammation by Hydrogen-Rich Solution Reduces Intestinal Ischemia/Reperfusion Injury in Rats through NF- κ B/NLRP3 Pathway. Mediat. Inflamm. 2020;2020:1–12. doi: 10.1155/2020/4359305. PubMed DOI PMC

Hasegawa S., Ito M., Fukami M., Hashimoto M., Hirayama M., Ohno K. Molecular hydrogen alleviates motor deficits and muscle degeneration in mdx mice. Redox Rep. 2017;22:26–34. doi: 10.1080/13510002.2015.1135580. PubMed DOI PMC

LeBaron T., Singh R., Fatima G., Kartikey K., Sharma J.P., Ostojic S., Gvozdjakova A., Kura B., Noda M., Mojto V., et al. The Effects of 24-Week, High-Concentration Hydrogen-Rich Water on Body Composition, Blood Lipid Profiles and Inflammation Biomarkers in Men and Women with Metabolic Syndrome: A Randomized Controlled Trial. Diabetes Metab. Syndr. Obes. Targets Ther. 2020;13:889–896. doi: 10.2147/DMSO.S240122. PubMed DOI PMC

Ming Y., Ma Q., Han X., Li H. Molecular hydrogen improves type 2 diabetes through inhibiting oxidative stress. Exp. Ther. Med. 2020;20:359–366. doi: 10.3892/etm.2020.8708. PubMed DOI PMC

Qiu X., Ye Q., Sun M., Wang L., Tan Y., Wu G. Saturated hydrogen improves lipid metabolism disorders and dysbacteriosis induced by a high-fat diet. Exp. Biol. Med. 2020;245:512–521. doi: 10.1177/1535370219898407. PubMed DOI PMC

Guan P., Sun Z.-M., Luo L.-F., Zhou J., Yang S., Zhao Y.-S., Yu F.-Y., An J.-R., Wang N., Ji E.-S. Hydrogen protects against chronic intermittent hypoxia induced renal dysfunction by promoting autophagy and alleviating apoptosis. Life Sci. 2019;225:46–54. doi: 10.1016/j.lfs.2019.04.005. PubMed DOI

Li J., Hong Z., Liu H., Zhou J., Cui L., Yuan S., Chu X., Yu P. Hydrogen-rich saline promotes the recovery of renal function after ischemia/reperfusion injury in rats via anti-apoptosis and anti-inflammation. Front. Pharmacol. 2016;7:106. doi: 10.3389/fphar.2016.00106. PubMed DOI PMC

Meng J., Liu L., Wang D., Yan Z., Chen G. Hydrogen gas represses the progression of lung cancer via down-regulating CD47. Biosci. Rep. 2020;40 doi: 10.1042/BSR20192761. PubMed DOI PMC

Ohta S. Recent Progress Toward Hydrogen Medicine: Potential of Molecular Hydrogen for Preventive and Therapeutic Applications. Curr. Pharm. Des. 2011;17:2241–2252. doi: 10.2174/138161211797052664. PubMed DOI PMC

Hayashida K., Sano M., Ohsawa I., Shinmura K., Tamaki K., Kimura K., Endo J., Katayama T., Kawamura A., Kohsaka S., et al. Inhalation of hydrogen gas reduces infarct size in the rat model of myocardial ischemia–reperfusion injury. Biochem. Biophys. Res. Commun. 2008;373:30–35. doi: 10.1016/j.bbrc.2008.05.165. PubMed DOI

Oharazawa H., Igarashi T., Yokota T., Fujii H., Suzuki H., Machide M., Takahashi H., Ohta S., Ohsawa I. Protection of the retina by rapid diffusion of hydrogen: Administration of hydrogen-loaded eye drops in retinal ischemia-reperfusion injury. Investig. Ophthalmol. Vis. Sci. 2010;51:487–492. doi: 10.1167/iovs.09-4089. PubMed DOI

Katsumata Y., Sano F., Abe T., Tamura T., Fujisawa T., Shiraishi Y., Kohsaka S., Ueda I., Homma K., Suzuki M., et al. The Effects of Hydrogen Gas Inhalation on Adverse Left Ventricular Remodeling After Percutaneous Coronary Intervention for ST-Elevated Myocardial Infarction—First Pilot Study in Humans—. Circ. J. 2017;81:940–947. doi: 10.1253/circj.CJ-17-0105. PubMed DOI

Kajiyama S., Hasegawa G., Asano M., Hosoda H., Fukui M., Nakamura N., Kitawaki J., Imai S., Nakano K., Ohta M., et al. Supplementation of hydrogen-rich water improves lipid and glucose metabolism in patients with type 2 diabetes or impaired glucose tolerance. Nutr. Res. 2008;28:137–143. doi: 10.1016/j.nutres.2008.01.008. PubMed DOI

Yoritaka A., Takanashi M., Hirayama M., Nakahara T., Ohta S., Hattori N. Pilot study of H2 therapy in Parkinson’s disease: A randomized double-blind placebo-controlled trial. Mov. Disord. 2013;28:836–839. doi: 10.1002/mds.25375. PubMed DOI

Sakai T., Sato B., Hara K., Hara Y., Naritomi Y., Koyanagi S., Hara H., Nagao T., Ishibashi T. Consumption of water containing over 3.5 mg of dissolved hydrogen could improve vascular endothelial function. Vasc. Health Risk Manag. 2014;10:591–597. PubMed PMC

Barancik M., Gresova L., Bartekova M., Dovinova I. Nrf2 as a Key Player of Redox Regulation in Cardiovascular Diseases. Physiol. Res. 2016;65:S1–S10. doi: 10.33549/physiolres.933403. PubMed DOI

Montezano A.C., Tsiropoulou S., Dulak-Lis M., Harvey A., Camargo L.D.L., Touyz R.M. Redox signaling, Nox5 and vascular remodeling in hypertension. Curr. Opin. Nephrol. Hypertens. 2015;24:425–433. doi: 10.1097/MNH.0000000000000153. PubMed DOI PMC

Li J.-M., Gall N.P., Grieve D.J., Chen M., Shah A.M. Activation of NADPH Oxidase During Progression of Cardiac Hypertrophy to Failure. Hypertension. 2002;40:477–484. doi: 10.1161/01.HYP.0000032031.30374.32. PubMed DOI

Zhang G.-X., Ohmori K., Nagai Y., Fujisawa Y., Nishiyama A., Abe Y., Kimura S. Role of AT1 receptor in isoproterenol-induced cardiac hypertrophy and oxidative stress in mice. J. Mol. Cell. Cardiol. 2007;42:804–811. doi: 10.1016/j.yjmcc.2007.01.012. PubMed DOI

Giordano F.J. Oxygen, oxidative stress, hypoxia, and heart failure. J. Clin. Investig. 2005;115:500–508. doi: 10.1172/JCI200524408. PubMed DOI PMC

van Zwieten P. The influence of antihypertensive drug treatment on the prevention and regression of left ventricular hypertrophy. Cardiovasc. Res. 2000;45:82–91. doi: 10.1016/S0008-6363(99)00291-6. PubMed DOI

Braunersreuther V., Montecucco F., Ashri M., Pelli G., Galan K., Frias M., Burger F., Quinderé A.L.G., Montessuit C., Krause K.-H., et al. Role of NADPH oxidase isoforms NOX1, NOX2 and NOX4 in myocardial ischemia/reperfusion injury. J. Mol. Cell. Cardiol. 2013;64:99–107. doi: 10.1016/j.yjmcc.2013.09.007. PubMed DOI

Han J., Su G., Wang Y., Lu Y., Zhao H., Shuai X. 18β-Glycyrrhetinic Acid Improves Cardiac Diastolic Function by Attenuating Intracellular Calcium Overload. Curr. Med. Sci. 2020;40:654–661. doi: 10.1007/s11596-020-2232-y. PubMed DOI

Shanmugam K., Ravindran S., Kurian G.A., Rajesh M. Fisetin Confers Cardioprotection against Myocardial Ischemia Reperfusion Injury by Suppressing Mitochondrial Oxidative Stress and Mitochondrial Dysfunction and Inhibiting Glycogen Synthase Kinase 3 β Activity. Oxid. Med. Cell. Longev. 2018;2018:1–16. doi: 10.1155/2018/9173436. PubMed DOI PMC

Wallert M., Ziegler M., Wang X., Maluenda A., Xu X., Yap M.L., Witt R., Giles C., Kluge S., Hortmann M., et al. α-Tocopherol preserves cardiac function by reducing oxidative stress and inflammation in ischemia/reperfusion injury. Redox Biol. 2019;26 doi: 10.1016/j.redox.2019.101292. PubMed DOI PMC

Dolinsky V.W., Soltys C.-L.M., Rogan K.J., Chan A.Y.M., Nagendran J., Wang S., Dyck J.R.B. Resveratrol prevents pathological but not physiological cardiac hypertrophy. J. Mol. Med. 2015;93:413–425. doi: 10.1007/s00109-014-1220-8. PubMed DOI

de Britto R.M., da Silva-Neto J.A., Mesquita T.R.R., de Vasconcelos C.M.L., de Almeida G.K.M., de Jesus I.C.G., dos Santos P.H., Souza D.S., Miguel-dos-Santos R., de Sá L.A., et al. Myrtenol protects against myocardial ischemia-reperfusion injury through antioxidant and anti-apoptotic dependent mechanisms. Food Chem. Toxicol. 2018;111:557–566. doi: 10.1016/j.fct.2017.12.003. PubMed DOI

Jin L., Sun S., Ryu Y., Piao Z.H., Liu B., Choi S.Y., Kim G.R., Kim H.-S., Kee H.J., Jeong M.H. Gallic acid improves cardiac dysfunction and fibrosis in pressure overload-induced heart failure. Sci. Rep. 2018;8:1–11. doi: 10.1038/s41598-018-27599-4. PubMed DOI PMC

Porcu E.P., Cossu M., Rassu G., Giunchedi P., Cerri G., Pourová J., Najmanová I., Migkos T., Pilařová V., Nováková L., et al. Aqueous injection of quercetin: An approach for confirmation of its direct in vivo cardiovascular effects. Int. J. Pharm. 2018;541:224–233. doi: 10.1016/j.ijpharm.2018.02.036. PubMed DOI

Yu Y.S., Zheng H. Chronic hydrogen-rich saline treatment reduces oxidative stress and attenuates left ventricular hypertrophy in spontaneous hypertensive rats. Mol. Cell. Biochem. 2012;365:233–242. doi: 10.1007/s11010-012-1264-4. PubMed DOI

Kato R., Nomura A., Sakamoto A., Yasuda Y., Amatani K., Nagai S., Sen Y., Ijiri Y., Okada Y., Yamaguchi T., et al. Hydrogen gas attenuates embryonic gene expression and prevents left ventricular remodeling induced by intermittent hypoxia in cardiomyopathic hamsters. Am. J. Physiol. Circ. Physiol. 2014;307:H1626–H1633. doi: 10.1152/ajpheart.00228.2014. PubMed DOI

Yao L., Chen H., Wu Q., Xie K. Hydrogen-rich saline alleviates inflammation and apoptosis in myocardial I/R injury via PINK-mediated autophagy. Int. J. Mol. Med. 2019;44:1048–1062. doi: 10.3892/ijmm.2019.4264. PubMed DOI PMC

Yoshida A., Asanuma H., Sasaki H., Sanada S., Yamazaki S., Asano Y., Shinozaki Y., Mori H., Shimouchi A., Sano M., et al. H2 Mediates Cardioprotection Via Involvements of KATP Channels and Permeability Transition Pores of Mitochondria in Dogs. Cardiovasc. Drugs Ther. 2012;26:217–226. doi: 10.1007/s10557-012-6381-5. PubMed DOI

Colareda G.A., Ragone M.I., Bonazzola P., Consolini A.E. The mKATP Channels and protein-kinase C Are Involved in the Cardioprotective Effects of Genistein on Estrogen-Deficient Rat Hearts Exposed to Ischemia/Reperfusion. J. Cardiovasc. Pharmacol. 2020;75:460–474. doi: 10.1097/FJC.0000000000000816. PubMed DOI

Simoncíková P., Ravingerová T., Andelová E., Tribulová N., Barancík M. Changes in rat myocardium associated with modulation of ischemic tolerance by diazoxide. Gen. Physiol. Biophys. 2007;26:75–85. PubMed

Gao Y., Yang H., Chi J., Xu Q., Zhao L., Yang W., Liu W., Yang W. Hydrogen Gas Attenuates Myocardial Ischemia Reperfusion Injury Independent of Postconditioning in Rats by Attenuating Endoplasmic Reticulum Stress-Induced Autophagy. Cell. Physiol. Biochem. 2017;43:1503–1514. doi: 10.1159/000481974. PubMed DOI

Song D., Liu X., Diao Y., Sun Y., Gao G., Zhang T., Chen K., Pei L. Hydrogen-rich solution against myocardial injury and aquaporin expression via the PI3K/Akt signaling pathway during cardiopulmonary bypass in rats. Mol. Med. Rep. 2018;18:1925–1938. doi: 10.3892/mmr.2018.9198. PubMed DOI PMC

Chen K., Sun Y., Diao Y., Zhang T., Dong W. Hydrogen-rich solution attenuates myocardial injury caused by cardiopulmonary bypass in rats via the Janus-activated kinase 2/signal transducer and activator of transcription 3 signaling pathway. Oncol. Lett. 2018;16:167–178. doi: 10.3892/ol.2018.8639. PubMed DOI PMC

Haorah J., Ramirez S.H., Schall K., Smith D., Pandya R., Persidsky Y. Oxidative stress activates protein tyrosine kinase and matrix metalloproteinases leading to blood?brain barrier dysfunction. J. Neurochem. 2007;101:566–576. doi: 10.1111/j.1471-4159.2006.04393.x. PubMed DOI

Yang Y., Rosenberg G.A. Blood–Brain Barrier Breakdown in Acute and Chronic Cerebrovascular Disease. Stroke. 2011;42:3323–3328. doi: 10.1161/STROKEAHA.110.608257. PubMed DOI PMC

Ueno M., Chiba Y., Matsumoto K., Murakami R., Fujihara R., Kawauchi M., Miyanaka H., Nakagawa T. Blood-brain barrier damage in vascular dementia. Neuropathology. 2016;36:115–124. doi: 10.1111/neup.12262. PubMed DOI

Wang M., Norman J.E., Srinivasan V.J., Rutledge J.C. Metabolic, inflammatory, and microvascular determinants of white matter disease and cognitive decline. Am. J. Neurodegener. Dis. 2016;5:171–177. PubMed PMC

Rochfort K.D., Cummins P.M. The blood–brain barrier endothelium: A target for pro-inflammatory cytokines. Biochem. Soc. Trans. 2015;43:702–706. doi: 10.1042/BST20140319. PubMed DOI

Arima Y., Harada M., Kamimura D., Park J.-H., Kawano F., Yull F.E., Kawamoto T., Iwakura Y., Betz U.A.K., Márquez G., et al. Regional Neural Activation Defines a Gateway for Autoreactive T Cells to Cross the Blood-Brain Barrier. Cell. 2012;148:447–457. doi: 10.1016/j.cell.2012.01.022. PubMed DOI

Reboldi A., Coisne C., Baumjohann D., Benvenuto F., Bottinelli D., Lira S., Uccelli A., Lanzavecchia A., Engelhardt B., Sallusto F. C-C chemokine receptor 6–regulated entry of TH-17 cells into the CNS through the choroid plexus is required for the initiation of EAE. Nat. Immunol. 2009;10:514–523. doi: 10.1038/ni.1716. PubMed DOI

Jazwa A., Cuadrado A. Targeting Heme Oxygenase-1 for Neuroprotection and Neuroinflammation in Neurodegenerative Diseases. Curr. Drug Targets. 2010;11:1517–1531. doi: 10.2174/1389450111009011517. PubMed DOI

Papa S., Zazzeroni F., Pham C., Bubici C., Franzoso G. Linking JNK signaling to NF- B: A key to survival. J. Cell Sci. 2004;117:5197–5208. doi: 10.1242/jcs.01483. PubMed DOI

Manaenko A., Lekic T., Ma Q., Zhang J.H., Tang J. Hydrogen Inhalation Ameliorated Mast Cell–Mediated Brain Injury After Intracerebral Hemorrhage in Mice. Crit. Care Med. 2013;41:1266–1275. doi: 10.1097/CCM.0b013e31827711c9. PubMed DOI PMC

Ito M., Ibi T., Sahashi K., Ichihara M., Ito M., Ohno K. Open-label trial and randomized, double-blind, placebo-controlled, crossover trial of hydrogen-enriched water for mitochondrial and inflammatory myopathies. Med. Gas Res. 2011;1:24. doi: 10.1186/2045-9912-1-24. PubMed DOI PMC

Ohsawa I., Ishikawa M., Takahashi K., Watanabe M., Nishimaki K., Yamagata K., Katsura K., Katayama Y., Asoh S., Ohta S. Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals. Nat. Med. 2007;13:688–694. doi: 10.1038/nm1577. PubMed DOI

LeBaron T.W., Kura B., Kalocayova B., Tribulova N., Slezak J. A new approach for the prevention and treatment of cardiovascular disorders. Molecular hydrogen significantly reduces the effects of oxidative stress. Molecules. 2019;24:2076. doi: 10.3390/molecules24112076. PubMed DOI PMC

Lin Y., Ohkawara B., Ito M., Misawa N., Miyamoto K., Takegami Y., Masuda A., Toyokuni S., Ohno K. Molecular hydrogen suppresses activated Wnt/β-catenin signaling. Sci. Rep. 2016;6 doi: 10.1038/srep31986. PubMed DOI PMC

Sobue S., Yamai K., Ito M., Ohno K., Ito M., Iwamoto T., Qiao S., Ohkuwa T., Ichihara M. Simultaneous oral and inhalational intake of molecular hydrogen additively suppresses signaling pathways in rodents. Mol. Cell. Biochem. 2015;403:231–241. doi: 10.1007/s11010-015-2353-y. PubMed DOI

Hanaoka T., Kamimura N., Yokota T., Takai S., Ohta S. Molecular hydrogen protects chondrocytes from oxidative stress and indirectly alters gene expressions through reducing peroxynitrite derived from nitric oxide. Med. Gas Res. 2011;1:1–9. doi: 10.1186/2045-9912-1-18. PubMed DOI PMC

Kiyoi T., Liu S., Takemasa E., Nakaoka H., Hato N., Mogi M. Constitutive hydrogen inhalation prevents vascular remodeling via reduction of oxidative stress. PLoS ONE. 2020;15:e0227582. doi: 10.1371/journal.pone.0227582. PubMed DOI PMC

Liu Y., Croft K.D., Hodgson J.M., Mori T., Ward N.C. Mechanisms of the protective effects of nitrate and nitrite in cardiovascular and metabolic diseases. Nitric Oxide. 2020;96:35–43. doi: 10.1016/j.niox.2020.01.006. PubMed DOI

Huang C.S., Kawamura T., Toyoda Y., Nakao A. Recent advances in hydrogen research as a therapeutic medical gas. Free Radic. Res. 2010;44:971–982. doi: 10.3109/10715762.2010.500328. PubMed DOI

Wang P., Zhao M., Chen Z., Wu G., Fujino M., Zhang C., Zhou W., Zhao M., Hirano S., Li X.-K., et al. Hydrogen Gas Attenuates Hypoxic-Ischemic Brain Injury via Regulation of the MAPK/HO-1/PGC-1a Pathway in Neonatal Rats. Oxid. Med. Cell. Longev. 2020;2020:1–16. doi: 10.1155/2020/6978784. PubMed DOI PMC

Ge Y.-S., Zhang Q.-Z., Li H., Bai G., Jiao Z.-H., Wang H.-B. Hydrogen-rich saline protects against hepatic injury induced by ischemia-reperfusion and laparoscopic hepatectomy in swine. Hepatobiliary Pancreat. Dis. Int. 2019;18:48–61. doi: 10.1016/j.hbpd.2018.12.001. PubMed DOI

Zou R., Wang M.-H., Chen Y., Fan X., Yang B., Du J., Wang X.-B., Liu K.-X., Zhou J. Hydrogen-Rich Saline Attenuates Acute Lung Injury Induced by Limb Ischemia/Reperfusion via Down-Regulating Chemerin and NLRP3 in Rats. Shock. 2019;52:134–141. doi: 10.1097/SHK.0000000000001194. PubMed DOI

Ji X., Liu W., Xie K., Liu W., Qu Y., Chao X., Chen T., Zhou J., Fei Z. Beneficial effects of hydrogen gas in a rat model of traumatic brain injury via reducing oxidative stress. Brain Res. 2010;1354:196–205. doi: 10.1016/j.brainres.2010.07.038. PubMed DOI

Kura B., Bagchi A.K., Singal P.K., Barancik M., Lebaron T.W., Valachova K., Šoltés L., Slezák J. Molecular hydrogen: Potential in mitigating oxidative-stress-induced radiation injury. Can. J. Physiol. Pharmacol. 2019;97:287–292. doi: 10.1139/cjpp-2018-0604. PubMed DOI

Kawamura T., Wakabayashi N., Shigemura N., Huang C.-S., Masutani K., Tanaka Y., Noda K., Peng X., Takahashi T., Billiar T.R., et al. Hydrogen gas reduces hyperoxic lung injury via the Nrf2 pathway in vivo. Am. J. Physiol. Lung Cell Mol. Physiol. 2013;304:646–656. doi: 10.1152/ajplung.00164.2012. PubMed DOI PMC

Pall M.L., Levine S. Nrf2, a master regulator of detoxification and also antioxidant, anti-inflammatory and other cytoprotective mechanisms, is raised by health promoting factors. Sheng Li Xue Bao. 2015;67:1–18. PubMed

Huang Y., Li W., Su Z., Kong A.-N.T. The complexity of the Nrf2 pathway: Beyond the antioxidant response. J. Nutr. Biochem. 2015;26:1401–1413. doi: 10.1016/j.jnutbio.2015.08.001. PubMed DOI PMC

Espinosa-Diez C., Miguel V., Mennerich D., Kietzmann T., Sánchez-Pérez P., Cadenas S., Lamas S. Antioxidant responses and cellular adjustments to oxidative stress. Redox Biol. 2015;6:183–197. doi: 10.1016/j.redox.2015.07.008. PubMed DOI PMC

Buendia I., Michalska P., Navarro E., Gameiro I., Egea J., León R. Nrf2–ARE pathway: An emerging target against oxidative stress and neuroinflammation in neurodegenerative diseases. Pharmacol. Ther. 2016;157:84–104. doi: 10.1016/j.pharmthera.2015.11.003. PubMed DOI

Jain A.K., Jaiswal A.K. GSK-3β acts upstream of Fyn kinase in regulation of nuclear export and degradation of NF-E2 related factor 2. J. Biol. Chem. 2007;282:16502–16510. doi: 10.1074/jbc.M611336200. PubMed DOI

Wang N., Huo R., Cai B., Lu Y., Ye B., Li X., Li F., Xu H. Activation of Wnt/β-catenin signaling by hydrogen peroxide transcriptionally inhibits NaV1.5 expression. Free Radic. Biol. Med. 2016;96:34–44. doi: 10.1016/j.freeradbiomed.2016.04.003. PubMed DOI PMC

Liu Y., Dong F., Guo R., Zhang Y., Qu X., Wu X., Yao R. Hydrogen-Rich Saline Ameliorates Experimental Autoimmune Encephalomyelitis in C57BL/6 Mice Via the Nrf2-ARE Signaling Pathway. Inflammation. 2019;42:586–597. doi: 10.1007/s10753-018-0915-3. PubMed DOI

Benard G., Bellance N., Jose C., Melser S., Nouette-Gaulain K., Rossignol R. Multi-site control and regulation of mitochondrial energy production. Biochim. Biophys. Acta Bioenerg. 2010;1797:698–709. doi: 10.1016/j.bbabio.2010.02.030. PubMed DOI

Smith R.A.J., Hartley R.C., Cochemé H.M., Murphy M.P. Mitochondrial pharmacology. Trends Pharmacol. Sci. 2012;33:341–352. doi: 10.1016/j.tips.2012.03.010. PubMed DOI

Raffaello A., Mammucari C., Gherardi G., Rizzuto R. Calcium at the Center of Cell Signaling: Interplay between Endoplasmic Reticulum, Mitochondria, and Lysosomes. Trends Biochem. Sci. 2016;41:1035–1049. doi: 10.1016/j.tibs.2016.09.001. PubMed DOI PMC

Wang C., Youle R.J. The Role of Mitochondria in Apoptosis. Annu. Rev. Genet. 2009;43:95–118. doi: 10.1146/annurev-genet-102108-134850. PubMed DOI PMC

Morciano G., Giorgi C., Bonora M., Punzetti S., Pavasini R., Wieckowski M.R., Campo G., Pinton P. Molecular identity of the mitochondrial permeability transition pore and its role in ischemia-reperfusion injury. J. Mol. Cell. Cardiol. 2015;78:142–153. doi: 10.1016/j.yjmcc.2014.08.015. PubMed DOI

Shen J., Xu S., Zhou H., Liu H., Jiang W., Hao J., Hu Z. IL-1β induces apoptosis and autophagy via mitochondria pathway in human degenerative nucleus pulposus cells. Sci. Rep. 2017;7:1–12. doi: 10.1038/srep41067. PubMed DOI PMC

Ohta S. Molecular hydrogen is a novel antioxidant to efficiently reduce oxidative stress with potential for the improvement of mitochondrial diseases. Biochim. Biophys. Acta Gen. Subj. 2012;1820:586–594. doi: 10.1016/j.bbagen.2011.05.006. PubMed DOI

Ishihara G., Kawamoto K., Komori N., Ishibashi T. Molecular hydrogen suppresses superoxide generation in the mitochondrial complex I and reduced mitochondrial membrane potential. Biochem. Biophys. Res. Commun. 2020;522:965–970. doi: 10.1016/j.bbrc.2019.11.135. PubMed DOI

Ishibashi T. Therapeutic Efficacy of Molecular Hydrogen: A New Mechanistic Insight. Curr. Pharm. Des. 2019;25:946–955. doi: 10.2174/1381612825666190506123038. PubMed DOI PMC

Jovaisaite V., Mouchiroud L., Auwerx J. The mitochondrial unfolded protein response, a conserved stress response pathway with implications in health and disease. J. Exp. Biol. 2014;217:137–143. doi: 10.1242/jeb.090738. PubMed DOI PMC

Sobue S., Inoue C., Hori F., Qiao S., Murate T., Ichihara M. Molecular hydrogen modulates gene expression via histone modification and induces the mitochondrial unfolded protein response. Biochem. Biophys. Res. Commun. 2017;493:318–324. doi: 10.1016/j.bbrc.2017.09.024. PubMed DOI

Iuchi K., Nishimaki K., Kamimura N., Ohta S. Molecular hydrogen suppresses free-radical-induced cell death by mitigating fatty acid peroxidation and mitochondrial dysfunction. Can. J. Physiol. Pharmacol. 2019;97:999–1005. doi: 10.1139/cjpp-2018-0741. PubMed DOI

Jiao Y., Yu Y., Li B., Gu X., Xie K., Wang G., Yu Y. Protective effects of hydrogen-rich saline against experimental diabetic peripheral neuropathy via activation of the mitochondrial ATP-sensitive potassium channel channels in rats. Mol. Med. Rep. 2020;21:282–290. doi: 10.3892/mmr.2019.10795. PubMed DOI PMC

Szewczyk A. The ATP-regulated K+ channel in mitochondria: Five years after its discovery. Acta Biochim. Pol. 1996;43:713–720. doi: 10.18388/abp.1996_4469. PubMed DOI

Nozawa Y., Miura T., Miki T., Ohnuma Y., Yano T., Shimamoto K. Mitochondrial K ATP channel-dependent and -independent phases of ischemic preconditioning against myocardial infarction in the rat. Basic Res. Cardiol. 2003;98:50–58. doi: 10.1007/s00395-003-0378-y. PubMed DOI

Bajgar R., Seetharaman S., Kowaltowski A.J., Garlid K.D., Paucek P. Identification and Properties of a Novel Intracellular (Mitochondrial) ATP-sensitive Potassium Channel in Brain. J. Biol. Chem. 2001;276:33369–33374. doi: 10.1074/jbc.M103320200. PubMed DOI

Xie K., Zhang Y., Wang Y., Meng X., Wang Y., Yu Y., Chen H. Hydrogen attenuates sepsis-associated encephalopathy by NRF2 mediated NLRP3 pathway inactivation. Inflamm. Res. 2020;69:697–710. doi: 10.1007/s00011-020-01347-9. PubMed DOI

Gvozdjáková A., Kucharská J., Kura B., Vančová O., Rausová Z., Sumbalová Z., Uličná O., Slezák J. A new insight into the molecular hydrogen effect on coenzyme Q and mitochondrial function of rats. Can. J. Physiol. Pharmacol. 2020;98:29–34. doi: 10.1139/cjpp-2019-0281. PubMed DOI

Lee J., Yang G., Kim Y.-J., Tran Q.H., Choe W., Kang I., Kim S.S., Ha J. Hydrogen-rich medium protects mouse embryonic fibroblasts from oxidative stress by activating LKB1-AMPK-FoxO1 signal pathway. Biochem. Biophys. Res. Commun. 2017;491:733–739. doi: 10.1016/j.bbrc.2017.07.119. PubMed DOI

Li L., Li X., Zhang Z., Liu L., Liu T., Li S., Liu S., Zhou Y., Liu F. Effects of Hydrogen-rich Water on the PI3K/AKT Signaling Pathway in Rats with Myocardial Ischemia-reperfusion Injury. Curr. Mol. Med. 2020;20:396–406. doi: 10.2174/1566524019666191105150709. PubMed DOI

Zhang Y., Xu J., Long Z., Wang C., Wang L., Sun P., Li P., Wang T. Hydrogen (H2) inhibits isoproterenol-induced cardiac hypertrophy via antioxidative pathways. Front. Pharmacol. 2016;7 doi: 10.3389/fphar.2016.00392. PubMed DOI PMC

Cuadrado A., Kügler S., Lastres-Becker I. Pharmacological targeting of GSK-3 and NRF2 provides neuroprotection in a preclinical model of tauopathy. Redox Biol. 2018;14:522–534. doi: 10.1016/j.redox.2017.10.010. PubMed DOI PMC

Manning B.D., Toker A. AKT/PKB Signaling: Navigating the Network. Cell. 2017;169:381–405. doi: 10.1016/j.cell.2017.04.001. PubMed DOI PMC

Teng L., Meng Q., Lu J., Xie J., Wang Z., Liu Y., Wang D. Liquiritin modulates ERK- and AKT/GSK-3β-dependent pathways to protect against glutamate-induced cell damage in differentiated PC12 cells. Mol. Med. Rep. 2014;10:818–824. doi: 10.3892/mmr.2014.2289. PubMed DOI PMC

Yu H., Zhang H., Zhao W., Guo L., Li X., Li Y., Zhang X., Sun Y. Gypenoside Protects against Myocardial Ischemia-Reperfusion Injury by Inhibiting Cardiomyocytes Apoptosis via Inhibition of CHOP Pathway and Activation of PI3K/Akt Pathway in Vivo and in Vitro. Cell. Physiol. Biochem. 2016;39:123–136. doi: 10.1159/000445611. PubMed DOI

Li P., Zhang Y., Liu H. The role of Wnt/β-catenin pathway in the protection process by dexmedetomidine against cerebral ischemia/reperfusion injury in rats. Life Sci. 2019;236 doi: 10.1016/j.lfs.2019.116921. PubMed DOI

Liu T., Fang Y., Liu S., Yu X., Zhang H., Liang M., Ding X. Limb ischemic preconditioning protects against contrast-induced acute kidney injury in rats via phosphorylation of GSK-3β. Free Radic. Biol. Med. 2015;81:170–182. doi: 10.1016/j.freeradbiomed.2014.10.509. PubMed DOI

Sathiya Priya C., Vidhya R., Kalpana K., Anuradha C.V. Indirubin-3′-monoxime prevents aberrant activation of GSK-3β/NF-κB and alleviates high fat-high fructose induced Aβ-aggregation, gliosis and apoptosis in mice brain. Int. Immunopharmacol. 2019;70:396–407. doi: 10.1016/j.intimp.2019.02.053. PubMed DOI

Jiang P., Li G., Zhou X., Wang C., Qiao Y., Liao D., Shi D. Chronic fluoride exposure induces neuronal apoptosis and impairs neurogenesis and synaptic plasticity: Role of GSK-3β/β-catenin pathway. Chemosphere. 2019;214:430–435. doi: 10.1016/j.chemosphere.2018.09.095. PubMed DOI

Wang L., Yin Z., Wang F., Han Z., Wang Y., Huang S., Hu T., Guo M., Lei P. Hydrogen exerts neuroprotection by activation of the miR-21/PI3K/AKT/GSK-3β pathway in an in vitro model of traumatic brain injury. J. Cell. Mol. Med. 2020;24:4061–4071. doi: 10.1111/jcmm.15051. PubMed DOI PMC

Chen K., Wang N., Diao Y., Dong W., Sun Y., Liu L., Wu X. Hydrogen-Rich Saline Attenuates Brain Injury Induced by Cardiopulmonary Bypass and Inhibits Microvascular Endothelial Cell Apoptosis Via the PI3K/Akt/GSK3β Signaling Pathway in Rats. Cell. Physiol. Biochem. 2017;43:1634–1647. doi: 10.1159/000484024. PubMed DOI

Chen Y., Jiang J., Miao H., Chen X., Sun X., Li Y. Hydrogen-rich saline attenuates vascular smooth muscle cell proliferation and neointimal hyperplasia by inhibiting reactive oxygen species production and inactivating the Ras-ERK1/2-MEK1/2 and Akt pathways. Int. J. Mol. Med. 2013;31:597–606. doi: 10.3892/ijmm.2013.1256. PubMed DOI

Hong Y., Shao A.W., Wang J., Chen S., Wu H.J., McBride D.W., Wu Q., Sun X.J., Zhang J.M. Neuroprotective effect of hydrogen-rich saline against neurologic damage and apoptosis in early brain injury following subarachnoid hemorrhage: Possible role of the Akt/GSK3β signaling pathway. PLoS ONE. 2014;9:e96212. doi: 10.1371/journal.pone.0096212. PubMed DOI PMC

Chen O., Cao Z., Li H., Ye Z., Zhang R., Zhang N., Huang J., Zhang T., Wang L., Han L., et al. High-concentration hydrogen protects mouse heart against ischemia/reperfusion injury through activation of thePI3K/Akt1 pathway. Sci. Rep. 2017;7:1–14. doi: 10.1038/s41598-017-14072-x. PubMed DOI PMC

Ke H., Liu D., Li T., Chu X., Xin D., Han M., Wang S., Wang Z. Hydrogen-Rich Saline Regulates Microglial Phagocytosis and Restores Behavioral Deficits Following Hypoxia-Ischemia Injury in Neonatal Mice via the Akt Pathway. Drug Des. Devel. Ther. 2020;14:3827–3839. doi: 10.2147/DDDT.S264684. PubMed DOI PMC

Voloshanenko O., Schwartz U., Kranz D., Rauscher B., Linnebacher M., Augustin I., Boutros M. β-catenin-independent regulation of Wnt target genes by RoR2 and ATF2/ATF4 in colon cancer cells. Sci. Rep. 2018;8:1–14. doi: 10.1038/s41598-018-20641-5. PubMed DOI PMC

Mao J., Wang J., Liu B., Pan W., Farr G.H., Flynn C., Yuan H., Takada S., Kimelman D., Li L., et al. Low-Density Lipoprotein Receptor-Related Protein-5 Binds to Axin and Regulates the Canonical Wnt Signaling Pathway. Mol. Cell. 2001;7:801–809. doi: 10.1016/S1097-2765(01)00224-6. PubMed DOI

MacDonald B.T., Tamai K., He X. Wnt/β-Catenin Signaling: Components, Mechanisms, and Diseases. Dev. Cell. 2009;17:9–26. doi: 10.1016/j.devcel.2009.06.016. PubMed DOI PMC

Nusse R., Clevers H. Wnt/β-Catenin Signaling, Disease, and Emerging Therapeutic Modalities. Cell. 2017;169:985–999. doi: 10.1016/j.cell.2017.05.016. PubMed DOI

Tao H., Yang J.-J., Shi K.-H., Li J. Wnt signaling pathway in cardiac fibrosis: New insights and directions. Metabolism. 2016;65:30–40. doi: 10.1016/j.metabol.2015.10.013. PubMed DOI

Easwaran V., Lee S.H., Inge L., Guo L., Goldbeck C., Garrett E., Wiesmann M., Garcia P.D., Fuller J.H., Chan V., et al. beta-Catenin regulates vascular endothelial growth factor expression in colon cancer. Cancer Res. 2003;63:3145–3153. PubMed

Lévy L., Neuveut C., Renard C.-A., Charneau P., Branchereau S., Gauthier F., Van Nhieu J.T., Cherqui D., Petit-Bertron A.-F., Mathieu D., et al. Transcriptional Activation of Interleukin-8 by β-Catenin-Tcf4. J. Biol. Chem. 2002;277:42386–42393. doi: 10.1074/jbc.M207418200. PubMed DOI

Patapoutian A., Backus C., Kispert A., Reichardt L.F. Regulation of Neurotrophin-3 Expression by Epithelial-Mesenchymal Interactions: The Role of Wnt Factors. Science. 1999;283:1180–1183. doi: 10.1126/science.283.5405.1180. PubMed DOI PMC

Yi H., Hu J., Qian J., Hackam A.S. Expression of brain-derived neurotrophic factor is regulated by the Wnt signaling pathway. Neuroreport. 2012;23:189–194. doi: 10.1097/WNR.0b013e32834fab06. PubMed DOI PMC

Clevers H., Nusse R. Wnt/β-Catenin Signaling and Disease. Cell. 2012;149:1192–1205. doi: 10.1016/j.cell.2012.05.012. PubMed DOI

Edeling M., Ragi G., Huang S., Pavenstädt H., Susztak K. Developmental signalling pathways in renal fibrosis: The roles of Notch, Wnt and Hedgehog. Nat. Rev. Nephrol. 2016;12:426–439. doi: 10.1038/nrneph.2016.54. PubMed DOI PMC

Chang B., Chen W., Zhang Y., Yang P., Liu L. Tripterygium wilfordii mitigates hyperglycemia-induced upregulated Wnt/β-catenin expression and kidney injury in diabetic rats. Exp. Ther. Med. 2018;15:3874–3882. PubMed PMC

Luo J., Chen J., Deng Z.-L., Luo X., Song W.-X., Sharff K.A., Tang N., Haydon R.C., Luu H.H., He T.-C. Wnt signaling and human diseases: What are the therapeutic implications? Lab. Investig. 2007;87:97–103. doi: 10.1038/labinvest.3700509. PubMed DOI

Miao J., Liu J., Niu J., Zhang Y., Shen W., Luo C., Liu Y., Li C., Li H., Yang P., et al. Wnt/β-catenin/RAS signaling mediates age-related renal fibrosis and is associated with mitochondrial dysfunction. Aging Cell. 2019;18:e13004. doi: 10.1111/acel.13004. PubMed DOI PMC

Lehmann M., Baarsma H.A., Königshoff M. WNT Signaling in Lung Aging and Disease. Ann. Am. Thorac. Soc. 2016;13:S411–S416. doi: 10.1513/AnnalsATS.201608-586AW. PubMed DOI

Zhang X., Liu Y., Shao R., Li W. Cdc42-interacting protein 4 silencing relieves pulmonary fibrosis in STZ-induced diabetic mice via the Wnt/GSK-3β/β-catenin pathway. Exp. Cell Res. 2017;359:284–290. doi: 10.1016/j.yexcr.2017.07.018. PubMed DOI

Zhuang S., Hua X., He K., Zhou T., Zhang J., Wu H., Ma X., Xia Q., Zhang J. Inhibition of GSK-3β induces AP-1-mediated osteopontin expression to promote cholestatic liver fibrosis. FASEB J. 2018;32:4494–4503. doi: 10.1096/fj.201701137R. PubMed DOI

Guo Y., Gupte M., Umbarkar P., Singh A.P., Sui J.Y., Force T., Lal H. Entanglement of GSK-3β, β-catenin and TGF-β1 signaling network to regulate myocardial fibrosis. J. Mol. Cell. Cardiol. 2017;110:109–120. doi: 10.1016/j.yjmcc.2017.07.011. PubMed DOI PMC

Fang W., Tang L., Wang G., Lin J., Liao W., Pan W., Xu J. Molecular Hydrogen Protects Human Melanocytes from Oxidative Stress by Activating Nrf2 Signaling. J. Investig. Dermatol. 2020;S0022-202X:31206–31209. doi: 10.1016/j.jid.2019.03.1165. PubMed DOI

Kühl M., Sheldahl L.C., Park M., Miller J.R., Moon R.T. The Wnt/Ca2+ pathway. Trends Genet. 2000;16:279–283. doi: 10.1016/S0168-9525(00)02028-X. PubMed DOI

Bergmann M.W. WNT Signaling in Adult Cardiac Hypertrophy and Remodeling. Circ. Res. 2010;107:1198–1208. doi: 10.1161/CIRCRESAHA.110.223768. PubMed DOI

Uehara S., Udagawa N., Mukai H., Ishihara A., Maeda K., Yamashita T., Murakami K., Nishita M., Nakamura T., Kato S., et al. Protein kinase N3 promotes bone resorption by osteoclasts in response to Wnt5a-Ror2 signaling. Sci. Signal. 2017;10:eaan0023. doi: 10.1126/scisignal.aan0023. PubMed DOI

Mulligan K.A., Cheyette B.N.R. Wnt Signaling in Vertebrate Neural Development and Function. J. Neuroimmune Pharmacol. 2012;7:774–787. doi: 10.1007/s11481-012-9404-x. PubMed DOI PMC

Gao C., Chen Y.-G. Dishevelled: The hub of Wnt signaling. Cell. Signal. 2010;22:717–727. doi: 10.1016/j.cellsig.2009.11.021. PubMed DOI

Santos A., Bakker A.D., de Blieck-Hogervorst J.M.A., Klein-Nulend J. WNT5A induces osteogenic differentiation of human adipose stem cells via rho-associated kinase Rock. Cytotherapy. 2010;12:924–932. doi: 10.3109/14653241003774011. PubMed DOI

Hu Y., Liu J., Lu J., Wang P., Chen J., Guo Y., Han F., Wang J., Li W., Liu P. sFRP1 protects H9c2 cardiac myoblasts from doxorubicin-induced apoptosis by inhibiting the Wnt/PCP-JNK pathway. Acta Pharmacol. Sin. 2020;41:1150–1157. doi: 10.1038/s41401-020-0364-z. PubMed DOI PMC

Sheldahl L.C., Slusarski D.C., Pandur P., Miller J.R., Kühl M., Moon R.T. Dishevelled activates Ca2+ flux, PKC, and CamKII in vertebrate embryos. J. Cell Biol. 2003;161:769–777. doi: 10.1083/jcb.200211094. PubMed DOI PMC

Xie K., Wang W., Chen H., Han H., Liu D., Wang G., Yu Y. Hydrogen-rich medium attenuated lipopolysaccharide-induced monocyte-endothelial cell adhesion and vascular endothelial permeability via rho-associated coiled-coil protein kinase. Shock. 2015;44:58–64. doi: 10.1097/SHK.0000000000000365. PubMed DOI

Yang T., Wang L., Sun R., Chen H., Zhang H., Yu Y., Wang Y., Wang G., Yu Y., Xie K. Hydrogen-rich medium ameliorates lipopolysaccharide-induced barrier dysfunction via rhoa-mdia1 signaling in caco-2 cells. Shock. 2016;45:228–237. doi: 10.1097/SHK.0000000000000503. PubMed DOI

Kawamura T., Huang C.S., Tochigi N., Lee S., Shigemura N., Billiar T.R., Okumura M., Nakao A., Toyoda Y. Inhaled hydrogen gas therapy for prevention of lung transplant-induced ischemia/reperfusion injury in rats. Transplantation. 2010;90:1344–1351. doi: 10.1097/TP.0b013e3181fe1357. PubMed DOI

Cai J., Kang Z., Liu W.W., Luo X., Qiang S., Zhang J.H., Ohta S., Sun X., Xu W., Tao H., et al. Hydrogen therapy reduces apoptosis in neonatal hypoxia–ischemia rat model. Neurosci. Lett. 2008;441:167–172. doi: 10.1016/j.neulet.2008.05.077. PubMed DOI

Sun Q., Kang Z., Cai J., Liu W., Liu Y., Zhang J.H., Denoble P.J., Tao H., Sun X. Hydrogen-Rich Saline Protects Myocardium Against Ischemia/Reperfusion Injury in Rats. Exp. Biol. Med. 2009;234:1212–1219. doi: 10.3181/0812-RM-349. PubMed DOI

Chen H., Xie K., Han H., Li Y., Liu L., Yang T., Yu Y. Molecular hydrogen protects mice against polymicrobial sepsis by ameliorating endothelial dysfunction via an Nrf2/HO-1 signaling pathway. Int. Immunopharmacol. 2015;28:643–654. doi: 10.1016/j.intimp.2015.07.034. PubMed DOI

Liu L., Xie K., Chen H., Dong X., Li Y., Yu Y., Wang G., Yu Y. Inhalation of hydrogen gas attenuates brain injury in mice with cecal ligation and puncture via inhibiting neuroinflammation, oxidative stress and neuronal apoptosis. Brain Res. 2014;1589:78–92. doi: 10.1016/j.brainres.2014.09.030. PubMed DOI

Yu Y., Yang Y., Bian Y., Li Y., Liu L., Zhang H., Xie K., Wang G., Yu Y. Hydrogen Gas Protects Against Intestinal Injury in Wild Type But Not NRF2 Knockout Mice With Severe Sepsis by Regulating HO-1 and HMGB1 Release. Shock. 2017;48:364–370. doi: 10.1097/SHK.0000000000000856. PubMed DOI

Chen C.H., Manaenko A., Zhan Y., Liu W.W., Ostrowki R.P., Tang J., Zhang J.H. Hydrogen gas reduced acute hyperglycemia-enhanced hemorrhagic transformation in a focal ischemia rat model. Neuroscience. 2010;169:402–414. doi: 10.1016/j.neuroscience.2010.04.043. PubMed DOI PMC

Varga V., Németh J., Oláh O., Tóth-Szűki V., Kovács V., Remzső G., Domoki F. Molecular hydrogen alleviates asphyxia-induced neuronal cyclooxygenase-2 expression in newborn pigs. Acta Pharmacol. Sin. 2018;39:1273–1283. doi: 10.1038/aps.2017.148. PubMed DOI PMC

Hugyecz M., Mracskó É., Hertelendy P., Farkas E., Domoki F., Bari F. Hydrogen supplemented air inhalation reduces changes of prooxidant enzyme and gap junction protein levels after transient global cerebral ischemia in the rat hippocampus. Brain Res. 2011;1404:31–38. doi: 10.1016/j.brainres.2011.05.068. PubMed DOI

Yang J., Wu S., Zhu L., Cai J., Fu L. Hydrogen-containing saline alleviates pressure overload-induced interstitial fibrosis and cardiac dysfunction in rats. Mol. Med. Rep. 2017;16:1771–1778. doi: 10.3892/mmr.2017.6849. PubMed DOI PMC

Levine B., Klionsky D.J. Development by Self-Digestion. Dev. Cell. 2004;6:463–477. doi: 10.1016/S1534-5807(04)00099-1. PubMed DOI

Ohsumi Y. Historical landmarks of autophagy research. Cell Res. 2014;24:9–23. doi: 10.1038/cr.2013.169. PubMed DOI PMC

Carloni S., Albertini M.C., Galluzzi L., Buonocore G., Proietti F., Balduini W. Increased autophagy reduces endoplasmic reticulum stress after neonatal hypoxia–ischemia: Role of protein synthesis and autophagic pathways. Exp. Neurol. 2014;255:103–112. doi: 10.1016/j.expneurol.2014.03.002. PubMed DOI

Ogata M., Hino S., Saito A., Morikawa K., Kondo S., Kanemoto S., Murakami T., Taniguchi M., Tanii I., Yoshinaga K., et al. Autophagy Is Activated for Cell Survival after Endoplasmic ReticulumStress. Mol. Cell. Biol. 2006;26:9220–9231. doi: 10.1128/MCB.01453-06. PubMed DOI PMC

Levine B., Kroemer G. Autophagy in the Pathogenesis of Disease. Cell. 2008;132:27–42. doi: 10.1016/j.cell.2007.12.018. PubMed DOI PMC

Kawakami T., Gomez I.G., Ren S., Hudkins K., Roach A., Alpers C.E., Shankland S.J., D’Agati V.D., Duffield J.S. Deficient Autophagy Results in Mitochondrial Dysfunction and FSGS. J. Am. Soc. Nephrol. 2015;26:1040–1052. doi: 10.1681/ASN.2013111202. PubMed DOI PMC

Thangaraj A., Sil S., Tripathi A., Chivero E.T., Periyasamy P., Buch S. Targeting endoplasmic reticulum stress and autophagy as therapeutic approaches for neurological diseases. Int. Rev. Cell Mol. Biol. 2020;350:285–325. PubMed

Shi W., Guo Z., Yuan R. Testicular Injury Attenuated by Rapamycin Through Induction of Autophagy and Inhibition of Endoplasmic Reticulum Stress in Streptozotocin- Induced Diabetic Rats. Endocr. Metab. Immune Disord. Drug Targets. 2019;19:665–675. doi: 10.2174/1871530319666190102112844. PubMed DOI

Guan G., Yang L., Huang W., Zhang J., Zhang P., Yu H., Liu S., Gu X. Mechanism of interactions between endoplasmic reticulum stress and autophagy in hypoxia/reoxygenation-induced injury of H9c2 cardiomyocytes. Mol. Med. Rep. 2019;20:350–358. doi: 10.3892/mmr.2019.10228. PubMed DOI PMC

Xu H.-D., Qin Z.-H. Beclin 1, Bcl-2 and Autophagy. In: Xu H.D., Qin Z.H., editors. Autophagy: Biology and Diseases. Springer; Singapore: 2019. pp. 109–126. PubMed

Nagatani K., Wada K., Takeuchi S., Kobayashi H., Uozumi Y., Otani N., Fujita M., Tachibana S., Nawashiro H. Effect of Hydrogen Gas on the Survival Rate of Mice Following Global Cerebral Ischemia. Shock. 2012;37:645–652. doi: 10.1097/SHK.0b013e31824ed57c. PubMed DOI

Zhang Y., Long Z., Xu J., Tan S., Zhang N., Li A., Wang L., Wang T. Hydrogen inhibits isoproterenol-induced autophagy in cardiomyocytes in vitro and in vivo. Mol. Med. Rep. 2017;16:8253–8258. doi: 10.3892/mmr.2017.7601. PubMed DOI

Jiang X., Niu X., Guo Q., Dong Y., Xu J., Yin N., Qi Q., Jia Y., Gao L., He Q., et al. FoxO1-mediated autophagy plays an important role in the neuroprotective effects of hydrogen in a rat model of vascular dementia. Behav. Brain Res. 2019;356:98–106. doi: 10.1016/j.bbr.2018.05.023. PubMed DOI

Du H., Sheng M., Wu L., Zhang Y., Shi D., Weng Y., Xu R., Yu W. Hydrogen-Rich Saline Attenuates Acute Kidney Injury After Liver Transplantation via Activating p53-Mediated Autophagy. Transplantation. 2016;100:563–570. doi: 10.1097/TP.0000000000001052. PubMed DOI

Wang H., Huo X., Chen H., Li B., Liu J., Ma W., Wang X., Xie K., Yu Y., Shi K. Hydrogen-Rich Saline Activated Autophagy via HIF-1 α Pathways in Neuropathic Pain Model. Biomed Res. Int. 2018;2018:1–13. doi: 10.1155/2018/4670834. PubMed DOI PMC

Jaakkola P., Mole D.R., Tian Y.-M., Wilson M.I., Gielbert J., Gaskell S.J., Kriegsheim A.V., Hebestreit H.F., Mukherji M., Schofield C.J., et al. Targeting of HIF-alpha to the von Hippel-Lindau Ubiquitylation Complex by O2-Regulated Prolyl Hydroxylation. Science. 2001;292:468–472. doi: 10.1126/science.1059796. PubMed DOI

Fang Y., Tan J., Zhang Q. Signaling pathways and mechanisms of hypoxia-induced autophagy in the animal cells. Cell Biol. Int. 2015;39:891–898. doi: 10.1002/cbin.10463. PubMed DOI

Murtha L.A., Morten M., Schuliga M.J., Mabotuwana N.S., Hardy S.A., Waters D.W., Burgess J.K., Ngo D.T., Sverdlov A.L., Knight D.A., et al. The Role of Pathological Aging in Cardiac and Pulmonary Fibrosis. Aging Dis. 2019;10:419–428. doi: 10.14336/AD.2018.0601. PubMed DOI PMC

Travers J.G., Kamal F.A., Robbins J., Yutzey K.E., Blaxall B.C. Cardiac Fibrosis: The Fibroblast Awakens. Circ. Res. 2016;118:1021–1040. doi: 10.1161/CIRCRESAHA.115.306565. PubMed DOI PMC

Zhao X., Kwan J.Y.Y., Yip K., Liu P.P., Liu F.-F. Targeting metabolic dysregulation for fibrosis therapy. Nat. Rev. Drug Discov. 2020;19:57–75. doi: 10.1038/s41573-019-0040-5. PubMed DOI

Sun Q., Kawamura T., Masutani K., Peng X., Sun Q., Stolz D.B., Pribis J.P., Billiar T.R., Sun X., Bermudez C.A., et al. Oral intake of hydrogen-rich water inhibits intimal hyperplasia in arterialized vein grafts in rats. Cardiovasc. Res. 2012;94:144–153. doi: 10.1093/cvr/cvs024. PubMed DOI PMC

Yang Y., Estrada E.Y., Thompson J.F., Liu W., Rosenberg G.A. Matrix Metalloproteinase-Mediated Disruption of Tight Junction Proteins in Cerebral Vessels is Reversed by Synthetic Matrix Metalloproteinase Inhibitor in Focal Ischemia in Rat. J. Cereb. Blood Flow Metab. 2007;27:697–709. doi: 10.1038/sj.jcbfm.9600375. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...