Polyaniline cryogels: Biocompatibility of novel conducting macroporous material

. 2018 Jan 09 ; 8 (1) : 135. [epub] 20180109

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid29317683
Odkazy

PubMed 29317683
PubMed Central PMC5760658
DOI 10.1038/s41598-017-18290-1
PII: 10.1038/s41598-017-18290-1
Knihovny.cz E-zdroje

Polyaniline cryogel is a new unique form of polyaniline combining intrinsic electrical conductivity and the material properties of hydrogels. It is prepared by the polymerization of aniline in frozen poly(vinyl alcohol) solutions. The biocompatibility of macroporous polyaniline cryogel was demonstrated by testing its cytotoxicity on mouse embryonic fibroblasts and via the test of embryotoxicity based on the formation of beating foci within spontaneous differentiating embryonic stem cells. Good biocompatibility was related to low contents of low-molecular-weight impurities in polyaniline cryogel, which was confirmed by liquid chromatography. The adhesion and growth of embryonic stem cells, embryoid bodies, cardiomyocytes, and neural progenitors prove that polyaniline cryogel has the potential to be used as a carrier for cells in tissue engineering or bio-sensing. The surface energy as well as the elasticity and porosity of cryogel mimic tissue properties. Polyaniline cryogel can therefore be applied in bio-sensing or regenerative medicine in general, and mainly in the tissue engineering of electrically excitable tissues.

Zobrazit více v PubMed

Jeong J, et al. Soft materials in neuroengineering for hard problems in neuroscience. Neuron. 2015;86:175–186. doi: 10.1016/j.neuron.2014.12.035. PubMed DOI

Cui X, et al. Surface modification of neural recording electrodes with conducting polymer/biomolecule blends. J. Biomed. Mater. Res. 2001;56:261–272. doi: 10.1002/1097-4636(200108)56:2<261::AID-JBM1094>3.0.CO;2-I. PubMed DOI

Cui X, Martin D. Fuzzy gold electrodes for lowering impedance and improving adhesion with electrodeposited conducting polymer films. Sens. Actuators A-Phys. 2003;103:384–394. doi: 10.1016/S0924-4247(02)00427-2. DOI

Abidian MR, Corey JM, Kipke DR, Martin DC. Conducting-polymer nanotubes improve electrical properties, mechanical adhesion, neural attachment, and neurite outgrowth of neural electrodes. Small. 2010;6:421–429. doi: 10.1002/smll.200901868. PubMed DOI PMC

Petrov P, Mokreva P, Kostov I, Uzunova V, Tzoneva R. Novel electrically conducting 2-hydroxyethylcellulose/polyaniline nanocomposite cryogels: Synthesis and application in tissue engineering. Carbohydr. Polym. 2016;140:349–355. doi: 10.1016/j.carbpol.2015.12.069. PubMed DOI

Sirivisoot S, Pareta R, Harrison BS. Protocol and cell responses in three-dimensional conductive collagen gel scaffolds with conductive polymer nanofibres for tissue regeneration. Interface Focus. 2014;4:20130050. doi: 10.1098/rsfs.2013.0050. PubMed DOI PMC

Vishnoi T, Kumar A. Conducting cryogel scaffold as a potential biomaterial for cell stimulation and proliferation. J. Mater. Sci. Mater. Med. 2013;24:447–459. doi: 10.1007/s10856-012-4795-z. PubMed DOI

Subramanian A, Krishnan UM, Sethuraman S. Axially aligned electrically conducting biodegradable nanofibers for neural regeneration. J. Mater. Sci. Mater. Med. 2012;23:1797–1809. doi: 10.1007/s10856-012-4654-y. PubMed DOI

Prabhakaran MP, Ghasemi-Mobarakeh L, Jin G, Ramakrishna S. Electrospun conducting polymer nanofibers and electrical stimulation of nerve stem cells. J. Biosci. Bioeng. 2011;112:501–507. doi: 10.1016/j.jbiosc.2011.07.010. PubMed DOI

Gelmi A, et al. Direct mechanical stimulation of stem cells: a beating electromechanically active scaffold for cardiac tissue engineering. Adv. Healthc. Mater. 2016;5:1471–1480. doi: 10.1002/adhm.201600307. PubMed DOI

Stejskal J. Conducting polymer hydrogels. Chem. Pap. 2017;71:269–291. doi: 10.1007/s11696-016-0072-9. DOI

Stejskal J, et al. Polyaniline cryogels supported with poly(vinyl alcohol): soft and conducting. Macromolecules. 2017;50:972–978. doi: 10.1021/acs.macromol.6b02526. DOI

Guiseppi-Elie A. Electroconductive hydrogels: synthesis, characterization and biomedical applications. Biomaterials. 2010;31:2701–2716. doi: 10.1016/j.biomaterials.2009.12.052. PubMed DOI

Humpolíček P, Kašpárková V, Sáha P, Stejskal J. Biocompatibility of polyaniline. Synth. Met. 2012;162:722–727. doi: 10.1016/j.synthmet.2012.02.024. DOI

Stejskal J, Gilbert RG. Polyaniline. Preparation of a conducting polymer (IUPAC technical report) Pure Appl. Chem. 2002;74:857–867. doi: 10.1351/pac200274050857. DOI

Stejskal J, Sapurina I. Polyaniline: Thin films and colloidal dispersions - (IUPAC technical report) Pure Appl. Chem. 2005;77:815–826. doi: 10.1351/pac200577050815. DOI

van Oss CJ. Hydrophobicity of biosurfaces — Origin, quantitative determination and interaction energies. Colloids Surf. B: Biointerfaces. 1995;5:91–110. doi: 10.1016/0927-7765(95)01217-7. DOI

Nagy A, Rossant J, Nagy R, Abramow-Newerly W, Roder JC. Derivation of completely cell culture-derived mice from early-passage embryonic stem cells. Proc. Natl. Acad. Sci. USA. 1993;90:8424–8428. doi: 10.1073/pnas.90.18.8424. PubMed DOI PMC

Humpolíček P, et al. Stem cell differentiation on conducting polyaniline. RSC Adv. 2015;5:68796–68805. doi: 10.1039/C5RA12218J. DOI

Radaszkiewicz KA, et al. Simple non-invasive analysis of embryonic stem cell-derived cardiomyocytes beating in vitro. Rev. Sci. Instrum. 2016;87:024301. doi: 10.1063/1.4941776. PubMed DOI

Bartova E, et al. The level and distribution pattern of HP1 beta in the embryonic brain correspond to those of H3K9me1/me2 but not of H3K9me3. Histochem. Cell Biol. 2016;145:447–461. doi: 10.1007/s00418-015-1402-7. PubMed DOI

Hsiao EC, et al. Marking embryonic stem cells with a 2A self-cleaving peptide: A NKX2-5 emerald GFP BAC reporter. Plos One. 2008;3:e2532. doi: 10.1371/journal.pone.0002532. PubMed DOI PMC

Vesela I, Kotasova H, Jankovska S, Prochazkova J, Pachernik J. Leukaemia inhibitory factor inhibits cardiomyogenesis of mouse embryonic stem cells via STAT3 activation. Folia Biol. (Praha) 2010;56:165–172. PubMed

Sepulveda J, et al. GATA-4 and Nkx-2.5 coactivate Nkx-2 DNA binding targets: Role for regulating early cardiac gene expression. Mol. Cell. Biol. 1998;18:3405–3415. doi: 10.1128/MCB.18.6.3405. PubMed DOI PMC

Engler AJ, Sen S, Sweeney HL, Discher DE. Matrix elasticity directs stem cell lineage specification. Cell. 2006;126:677–689. doi: 10.1016/j.cell.2006.06.044. PubMed DOI

Patel AJ, et al. Sitting at the edge: How biomolecules use hydrophobicity to tune their interactions and function. J. Phys. Chem. B. 2012;116:2498–2503. doi: 10.1021/jp2107523. PubMed DOI PMC

Latour RA. Biomaterials: protein-surface interactions. Encyclopedia of biomaterials and biomedical engineering. 2005;1:270–278.

Loh QL, Choong C. Three-dimensional scaffolds for tissue engineering applications: role of porosity and pore size. Tissue Eng. Part B-Rev. 2013;19:485–502. doi: 10.1089/ten.teb.2012.0437. PubMed DOI PMC

Akhtar R, Sherratt MJ, Cruickshank JK, Derby B. Characterizing the elastic properties of tissues. Mater. Today. 2011;14:96–105. doi: 10.1016/S1369-7021(11)70059-1. PubMed DOI PMC

Jenkins FP, Robinson JA, Gellatly JB, Salmond GW. The no-effect dose of aniline in human subjects and a comparison of aniline toxicity in man and the rat. Food Cosmet. Toxicol. 1972;10:671–679. doi: 10.1016/S0015-6264(72)80147-0. PubMed DOI

Signorin J, Ulrich C, Butt M, D’Amato E. 13-Week inhalation toxicity study (including 6-and 13-week recovery periods) with ammonium persulfate dust in Albino rats. Inhal. Toxicol. 2001;13:1033–1045. doi: 10.1080/089583701753210399. PubMed DOI

Stejskal J, Trchová M. Aniline oligomers versus polyaniline. Polym. Int. 2012;61:240–251. doi: 10.1002/pi.3179. DOI

GRAS 2011. Select Committee on GRAS Substances (SCOGS) Opinion: Ammonium sulfate”. U.S. Food and Drug Administration. August 16, 2011).

Kašpárková V, et al. Conductivity, impurity profile, and cytotoxicity of solvent-extracted polyaniline. Polym. Adv. Technol. 2016;27:156–161. doi: 10.1002/pat.3611. DOI

Seiler AEM, Spielmann H. The validated embryonic stem cell test to predict embryotoxicity in vitro. Nature Protocols. 2011;6:961–978. doi: 10.1038/nprot.2011.348. PubMed DOI

Stejskal J, Sapurina I, Prokeš J, Zemek J. In-situ polymerized polyaniline films. Synth. Met. 1999;105:195–202. doi: 10.1016/S0379-6779(99)00105-8. DOI

Kim H, Hobbs HL, Wang L, Rutten MJ, Wamser CC. Biocompatible composites of polyaniline nanofibers and collagen. Synth. Met. 2009;159:1313–1318. doi: 10.1016/j.synthmet.2009.02.036. DOI

McKeon KD, Lewis A, Freeman JW. Electrospun poly(D,L-lactide) and polyaniline scaffold characterization. J. Appl. Polym. Sci. 2010;115:1566–1572. doi: 10.1002/app.31296. DOI

Rahman NA, et al. Functional polyaniline nanofibre mats for human adipose-derived stem cell proliferation and adhesion. Mater. Chem. Phys. 2013;138:333–341. doi: 10.1016/j.matchemphys.2012.11.065. DOI

Li L, Ge J, Guo B, Ma PX. In situ forming biodegradable electroactive hydrogels. Polym. Chem. 2014;5:2880–2890. doi: 10.1039/c3py01634j. DOI

Bidez PR, et al. Polyaniline, an electroactive polymer, supports adhesion and proliferation of cardiac myoblasts. J. Biomater. Sci. Polym. Ed. 2006;17:199–212. doi: 10.1163/156856206774879180. PubMed DOI

Stejskal J, et al. Purification of a conducting polymer, polyaniline, for biomedical applications. Synth. Met. 2014;195:286–293. doi: 10.1016/j.synthmet.2014.06.020. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...