Polyaniline cryogels: Biocompatibility of novel conducting macroporous material
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
29317683
PubMed Central
PMC5760658
DOI
10.1038/s41598-017-18290-1
PII: 10.1038/s41598-017-18290-1
Knihovny.cz E-zdroje
- MeSH
- algoritmy MeSH
- aniliny chemie MeSH
- biokompatibilní materiály chemie MeSH
- buněčné kultury MeSH
- elektrická vodivost MeSH
- fibroblasty MeSH
- kryogely chemie MeSH
- mechanické jevy MeSH
- modul pružnosti MeSH
- myši MeSH
- poréznost MeSH
- teoretické modely MeSH
- testování materiálů MeSH
- tkáňové inženýrství MeSH
- viabilita buněk MeSH
- vysokoúčinná kapalinová chromatografie MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- aniliny MeSH
- biokompatibilní materiály MeSH
- kryogely MeSH
- polyaniline MeSH Prohlížeč
Polyaniline cryogel is a new unique form of polyaniline combining intrinsic electrical conductivity and the material properties of hydrogels. It is prepared by the polymerization of aniline in frozen poly(vinyl alcohol) solutions. The biocompatibility of macroporous polyaniline cryogel was demonstrated by testing its cytotoxicity on mouse embryonic fibroblasts and via the test of embryotoxicity based on the formation of beating foci within spontaneous differentiating embryonic stem cells. Good biocompatibility was related to low contents of low-molecular-weight impurities in polyaniline cryogel, which was confirmed by liquid chromatography. The adhesion and growth of embryonic stem cells, embryoid bodies, cardiomyocytes, and neural progenitors prove that polyaniline cryogel has the potential to be used as a carrier for cells in tissue engineering or bio-sensing. The surface energy as well as the elasticity and porosity of cryogel mimic tissue properties. Polyaniline cryogel can therefore be applied in bio-sensing or regenerative medicine in general, and mainly in the tissue engineering of electrically excitable tissues.
Centre of Polymer Systems Tomas Bata University in Zlin 760 01 Zlin Czech Republic
Faculty of Technology Tomas Bata University in Zlin 760 01 Zlin Czech Republic
Institute of Experimental Biology Faculty of Science Masaryk University 625 00 Brno Czech Republic
Zobrazit více v PubMed
Jeong J, et al. Soft materials in neuroengineering for hard problems in neuroscience. Neuron. 2015;86:175–186. doi: 10.1016/j.neuron.2014.12.035. PubMed DOI
Cui X, et al. Surface modification of neural recording electrodes with conducting polymer/biomolecule blends. J. Biomed. Mater. Res. 2001;56:261–272. doi: 10.1002/1097-4636(200108)56:2<261::AID-JBM1094>3.0.CO;2-I. PubMed DOI
Cui X, Martin D. Fuzzy gold electrodes for lowering impedance and improving adhesion with electrodeposited conducting polymer films. Sens. Actuators A-Phys. 2003;103:384–394. doi: 10.1016/S0924-4247(02)00427-2. DOI
Abidian MR, Corey JM, Kipke DR, Martin DC. Conducting-polymer nanotubes improve electrical properties, mechanical adhesion, neural attachment, and neurite outgrowth of neural electrodes. Small. 2010;6:421–429. doi: 10.1002/smll.200901868. PubMed DOI PMC
Petrov P, Mokreva P, Kostov I, Uzunova V, Tzoneva R. Novel electrically conducting 2-hydroxyethylcellulose/polyaniline nanocomposite cryogels: Synthesis and application in tissue engineering. Carbohydr. Polym. 2016;140:349–355. doi: 10.1016/j.carbpol.2015.12.069. PubMed DOI
Sirivisoot S, Pareta R, Harrison BS. Protocol and cell responses in three-dimensional conductive collagen gel scaffolds with conductive polymer nanofibres for tissue regeneration. Interface Focus. 2014;4:20130050. doi: 10.1098/rsfs.2013.0050. PubMed DOI PMC
Vishnoi T, Kumar A. Conducting cryogel scaffold as a potential biomaterial for cell stimulation and proliferation. J. Mater. Sci. Mater. Med. 2013;24:447–459. doi: 10.1007/s10856-012-4795-z. PubMed DOI
Subramanian A, Krishnan UM, Sethuraman S. Axially aligned electrically conducting biodegradable nanofibers for neural regeneration. J. Mater. Sci. Mater. Med. 2012;23:1797–1809. doi: 10.1007/s10856-012-4654-y. PubMed DOI
Prabhakaran MP, Ghasemi-Mobarakeh L, Jin G, Ramakrishna S. Electrospun conducting polymer nanofibers and electrical stimulation of nerve stem cells. J. Biosci. Bioeng. 2011;112:501–507. doi: 10.1016/j.jbiosc.2011.07.010. PubMed DOI
Gelmi A, et al. Direct mechanical stimulation of stem cells: a beating electromechanically active scaffold for cardiac tissue engineering. Adv. Healthc. Mater. 2016;5:1471–1480. doi: 10.1002/adhm.201600307. PubMed DOI
Stejskal J. Conducting polymer hydrogels. Chem. Pap. 2017;71:269–291. doi: 10.1007/s11696-016-0072-9. DOI
Stejskal J, et al. Polyaniline cryogels supported with poly(vinyl alcohol): soft and conducting. Macromolecules. 2017;50:972–978. doi: 10.1021/acs.macromol.6b02526. DOI
Guiseppi-Elie A. Electroconductive hydrogels: synthesis, characterization and biomedical applications. Biomaterials. 2010;31:2701–2716. doi: 10.1016/j.biomaterials.2009.12.052. PubMed DOI
Humpolíček P, Kašpárková V, Sáha P, Stejskal J. Biocompatibility of polyaniline. Synth. Met. 2012;162:722–727. doi: 10.1016/j.synthmet.2012.02.024. DOI
Stejskal J, Gilbert RG. Polyaniline. Preparation of a conducting polymer (IUPAC technical report) Pure Appl. Chem. 2002;74:857–867. doi: 10.1351/pac200274050857. DOI
Stejskal J, Sapurina I. Polyaniline: Thin films and colloidal dispersions - (IUPAC technical report) Pure Appl. Chem. 2005;77:815–826. doi: 10.1351/pac200577050815. DOI
van Oss CJ. Hydrophobicity of biosurfaces — Origin, quantitative determination and interaction energies. Colloids Surf. B: Biointerfaces. 1995;5:91–110. doi: 10.1016/0927-7765(95)01217-7. DOI
Nagy A, Rossant J, Nagy R, Abramow-Newerly W, Roder JC. Derivation of completely cell culture-derived mice from early-passage embryonic stem cells. Proc. Natl. Acad. Sci. USA. 1993;90:8424–8428. doi: 10.1073/pnas.90.18.8424. PubMed DOI PMC
Humpolíček P, et al. Stem cell differentiation on conducting polyaniline. RSC Adv. 2015;5:68796–68805. doi: 10.1039/C5RA12218J. DOI
Radaszkiewicz KA, et al. Simple non-invasive analysis of embryonic stem cell-derived cardiomyocytes beating in vitro. Rev. Sci. Instrum. 2016;87:024301. doi: 10.1063/1.4941776. PubMed DOI
Bartova E, et al. The level and distribution pattern of HP1 beta in the embryonic brain correspond to those of H3K9me1/me2 but not of H3K9me3. Histochem. Cell Biol. 2016;145:447–461. doi: 10.1007/s00418-015-1402-7. PubMed DOI
Hsiao EC, et al. Marking embryonic stem cells with a 2A self-cleaving peptide: A NKX2-5 emerald GFP BAC reporter. Plos One. 2008;3:e2532. doi: 10.1371/journal.pone.0002532. PubMed DOI PMC
Vesela I, Kotasova H, Jankovska S, Prochazkova J, Pachernik J. Leukaemia inhibitory factor inhibits cardiomyogenesis of mouse embryonic stem cells via STAT3 activation. Folia Biol. (Praha) 2010;56:165–172. PubMed
Sepulveda J, et al. GATA-4 and Nkx-2.5 coactivate Nkx-2 DNA binding targets: Role for regulating early cardiac gene expression. Mol. Cell. Biol. 1998;18:3405–3415. doi: 10.1128/MCB.18.6.3405. PubMed DOI PMC
Engler AJ, Sen S, Sweeney HL, Discher DE. Matrix elasticity directs stem cell lineage specification. Cell. 2006;126:677–689. doi: 10.1016/j.cell.2006.06.044. PubMed DOI
Patel AJ, et al. Sitting at the edge: How biomolecules use hydrophobicity to tune their interactions and function. J. Phys. Chem. B. 2012;116:2498–2503. doi: 10.1021/jp2107523. PubMed DOI PMC
Latour RA. Biomaterials: protein-surface interactions. Encyclopedia of biomaterials and biomedical engineering. 2005;1:270–278.
Loh QL, Choong C. Three-dimensional scaffolds for tissue engineering applications: role of porosity and pore size. Tissue Eng. Part B-Rev. 2013;19:485–502. doi: 10.1089/ten.teb.2012.0437. PubMed DOI PMC
Akhtar R, Sherratt MJ, Cruickshank JK, Derby B. Characterizing the elastic properties of tissues. Mater. Today. 2011;14:96–105. doi: 10.1016/S1369-7021(11)70059-1. PubMed DOI PMC
Jenkins FP, Robinson JA, Gellatly JB, Salmond GW. The no-effect dose of aniline in human subjects and a comparison of aniline toxicity in man and the rat. Food Cosmet. Toxicol. 1972;10:671–679. doi: 10.1016/S0015-6264(72)80147-0. PubMed DOI
Signorin J, Ulrich C, Butt M, D’Amato E. 13-Week inhalation toxicity study (including 6-and 13-week recovery periods) with ammonium persulfate dust in Albino rats. Inhal. Toxicol. 2001;13:1033–1045. doi: 10.1080/089583701753210399. PubMed DOI
Stejskal J, Trchová M. Aniline oligomers versus polyaniline. Polym. Int. 2012;61:240–251. doi: 10.1002/pi.3179. DOI
GRAS 2011. Select Committee on GRAS Substances (SCOGS) Opinion: Ammonium sulfate”. U.S. Food and Drug Administration. August 16, 2011).
Kašpárková V, et al. Conductivity, impurity profile, and cytotoxicity of solvent-extracted polyaniline. Polym. Adv. Technol. 2016;27:156–161. doi: 10.1002/pat.3611. DOI
Seiler AEM, Spielmann H. The validated embryonic stem cell test to predict embryotoxicity in vitro. Nature Protocols. 2011;6:961–978. doi: 10.1038/nprot.2011.348. PubMed DOI
Stejskal J, Sapurina I, Prokeš J, Zemek J. In-situ polymerized polyaniline films. Synth. Met. 1999;105:195–202. doi: 10.1016/S0379-6779(99)00105-8. DOI
Kim H, Hobbs HL, Wang L, Rutten MJ, Wamser CC. Biocompatible composites of polyaniline nanofibers and collagen. Synth. Met. 2009;159:1313–1318. doi: 10.1016/j.synthmet.2009.02.036. DOI
McKeon KD, Lewis A, Freeman JW. Electrospun poly(D,L-lactide) and polyaniline scaffold characterization. J. Appl. Polym. Sci. 2010;115:1566–1572. doi: 10.1002/app.31296. DOI
Rahman NA, et al. Functional polyaniline nanofibre mats for human adipose-derived stem cell proliferation and adhesion. Mater. Chem. Phys. 2013;138:333–341. doi: 10.1016/j.matchemphys.2012.11.065. DOI
Li L, Ge J, Guo B, Ma PX. In situ forming biodegradable electroactive hydrogels. Polym. Chem. 2014;5:2880–2890. doi: 10.1039/c3py01634j. DOI
Bidez PR, et al. Polyaniline, an electroactive polymer, supports adhesion and proliferation of cardiac myoblasts. J. Biomater. Sci. Polym. Ed. 2006;17:199–212. doi: 10.1163/156856206774879180. PubMed DOI
Stejskal J, et al. Purification of a conducting polymer, polyaniline, for biomedical applications. Synth. Met. 2014;195:286–293. doi: 10.1016/j.synthmet.2014.06.020. DOI