New approach to prepare cytocompatible 3D scaffolds via the combination of sodium hyaluronate and colloidal particles of conductive polymers

. 2022 May 16 ; 12 (1) : 8065. [epub] 20220516

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid35577841
Odkazy

PubMed 35577841
PubMed Central PMC9110748
DOI 10.1038/s41598-022-11678-8
PII: 10.1038/s41598-022-11678-8
Knihovny.cz E-zdroje

Bio-inspired conductive scaffolds composed of sodium hyaluronate containing a colloidal dispersion of water-miscible polyaniline or polypyrrole particles (concentrations of 0.108, 0.054 and 0.036% w/w) were manufactured. For this purpose, either crosslinking with N-(3-dimethylaminopropyl-N-ethylcarbodiimide hydrochloride and N-hydroxysuccinimid or a freeze-thawing process in the presence of poly(vinylalcohol) was used. The scaffolds comprised interconnected pores with prevailing porosity values of ~ 30% and pore sizes enabling the accommodation of cells. A swelling capacity of 92-97% without any sign of disintegration was typical for all samples. The elasticity modulus depended on the composition of the scaffolds, with the highest value of ~ 50 kPa obtained for the sample containing the highest content of polypyrrole particles. The scaffolds did not possess cytotoxicity and allowed cell adhesion and growth on the surface. Using the in vivo-mimicking conditions in a bioreactor, cells were also able to grow into the structure of the scaffolds. The technique of scaffold preparation used here thus overcomes the limitations of conductive polymers (e.g. poor solubility in an aqueous environment, and limited miscibility with other hydrophilic polymer matrices) and moreover leads to the preparation of cytocompatible scaffolds with potentially cell-instructive properties, which may be of advantage in the healing of damaged electro-sensitive tissues.

Zobrazit více v PubMed

Zhao Y, et al. Application of conductive PPy/SF composite scaffold and electrical stimulation for neural tissue engineering. Biomaterials. 2020;255:120164. doi: 10.1016/j.biomaterials.2020.120164. PubMed DOI

Elzinga K, et al. Brief electrical stimulation improves nerve regeneration after delayed repair in Sprague Dawley rats. Exp. Neurol. 2015;269:142–153. doi: 10.1016/j.expneurol.2015.03.022. PubMed DOI

Deng Z, Guo Y, Zhao X, Ma PX, Guo B. Multifunctional stimuli-responsive hydrogels with self-healing, high conductivity, and rapid recovery through host–guest interactions. Chem. Mater. 2018;30:1729–1742. doi: 10.1021/acs.chemmater.8b00008. DOI

Saberi, A., Jabbari, F., Zarrintaj, P., Saeb, M. R. & Mozafari, M. Electrically conductive materials: opportunities and challenges in tissue engineering. Biomolecules9 (2019). PubMed PMC

Paulsen BD, Tybrandt K, Stavrinidou E, Rivnay J. Organic mixed ionic–electronic conductors. Nat. Mater. 2020;19:13–26. doi: 10.1038/s41563-019-0435-z. PubMed DOI

Sikorski P. Electroconductive scaffolds for tissue engineering applications. Biomater. Sci. 2020;8:5583–5588. doi: 10.1039/D0BM01176B. PubMed DOI

Cui Z, et al. Polypyrrole-chitosan conductive biomaterial synchronizes cardiomyocyte contraction and improves myocardial electrical impulse propagation. Theranostics. 2018;8:2752–2764. doi: 10.7150/thno.22599. PubMed DOI PMC

Skopalová, K. et al. Modulation of differentiation of embryonic stem cells by polypyrrole: The impact on neurogenesis. Int. J. Mol. Sci.22 (2021). PubMed PMC

Mittnacht U, et al. Chitosan/siRNA nanoparticles biofunctionalize nerve implants and enable neurite outgrowth. Nano Lett. 2010;10:3933–3939. doi: 10.1021/nl1016909. PubMed DOI

Manoukian, O. S. et al. Polymeric ionically conductive composite matrices and electrical stimulation strategies for nerve regeneration: In vitro characterization. J. Biomed. Mater. Res. Part B Appl. Biomater.107, 1792–1805 (2019). PubMed PMC

Humpolicek P, Kasparkova V, Saha P, Stejskal J. Biocompatibility of polyaniline. Synth. Met. 2012;162:722–727. doi: 10.1016/j.synthmet.2012.02.024. DOI

Kucekova Z, et al. Colloidal polyaniline dispersions: Antibacterial activity, cytotoxicity and neutrophil oxidative burst. Colloids Surf. B Biointerfaces. 2014;116:411–417. doi: 10.1016/j.colsurfb.2014.01.027. PubMed DOI

Jasenská, D. et al. Conducting composite films based on chitosan or sodium hyaluronate. Properties and cytocompatibility with human induced pluripotent stem cells. Carbohydr. Polym.253 (2021). PubMed

Tavsanli B, Okay O. Mechanically strong hyaluronic acid hydrogels with an interpenetrating network structure. Eur. Polym. J. 2017;94:185–195. doi: 10.1016/j.eurpolymj.2017.07.009. DOI

Björninen M, et al. Comparison of chondroitin sulfate and hyaluronic acid doped conductive polypyrrole films for adipose stem cells. Ann. Biomed. Eng. 2014;42:1889–1900. doi: 10.1007/s10439-014-1023-7. PubMed DOI

Hemshekhar M, et al. Emerging roles of hyaluronic acid bioscaffolds in tissue engineering and regenerative medicine. Int. J. Biol. Macromol. 2016;86:917–928. doi: 10.1016/j.ijbiomac.2016.02.032. PubMed DOI

Collins MN, Birkinshaw C. Hyaluronic acid based scaffolds for tissue engineering—A review. Carbohydr. Polym. 2013;92:1262–1279. doi: 10.1016/j.carbpol.2012.10.028. PubMed DOI

Hu X, et al. Biodegradable poly (lactic acid-co-trimethylene carbonate)/chitosan microsphere scaffold with shape-memory effect for bone tissue engineering. Colloids Surf. B Biointerfaces. 2020;195:111218. doi: 10.1016/j.colsurfb.2020.111218. PubMed DOI

Isa ILM, et al. Hyaluronic acid based hydrogels attenuate inflammatory receptors and neurotrophins in interleukin-1 beta induced inflammation model of nucleus pulposus cells. Biomacromol. 2015;16:1714–1725. doi: 10.1021/acs.biomac.5b00168. PubMed DOI

Park D, Cho Y, Goh S-H, Choi Y. Hyaluronic acid–polypyrrole nanoparticles as pH-responsive theranostics. Chem. Commun. 2014;50:15014–15017. doi: 10.1039/C4CC06349J. PubMed DOI

Kim S, et al. Versatile biomimetic conductive polypyrrole films doped with hyaluronic acid of different molecular weights. Acta Biomater. 2018;80:258–268. doi: 10.1016/j.actbio.2018.09.035. PubMed DOI

Collier JH, Camp JP, Hudson TW, Schmidt CE. Synthesis and characterization of polypyrrole–hyaluronic acid composite biomaterials for tissue engineering applications. J. Biomed. Mater. Res. 2000;50:574–584. doi: 10.1002/(SICI)1097-4636(20000615)50:4<574::AID-JBM13>3.0.CO;2-I. PubMed DOI

Snetkov, P., Zakharova, K., Morozkina, S., Olekhnovich, R. & Uspenskaya, M. Hyaluronic acid: The influence of molecular weight on structural, physical, physico-chemical, and degradable properties of biopolymer. Polymers12 (2020). PubMed PMC

Shin J, et al. Three-dimensional electroconductive hyaluronic acid hydrogels incorporated with carbon nanotubes and polypyrrole by catechol-mediated dispersion enhance neurogenesis of human neural stem cells. Biomacromol. 2017;18:3060–3072. doi: 10.1021/acs.biomac.7b00568. PubMed DOI

Texidó R, Orgaz A, Ramos-Pérez V, Borrós S. Stretchable conductive polypyrrole films modified with dopaminated hyaluronic acid. Mater. Sci. Eng. C. 2017;76:295–300. doi: 10.1016/j.msec.2017.03.072. PubMed DOI

Alves T, et al. Biomimetic dense lamellar scaffold based on a colloidal complex of the polyaniline (PANi) and biopolymers for electroactive and physiomechanical stimulation of the myocardial. Colloids Surf. A Physicochem. Eng. Asp. 2019;579:123650. doi: 10.1016/j.colsurfa.2019.123650. DOI

Bober P, et al. Highly conducting and biocompatible polypyrrole/poly(vinyl alcohol) cryogels. Synth. Met. 2019;252:122–126. doi: 10.1016/j.synthmet.2019.04.015. DOI

Humpolíček P, et al. Polyaniline cryogels: Biocompatibility of novel conducting macroporous material. Sci. Rep. 2018;8:135. doi: 10.1038/s41598-017-18290-1. PubMed DOI PMC

Lu Y, et al. Elastic, conductive, polymeric hydrogels and sponges. Sci. Rep. 2014;4:5792. doi: 10.1038/srep05792. PubMed DOI PMC

Yang J, Choe G, Yang S, Jo H, Lee JY. Polypyrrole-incorporated conductive hyaluronic acid hydrogels. Biomater. Res. 2016;20:31. doi: 10.1186/s40824-016-0078-y. PubMed DOI PMC

Gřundělová L, et al. Viscoelastic and mechanical properties of hyaluronan films and hydrogels modified by carbodiimide. Carbohydr. Polym. 2015;119:142–148. doi: 10.1016/j.carbpol.2014.11.049. PubMed DOI

Holloway JL, Lowman AM, Palmese GR. The role of crystallization and phase separation in the formation of physically cross-linked PVA hydrogels. Soft Matter. 2013;9:826–833. doi: 10.1039/C2SM26763B. DOI

Zhang F, Wu J, Kang D, Zhang H. Development of a complex hydrogel of hyaluronan and PVA embedded with silver nanoparticles and its facile studies on Escherichia coli. J. Biomater. Sci. Polym. Ed. 2013;24:1410–1425. doi: 10.1080/09205063.2012.763109. PubMed DOI

Oh SH, An DB, Kim TH, Lee JH. Wide-range stiffness gradient PVA/HA hydrogel to investigate stem cell differentiation behavior. Acta Biomater. 2016;35:23–31. doi: 10.1016/j.actbio.2016.02.016. PubMed DOI

Kašpárková V, et al. Polyaniline colloids stabilized with bioactive polysaccharides: Non-cytotoxic antibacterial materials. Carbohydr. Polym. 2019;219:423–430. doi: 10.1016/j.carbpol.2019.05.038. PubMed DOI

Kašpárková, V. et al. Exploring the critical factors limiting polyaniline biocompatibility. Polymers11 (2019). PubMed PMC

Li Y, et al. Colloids of polypyrrole nanotubes/nanorods: A promising conducting ink. Synth. Met. 2016;221:67–74. doi: 10.1016/j.synthmet.2016.10.007. DOI

Lewandowska, K. Miscibility studies of hyaluronic acid and poly(vinyl alcohol) blends in various solvents. Materials13 (2020). PubMed PMC

Hassan, C. M. & Peppas, N. A. Biopolymers PVA hydrogels, anionic polymerisation nanocomposites. Biopolymers PVA Hydrogels Anionic Polym. Nanocompos.153 (2000).

Humpolíček P, et al. The biocompatibility of polyaniline and polypyrrole: A comparative study of their cytotoxicity, embryotoxicity and impurity profile. Mater. Sci. Eng. C. 2018;91:303–310. doi: 10.1016/j.msec.2018.05.037. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...