New approach to prepare cytocompatible 3D scaffolds via the combination of sodium hyaluronate and colloidal particles of conductive polymers
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
35577841
PubMed Central
PMC9110748
DOI
10.1038/s41598-022-11678-8
PII: 10.1038/s41598-022-11678-8
Knihovny.cz E-zdroje
- MeSH
- biokompatibilní materiály chemie MeSH
- kyselina hyaluronová MeSH
- polymery * chemie MeSH
- poréznost MeSH
- pyrroly chemie MeSH
- tkáňové inženýrství * metody MeSH
- tkáňové podpůrné struktury chemie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- biokompatibilní materiály MeSH
- kyselina hyaluronová MeSH
- polymery * MeSH
- pyrroly MeSH
Bio-inspired conductive scaffolds composed of sodium hyaluronate containing a colloidal dispersion of water-miscible polyaniline or polypyrrole particles (concentrations of 0.108, 0.054 and 0.036% w/w) were manufactured. For this purpose, either crosslinking with N-(3-dimethylaminopropyl-N-ethylcarbodiimide hydrochloride and N-hydroxysuccinimid or a freeze-thawing process in the presence of poly(vinylalcohol) was used. The scaffolds comprised interconnected pores with prevailing porosity values of ~ 30% and pore sizes enabling the accommodation of cells. A swelling capacity of 92-97% without any sign of disintegration was typical for all samples. The elasticity modulus depended on the composition of the scaffolds, with the highest value of ~ 50 kPa obtained for the sample containing the highest content of polypyrrole particles. The scaffolds did not possess cytotoxicity and allowed cell adhesion and growth on the surface. Using the in vivo-mimicking conditions in a bioreactor, cells were also able to grow into the structure of the scaffolds. The technique of scaffold preparation used here thus overcomes the limitations of conductive polymers (e.g. poor solubility in an aqueous environment, and limited miscibility with other hydrophilic polymer matrices) and moreover leads to the preparation of cytocompatible scaffolds with potentially cell-instructive properties, which may be of advantage in the healing of damaged electro-sensitive tissues.
Centre of Polymer Systems Tomas Bata University in Zlin Zlin Czech Republic
Faculty of Technology Tomas Bata University in Zlin 760 01 Zlin Czech Republic
Zobrazit více v PubMed
Zhao Y, et al. Application of conductive PPy/SF composite scaffold and electrical stimulation for neural tissue engineering. Biomaterials. 2020;255:120164. doi: 10.1016/j.biomaterials.2020.120164. PubMed DOI
Elzinga K, et al. Brief electrical stimulation improves nerve regeneration after delayed repair in Sprague Dawley rats. Exp. Neurol. 2015;269:142–153. doi: 10.1016/j.expneurol.2015.03.022. PubMed DOI
Deng Z, Guo Y, Zhao X, Ma PX, Guo B. Multifunctional stimuli-responsive hydrogels with self-healing, high conductivity, and rapid recovery through host–guest interactions. Chem. Mater. 2018;30:1729–1742. doi: 10.1021/acs.chemmater.8b00008. DOI
Saberi, A., Jabbari, F., Zarrintaj, P., Saeb, M. R. & Mozafari, M. Electrically conductive materials: opportunities and challenges in tissue engineering. Biomolecules9 (2019). PubMed PMC
Paulsen BD, Tybrandt K, Stavrinidou E, Rivnay J. Organic mixed ionic–electronic conductors. Nat. Mater. 2020;19:13–26. doi: 10.1038/s41563-019-0435-z. PubMed DOI
Sikorski P. Electroconductive scaffolds for tissue engineering applications. Biomater. Sci. 2020;8:5583–5588. doi: 10.1039/D0BM01176B. PubMed DOI
Cui Z, et al. Polypyrrole-chitosan conductive biomaterial synchronizes cardiomyocyte contraction and improves myocardial electrical impulse propagation. Theranostics. 2018;8:2752–2764. doi: 10.7150/thno.22599. PubMed DOI PMC
Skopalová, K. et al. Modulation of differentiation of embryonic stem cells by polypyrrole: The impact on neurogenesis. Int. J. Mol. Sci.22 (2021). PubMed PMC
Mittnacht U, et al. Chitosan/siRNA nanoparticles biofunctionalize nerve implants and enable neurite outgrowth. Nano Lett. 2010;10:3933–3939. doi: 10.1021/nl1016909. PubMed DOI
Manoukian, O. S. et al. Polymeric ionically conductive composite matrices and electrical stimulation strategies for nerve regeneration: In vitro characterization. J. Biomed. Mater. Res. Part B Appl. Biomater.107, 1792–1805 (2019). PubMed PMC
Humpolicek P, Kasparkova V, Saha P, Stejskal J. Biocompatibility of polyaniline. Synth. Met. 2012;162:722–727. doi: 10.1016/j.synthmet.2012.02.024. DOI
Kucekova Z, et al. Colloidal polyaniline dispersions: Antibacterial activity, cytotoxicity and neutrophil oxidative burst. Colloids Surf. B Biointerfaces. 2014;116:411–417. doi: 10.1016/j.colsurfb.2014.01.027. PubMed DOI
Jasenská, D. et al. Conducting composite films based on chitosan or sodium hyaluronate. Properties and cytocompatibility with human induced pluripotent stem cells. Carbohydr. Polym.253 (2021). PubMed
Tavsanli B, Okay O. Mechanically strong hyaluronic acid hydrogels with an interpenetrating network structure. Eur. Polym. J. 2017;94:185–195. doi: 10.1016/j.eurpolymj.2017.07.009. DOI
Björninen M, et al. Comparison of chondroitin sulfate and hyaluronic acid doped conductive polypyrrole films for adipose stem cells. Ann. Biomed. Eng. 2014;42:1889–1900. doi: 10.1007/s10439-014-1023-7. PubMed DOI
Hemshekhar M, et al. Emerging roles of hyaluronic acid bioscaffolds in tissue engineering and regenerative medicine. Int. J. Biol. Macromol. 2016;86:917–928. doi: 10.1016/j.ijbiomac.2016.02.032. PubMed DOI
Collins MN, Birkinshaw C. Hyaluronic acid based scaffolds for tissue engineering—A review. Carbohydr. Polym. 2013;92:1262–1279. doi: 10.1016/j.carbpol.2012.10.028. PubMed DOI
Hu X, et al. Biodegradable poly (lactic acid-co-trimethylene carbonate)/chitosan microsphere scaffold with shape-memory effect for bone tissue engineering. Colloids Surf. B Biointerfaces. 2020;195:111218. doi: 10.1016/j.colsurfb.2020.111218. PubMed DOI
Isa ILM, et al. Hyaluronic acid based hydrogels attenuate inflammatory receptors and neurotrophins in interleukin-1 beta induced inflammation model of nucleus pulposus cells. Biomacromol. 2015;16:1714–1725. doi: 10.1021/acs.biomac.5b00168. PubMed DOI
Park D, Cho Y, Goh S-H, Choi Y. Hyaluronic acid–polypyrrole nanoparticles as pH-responsive theranostics. Chem. Commun. 2014;50:15014–15017. doi: 10.1039/C4CC06349J. PubMed DOI
Kim S, et al. Versatile biomimetic conductive polypyrrole films doped with hyaluronic acid of different molecular weights. Acta Biomater. 2018;80:258–268. doi: 10.1016/j.actbio.2018.09.035. PubMed DOI
Collier JH, Camp JP, Hudson TW, Schmidt CE. Synthesis and characterization of polypyrrole–hyaluronic acid composite biomaterials for tissue engineering applications. J. Biomed. Mater. Res. 2000;50:574–584. doi: 10.1002/(SICI)1097-4636(20000615)50:4<574::AID-JBM13>3.0.CO;2-I. PubMed DOI
Snetkov, P., Zakharova, K., Morozkina, S., Olekhnovich, R. & Uspenskaya, M. Hyaluronic acid: The influence of molecular weight on structural, physical, physico-chemical, and degradable properties of biopolymer. Polymers12 (2020). PubMed PMC
Shin J, et al. Three-dimensional electroconductive hyaluronic acid hydrogels incorporated with carbon nanotubes and polypyrrole by catechol-mediated dispersion enhance neurogenesis of human neural stem cells. Biomacromol. 2017;18:3060–3072. doi: 10.1021/acs.biomac.7b00568. PubMed DOI
Texidó R, Orgaz A, Ramos-Pérez V, Borrós S. Stretchable conductive polypyrrole films modified with dopaminated hyaluronic acid. Mater. Sci. Eng. C. 2017;76:295–300. doi: 10.1016/j.msec.2017.03.072. PubMed DOI
Alves T, et al. Biomimetic dense lamellar scaffold based on a colloidal complex of the polyaniline (PANi) and biopolymers for electroactive and physiomechanical stimulation of the myocardial. Colloids Surf. A Physicochem. Eng. Asp. 2019;579:123650. doi: 10.1016/j.colsurfa.2019.123650. DOI
Bober P, et al. Highly conducting and biocompatible polypyrrole/poly(vinyl alcohol) cryogels. Synth. Met. 2019;252:122–126. doi: 10.1016/j.synthmet.2019.04.015. DOI
Humpolíček P, et al. Polyaniline cryogels: Biocompatibility of novel conducting macroporous material. Sci. Rep. 2018;8:135. doi: 10.1038/s41598-017-18290-1. PubMed DOI PMC
Lu Y, et al. Elastic, conductive, polymeric hydrogels and sponges. Sci. Rep. 2014;4:5792. doi: 10.1038/srep05792. PubMed DOI PMC
Yang J, Choe G, Yang S, Jo H, Lee JY. Polypyrrole-incorporated conductive hyaluronic acid hydrogels. Biomater. Res. 2016;20:31. doi: 10.1186/s40824-016-0078-y. PubMed DOI PMC
Gřundělová L, et al. Viscoelastic and mechanical properties of hyaluronan films and hydrogels modified by carbodiimide. Carbohydr. Polym. 2015;119:142–148. doi: 10.1016/j.carbpol.2014.11.049. PubMed DOI
Holloway JL, Lowman AM, Palmese GR. The role of crystallization and phase separation in the formation of physically cross-linked PVA hydrogels. Soft Matter. 2013;9:826–833. doi: 10.1039/C2SM26763B. DOI
Zhang F, Wu J, Kang D, Zhang H. Development of a complex hydrogel of hyaluronan and PVA embedded with silver nanoparticles and its facile studies on Escherichia coli. J. Biomater. Sci. Polym. Ed. 2013;24:1410–1425. doi: 10.1080/09205063.2012.763109. PubMed DOI
Oh SH, An DB, Kim TH, Lee JH. Wide-range stiffness gradient PVA/HA hydrogel to investigate stem cell differentiation behavior. Acta Biomater. 2016;35:23–31. doi: 10.1016/j.actbio.2016.02.016. PubMed DOI
Kašpárková V, et al. Polyaniline colloids stabilized with bioactive polysaccharides: Non-cytotoxic antibacterial materials. Carbohydr. Polym. 2019;219:423–430. doi: 10.1016/j.carbpol.2019.05.038. PubMed DOI
Kašpárková, V. et al. Exploring the critical factors limiting polyaniline biocompatibility. Polymers11 (2019). PubMed PMC
Li Y, et al. Colloids of polypyrrole nanotubes/nanorods: A promising conducting ink. Synth. Met. 2016;221:67–74. doi: 10.1016/j.synthmet.2016.10.007. DOI
Lewandowska, K. Miscibility studies of hyaluronic acid and poly(vinyl alcohol) blends in various solvents. Materials13 (2020). PubMed PMC
Hassan, C. M. & Peppas, N. A. Biopolymers PVA hydrogels, anionic polymerisation nanocomposites. Biopolymers PVA Hydrogels Anionic Polym. Nanocompos.153 (2000).
Humpolíček P, et al. The biocompatibility of polyaniline and polypyrrole: A comparative study of their cytotoxicity, embryotoxicity and impurity profile. Mater. Sci. Eng. C. 2018;91:303–310. doi: 10.1016/j.msec.2018.05.037. PubMed DOI