Method for in situ polypyrrole coating, and the example of its use for functionalization of polyurethane anisotropic electrospun mats
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
38545158
PubMed Central
PMC10966589
DOI
10.1016/j.heliyon.2024.e27883
PII: S2405-8440(24)03914-8
Knihovny.cz E-zdroje
- Klíčová slova
- Anisotropy, Coating, Conductivity, Image analysis, Stem cells,
- Publikační typ
- časopisecké články MeSH
The in situ coating of polymer substrate with polypyrrole, described herein with detailed know-how, represents a novel technique of surface functionalization. The choice of oxidizing agent and the polymerization time both affect the properties of the thin polypyrrole layer. The specific conductivity, free surface energy, thickness, topography, and FTIR spectra of polypyrrole layer were determined. The conductive coatings were further used to functionalize both isotropic and anisotropic electrospun polyurethane nanofibrous mats to show their applicability and study the bioactive effect of both the anisotropy and conductivity together. The morphology of composites was studied by means of atomic force microscopy and scanning electron microscopy. A complex cytocompatibility study was performed, including determining cytotoxicity by optical and fluorescence microscopy, the advanced qualification of cell morphology by cell-image analysis, and a study of stem cell behavior. The results clearly showed the significant impact of substrate modification on cells, especially on fibroblasts while the embryonic stem cells were less affected. This study shows not only the effective way to prepare a thin conducting layer based on polypyrrole but also demonstrates its importance for the fabrication of smart biomaterials.
Zobrazit více v PubMed
Gajendiran M., et al. Conductive biomaterials for tissue engineering applications. J. Ind. Eng. Chem. 2017;51:12–26. doi: 10.1016/j.jiec.2017.02.031. Jul. DOI
Shi G., Rouabhia M., Wang Z., Dao L.H., Zhang Z. A novel electrically conductive and biodegradable composite made of polypyrrole nanoparticles and polylactide. Biomaterials. 2004;25(13):2477–2488. doi: 10.1016/j.biomaterials.2003.09.032. Jun. PubMed DOI
Huang J., et al. Electrical stimulation to conductive scaffold promotes axonal regeneration and remyelination in a rat model of large nerve defect. PLoS One. 2012;7(6) doi: 10.1371/journal.pone.0039526. Jun. PubMed DOI PMC
Mohammadi Amirabad L., et al. Enhanced cardiac differentiation of human cardiovascular disease patient-specific induced pluripotent stem cells by applying unidirectional electrical pulses using aligned electroactive nanofibrous scaffolds. ACS Appl. Mater. Interfaces. 2017;9(8):6849–6864. doi: 10.1021/acsami.6b15271. Mar. PubMed DOI
Wang X., et al. Evaluation of biocompatibility of polypyrrole in vitro and in vivo. J. Biomed. Mater. Res. 2004;68A(3):411–422. doi: 10.1002/jbm.a.20065. PubMed DOI
d Ateh D., a Navsaria H., Vadgama P. Polypyrrole-based conducting polymers and interactions with biological tissues. J. R. Soc. Interface. 2006;3(11):741–752. doi: 10.1098/rsif.2006.0141. Dec. PubMed DOI PMC
Humpolicek P., et al. The biocompatibility of polyaniline and polypyrrole: a comparative study of their cytotoxicity, embryotoxicity and impurity profile. Mater. Sci. Eng., C. 2018;91:303–310. doi: 10.1016/j.msec.2018.05.037. Oct. PubMed DOI
Skopalova K., et al. Modulation of differentiation of embryonic stem cells by polypyrrole: the impact on neurogenesis. Int. J. Mol. Sci. 2021;22(2):501. doi: 10.3390/ijms22020501. Jan. PubMed DOI PMC
Ferraz N., Strømme M., Fellström B., Pradhan S., Nyholm L., Mihranyan A. In vitro and in vivo toxicity of rinsed and aged nanocellulose–polypyrrole composites. J. Biomed. Mater. Res. 2012;100A(8):2128–2138. doi: 10.1002/jbm.a.34070. PubMed DOI
Armes S.P. Optimum reaction conditions for the polymerization of pyrrole by iron(III) chloride in aqueous solution. Synth. Met. 1987;20(3):365–371. doi: 10.1016/0379-6779(87)90833-2. Jun. DOI
Duchet J., Legras R., Demoustier-Champagne S. Chemical synthesis of polypyrrole: structure–properties relationship. Synth. Met. 1998;98(2):113–122. doi: 10.1016/S0379-6779(98)00180-5. Dec. DOI
Upadhyay J., Kumar A., Gogoi B., Buragohain A.K. Biocompatibility and antioxidant activity of polypyrrole nanotubes. Synth. Met. 2014;189:119–125. doi: 10.1016/j.synthmet.2014.01.004. Mar. DOI
Keša P., et al. Photoacoustic properties of polypyrrole nanoparticles. Nanomaterials. 2021;11(9) doi: 10.3390/nano11092457. Art. no. 9, Sep. PubMed DOI PMC
Mezhuev Ya O., et al. Synthesis of aqueous polypyrrole dispersions stabilized with polyvinyl alcohol and preparation of hemocompatible films based on them. Russ. J. Appl. Chem. 2015;88(6):1026–1032. doi: 10.1134/S107042721506021X. DOI
Pich A., Lu Y., Adler H.-J.P. Polymeric particles with conjugated polymer: layer on its surface as effective adsorbents of amino acids. Polymer. Sep. 2006;47(19):6536–6543. doi: 10.1016/j.polymer.2006.07.055. DOI
Vaitkuviene A., et al. Some biocompatibility aspects of conducting polymer polypyrrole evaluated with bone marrow-derived stem cells. Colloids Surf. A Physicochem. Eng. Asp. 2014;442:152–156. doi: 10.1016/j.colsurfa.2013.06.030. Feb. DOI
Sak-Bosnar M., Budimir M.V., Kovac S., Kukulj D., Duic L. Chemical and electrochemical characterization of chemically synthesized conducting polypyrrole. J. Polym. Sci. Polym. Chem. 1992;30(8):1609–1614. doi: 10.1002/pola.1992.080300813. DOI
Razaq A., Mihranyan A., Welch K., Nyholm L., Strømme M. Influence of the type of oxidant on anion exchange properties of fibrous cladophora cellulose/polypyrrole composites. J. Phys. Chem. B. 2009;113(2):426–433. doi: 10.1021/jp806517h. Jan. PubMed DOI
Chen X., Issi J.-P., Devaux J., Billaud D. Chemically oxidized polypyrrole: influence of the experimental conditions on its electrical conductivity and morphology. Polym. Eng. Sci. 1995;35(8):642–647. doi: 10.1002/pen.760350803. DOI
Azioune A., Chehimi M.M., Miksa B., Basinska T., Slomkowski S. Hydrophobic Protein−Polypyrrole interactions: the role of van der Waals and lewis Acid−Base forces as determined by contact angle measurements. Langmuir. 2002;18(4):1150–1156. doi: 10.1021/la010444o. Feb. DOI
Azioune A., Pech K., Saoudi B., Chehimi M.M., McCarthy G.P., Armes S.P. Adsorption of human serum albumin onto polypyrrole powder and polypyrrole-silica nanocomposites. Synth. Met. 1999;102(1):1419–1420. doi: 10.1016/S0379-6779(98)00982-5. Jun. DOI
Sanches E.A., et al. Nanostructured polypyrrole powder: a structural and morphological characterization. J. Nanomater. 2015;2015 doi: 10.1155/2015/129678. Sep. DOI
Noh K.A., Kim D.-W., Jin C.-S., Shin K.-H., Kim J.H., Ko J.M. Synthesis and pseudo-capacitance of chemically-prepared polypyrrole powder. J. Power Sources. 2003;124(2):593–595. doi: 10.1016/S0378-7753(03)00813-9. Nov. DOI
Ustamehmetoğlu B., Kizilcan N., Saraç A.S., Akar A. Soluble polypyrrole copolymers. J. Appl. Polym. Sci. 2001;82(5):1098–1106. doi: 10.1002/app.1944. DOI
Biran C., Toppare L., Tinçer T., Yağci Y., Harabagiu V. Mechanical properties of conducting H-type polysiloxane–polypyrrole graft copolymers and polytetrahydrofuran–polypyrrole block copolymers. J. Appl. Polym. Sci. 2002;86(7):1663–1666. doi: 10.1002/app.11031. DOI
Gunaydin O., Toppare L., Yagci Y., Harabagiu V., Pintela M., Simionescu B.C. Synthesis of conducting polysiloxane — polypyrrole graft copolymers. Polym. Bull. 2002;47(6):501–508. doi: 10.1007/s002890200014. Feb. DOI
Omastová M., et al. Towards conducting inks: polypyrrole–silver colloids. Electrochim. Acta. 2014;122:296–302. doi: 10.1016/j.electacta.2013.11.037. Mar. DOI
Zelenev A., Sonnenberg W., Matijević E. Preparation, characterization, and adhesion of monodispersed polypyrrole particles. Colloid Polym. Sci. 1998;276(9):838–841. doi: 10.1007/s003960050318. Oct. DOI
Káčerová S., et al. Biocompatibility of colloidal polypyrrole. Colloids Surf. B Biointerfaces. 2023;232 doi: 10.1016/j.colsurfb.2023.113605. Dec. PubMed DOI
Maity S. Optimization of processing parameters of in-situ polymerization of pyrrole on woollen textile to improve its thermal conductivity. Prog. Org. Coating. 2017;107:48–53. doi: 10.1016/j.porgcoat.2017.03.010. Jun. DOI
Zhu Q., et al. Epoxy coating with in-situ synthesis of polypyrrole functionalized graphene oxide for enhanced anticorrosive performance. Prog. Org. Coating. 2020;140 doi: 10.1016/j.porgcoat.2019.105488. Mar. DOI
Zhao Y., et al. A novel flexible sensor for respiratory monitoring based on in situ polymerization of polypyrrole and polyurethane coating. RSC Adv. 2017;7(78):49576–49585. doi: 10.1039/C7RA08331A. Oct. DOI
Maráková N., et al. Antimicrobial activity and cytotoxicity of cotton fabric coated with conducting polymers, polyaniline or polypyrrole, and with deposited silver nanoparticles. Appl. Surf. Sci. 2017;396:169–176. doi: 10.1016/j.apsusc.2016.11.024. Feb. DOI
Ravichandran R., Sundarrajan S., Venugopal J.R., Mukherjee S., Ramakrishna S. Applications of conducting polymers and their issues in biomedical engineering. J. R. Soc. Interface. 2010;7(suppl_5) doi: 10.1098/rsif.2010.0120.focus. Oct. PubMed DOI PMC
Garner B., Hodgson A.J., Wallace G.G., Underwood P.A. Human endothelial cell attachment to and growth on polypyrrole-heparin is vitronectin dependent. J. Mater. Sci. Mater. Med. 1999;10(1):19–27. doi: 10.1023/A:1008835925998. Jan. PubMed DOI
Slepička P., Slepičková Kasálková N., Bačáková L., Kolská Z., Švorčík V. Enhancement of polymer cytocompatibility by nanostructuring of polymer surface. J. Nanomater. 2012;2012 doi: 10.1155/2012/527403. Jul. DOI
Wilson C.J., Clegg R.E., Leavesley D.I., Pearcy M.J. Mediation of biomaterial–cell interactions by adsorbed proteins: a review. Tissue Eng. 2005;11(1–2):1–18. doi: 10.1089/ten.2005.11.1. Jan. PubMed DOI
Mitchell G.R., Tojeira A. Role of anisotropy in tissue engineering. Procedia Eng. 2013;59:117–125. doi: 10.1016/j.proeng.2013.05.100. DOI
Hoque M.E. Robust formulation for the design of tissue engineering scaffolds: a comprehensive study on structural anisotropy, viscoelasticity and degradation of 3D scaffolds fabricated with customized desktop robot based rapid prototyping (DRBRP) system. Mater. Sci. Eng. C. Mar. 2017;72:433–443. doi: 10.1016/j.msec.2016.11.019. PubMed DOI
Bursac N., Parker K.K., Iravanian S., Tung L. Cardiomyocyte cultures with controlled macroscopic anisotropy. Circ. Res. 2002;91(12):e45–e54. doi: 10.1161/01.RES.0000047530.88338.EB. Dec. PubMed DOI
Nikkhah M., Edalat F., Manoucheri S., Khademhosseini A. Engineering microscale topographies to control the cell–substrate interface. Biomaterials. 2012;33(21):5230–5246. doi: 10.1016/j.biomaterials.2012.03.079. Jul. PubMed DOI PMC
Yang F., Murugan R., Wang S., Ramakrishna S. Electrospinning of nano/micro scale poly(l-lactic acid) aligned fibers and their potential in neural tissue engineering. Biomaterials. 2005;26(15):2603–2610. doi: 10.1016/j.biomaterials.2004.06.051. May. PubMed DOI
Yin Z., et al. The regulation of tendon stem cell differentiation by the alignment of nanofibers. Biomaterials. 2010;31(8):2163–2175. doi: 10.1016/j.biomaterials.2009.11.083. Mar. PubMed DOI
Humpolicek P., et al. Polyaniline cryogels: biocompatibility of novel conducting macroporous material. Sci. Rep. 2018;8:135. doi: 10.1038/s41598-017-18290-1. Jan. PubMed DOI PMC
Milakin K.A., et al. Biocompatible and antibacterial gelatin-based polypyrrole cryogels. Polymer. 2020;197 doi: 10.1016/j.polymer.2020.122491. May. DOI
Golgovici F., Cârlan M.-S., Popescu A.-G., Anicai L. Electrochemical synthesis of polypyrrole and polypyrrole-indomethacin coatings on NiCr alloys involving deep eutectic solvents. Metals. 2020;10(9) doi: 10.3390/met10091130. Art. no. 9, Sep. DOI
Thunberg J., et al. In situ synthesis of conductive polypyrrole on electrospun cellulose nanofibers: scaffold for neural tissue engineering. Cellulose. 2015;22(3):1459–1467. doi: 10.1007/s10570-015-0591-5. Jun. DOI
Wu A., Kolla H., Manohar S.K. Chemical synthesis of highly conducting polypyrrole nanofiber film. Macromolecules. 2005;38(19):7873–7875. doi: 10.1021/ma051299e. Sep. DOI
Sahoo S., Karthikeyan G., Nayak G. Ch, Das C.K. Electrochemical characterization of in situ polypyrrole coated graphene nanocomposites. Synth. Met. 2011;161(15):1713–1719. doi: 10.1016/j.synthmet.2011.06.011. Aug. DOI
Vellguth N., Shamsuyeva M., Kroll S., Renz F., Endres H.-J. Electrical conductivity in biocomposites via polypyrrole coating. J. Mater. Sci. Mater. Electron. 2019;30(3):2373–2381. doi: 10.1007/s10854-018-0510-2. Feb. DOI
Nagy A., Rossant J., Nagy R., Abramow-Newerly W., Roder J.C. Derivation of completely cell culture-derived mice from early-passage embryonic stem cells. Proc. Natl. Acad. Sci. USA. 1993;90(18):8424–8428. doi: 10.1073/pnas.90.18.8424. Sep. PubMed DOI PMC
Carpenter A.E., et al. CellProfiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biol. 2006;7(10):R100. doi: 10.1186/gb-2006-7-10-r100. PubMed DOI PMC
Pang A.L., Arsad A., Ahmadipour M. Synthesis and factor affecting on the conductivity of polypyrrole: a short review. Polym. Adv. Technol. 2021;32(4):1428–1454. doi: 10.1002/pat.5201. Apr. DOI
Guimard N.K., Gomez N., Schmidt C.E. Conducting polymers in biomedical engineering. Prog. Polym. Sci. 2007;32(8):876–921. doi: 10.1016/j.progpolymsci.2007.05.012. Aug. DOI
Patois T., Lakard B., Martin N., Fievet P. Effect of various parameters on the conductivity of free standing electrosynthesized polypyrrole films. Synth. Met. 2010;160(19):2180–2185. doi: 10.1016/j.synthmet.2010.08.005. Oct. DOI
Kašpárková V., et al. Cell-compatible conducting polyaniline films prepared in colloidal dispersion mode. Colloids Surf. B Biointerfaces. 2017;157:309–316. doi: 10.1016/j.colsurfb.2017.05.066. Sep. PubMed DOI
Mahmoodian M., Pourabbas B., Mohajerzadeh S. Effect of anionic dopants on thickness, morphology and electrical properties of polypyrrole ultra-thin films prepared by in situ chemical polymerization. Thin Solid Films. 2015;583:255–263. doi: 10.1016/j.tsf.2015.03.043. May. DOI
Sasso C., Beneventi D., Zeno E., Chaussy D., Petit-Conil M., Belgacem N. Polypyrrole and polypyrrole/wood-derived materials conducting composites: a review. Bioresources. 2011;6(3):3585–3620.
Navale S.T., Mane A.T., Ghanwat A.A., Mulik A.R., Patil V.B. Camphor sulfonic acid (CSA) doped polypyrrole (PPy) films: measurement of microstructural and optoelectronic properties. Measurement. 2014;50:363–369. doi: 10.1016/j.measurement.2014.01.012. Apr. DOI
Berg J., Eriksson L., Claesson P., Borve K. 3-Component Langmuir-Blodgett-Films with a controllable degree of polarity. Langmuir. 1994;10(4):1225–1234. doi: 10.1021/la00016a041. Apr. DOI
Vogler E.A. Structure and reactivity of water at biomaterial surfaces. Adv. Colloid Interface Sci. 1998;74(1):69–117. doi: 10.1016/S0001-8686(97)00040-7. Feb. PubMed DOI
Stejskal J., Trchová M. Conducting polypyrrole nanotubes: a review. Chem. Pap. 2018;72(7):1563–1595. doi: 10.1007/s11696-018-0394-x. Jul. PubMed DOI
Abidian M.R., Corey J.M., Kipke D.R., Martin D.C. Conducting-polymer nanotubes improve electrical properties, mechanical adhesion, neural attachment, and neurite outgrowth of neural electrodes. Small. 2010;6(3):421–429. doi: 10.1002/smll.200901868. PubMed DOI PMC
Satriano C., Carnazza S., Guglielmino S., Marletta G. Surface free energy and cell attachment onto ion-beam irradiated polymer surfaces. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms. 2003;208:287–293. doi: 10.1016/S0168-583X(03)00647-5. Aug. DOI
Tallawi M., et al. Strategies for the chemical and biological functionalization of scaffolds for cardiac tissue engineering: a review. J. R. Soc. Interface. 2015;12(108) doi: 10.1098/rsif.2015.0254. Jul. PubMed DOI PMC
Wu M., Zhong C., Deng Y., Zhang Q., Zhang X., Zhao X. Resveratrol loaded glycyrrhizic acid-conjugated human serum albumin nanoparticles for tail vein injection II: pharmacokinetics, tissue distribution and bioavailability. Drug Deliv. Jan. 2020;27(1):81–90. doi: 10.1080/10717544.2019.1704944. PubMed DOI PMC
Van Vlierberghe S., Vanderleyden E., Boterberg V., Dubruel P. Gelatin functionalization of biomaterial surfaces: strategies for immobilization and visualization. Polymers. 2011;3(1) doi: 10.3390/polym3010114. Art. no. 1, Mar. DOI
Fee T., Downs C., Eberhardt A., Zhou Y., Berry J. Image-based quantification of fiber alignment within electrospun tissue engineering scaffolds is related to mechanical anisotropy. J. Biomed. Mater. Res. 2016;104(7):1680–1686. doi: 10.1002/jbm.a.35697. PubMed DOI
Lin C.-H., Tang X., Chen P., Luo S.-C. Unraveling the adhesion behavior of different cell lines on biomimetic PEDOT interfaces: the role of surface morphology and antifouling properties. ACS Appl. Bio Mater. 2023 doi: 10.1021/acsabm.3c00833. Nov. PubMed DOI
Tringides C.M., Mooney D.J. Conductive hydrogel scaffolds for the 3D localization and orientation of fibroblasts. Macromol. Biosci. 2024;24(1) doi: 10.1002/mabi.202300044. PubMed DOI PMC