Method for in situ polypyrrole coating, and the example of its use for functionalization of polyurethane anisotropic electrospun mats

. 2024 Mar 30 ; 10 (6) : e27883. [epub] 20240313

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38545158
Odkazy

PubMed 38545158
PubMed Central PMC10966589
DOI 10.1016/j.heliyon.2024.e27883
PII: S2405-8440(24)03914-8
Knihovny.cz E-zdroje

The in situ coating of polymer substrate with polypyrrole, described herein with detailed know-how, represents a novel technique of surface functionalization. The choice of oxidizing agent and the polymerization time both affect the properties of the thin polypyrrole layer. The specific conductivity, free surface energy, thickness, topography, and FTIR spectra of polypyrrole layer were determined. The conductive coatings were further used to functionalize both isotropic and anisotropic electrospun polyurethane nanofibrous mats to show their applicability and study the bioactive effect of both the anisotropy and conductivity together. The morphology of composites was studied by means of atomic force microscopy and scanning electron microscopy. A complex cytocompatibility study was performed, including determining cytotoxicity by optical and fluorescence microscopy, the advanced qualification of cell morphology by cell-image analysis, and a study of stem cell behavior. The results clearly showed the significant impact of substrate modification on cells, especially on fibroblasts while the embryonic stem cells were less affected. This study shows not only the effective way to prepare a thin conducting layer based on polypyrrole but also demonstrates its importance for the fabrication of smart biomaterials.

Zobrazit více v PubMed

Gajendiran M., et al. Conductive biomaterials for tissue engineering applications. J. Ind. Eng. Chem. 2017;51:12–26. doi: 10.1016/j.jiec.2017.02.031. Jul. DOI

Shi G., Rouabhia M., Wang Z., Dao L.H., Zhang Z. A novel electrically conductive and biodegradable composite made of polypyrrole nanoparticles and polylactide. Biomaterials. 2004;25(13):2477–2488. doi: 10.1016/j.biomaterials.2003.09.032. Jun. PubMed DOI

Huang J., et al. Electrical stimulation to conductive scaffold promotes axonal regeneration and remyelination in a rat model of large nerve defect. PLoS One. 2012;7(6) doi: 10.1371/journal.pone.0039526. Jun. PubMed DOI PMC

Mohammadi Amirabad L., et al. Enhanced cardiac differentiation of human cardiovascular disease patient-specific induced pluripotent stem cells by applying unidirectional electrical pulses using aligned electroactive nanofibrous scaffolds. ACS Appl. Mater. Interfaces. 2017;9(8):6849–6864. doi: 10.1021/acsami.6b15271. Mar. PubMed DOI

Wang X., et al. Evaluation of biocompatibility of polypyrrole in vitro and in vivo. J. Biomed. Mater. Res. 2004;68A(3):411–422. doi: 10.1002/jbm.a.20065. PubMed DOI

d Ateh D., a Navsaria H., Vadgama P. Polypyrrole-based conducting polymers and interactions with biological tissues. J. R. Soc. Interface. 2006;3(11):741–752. doi: 10.1098/rsif.2006.0141. Dec. PubMed DOI PMC

Humpolicek P., et al. The biocompatibility of polyaniline and polypyrrole: a comparative study of their cytotoxicity, embryotoxicity and impurity profile. Mater. Sci. Eng., C. 2018;91:303–310. doi: 10.1016/j.msec.2018.05.037. Oct. PubMed DOI

Skopalova K., et al. Modulation of differentiation of embryonic stem cells by polypyrrole: the impact on neurogenesis. Int. J. Mol. Sci. 2021;22(2):501. doi: 10.3390/ijms22020501. Jan. PubMed DOI PMC

Ferraz N., Strømme M., Fellström B., Pradhan S., Nyholm L., Mihranyan A. In vitro and in vivo toxicity of rinsed and aged nanocellulose–polypyrrole composites. J. Biomed. Mater. Res. 2012;100A(8):2128–2138. doi: 10.1002/jbm.a.34070. PubMed DOI

Armes S.P. Optimum reaction conditions for the polymerization of pyrrole by iron(III) chloride in aqueous solution. Synth. Met. 1987;20(3):365–371. doi: 10.1016/0379-6779(87)90833-2. Jun. DOI

Duchet J., Legras R., Demoustier-Champagne S. Chemical synthesis of polypyrrole: structure–properties relationship. Synth. Met. 1998;98(2):113–122. doi: 10.1016/S0379-6779(98)00180-5. Dec. DOI

Upadhyay J., Kumar A., Gogoi B., Buragohain A.K. Biocompatibility and antioxidant activity of polypyrrole nanotubes. Synth. Met. 2014;189:119–125. doi: 10.1016/j.synthmet.2014.01.004. Mar. DOI

Keša P., et al. Photoacoustic properties of polypyrrole nanoparticles. Nanomaterials. 2021;11(9) doi: 10.3390/nano11092457. Art. no. 9, Sep. PubMed DOI PMC

Mezhuev Ya O., et al. Synthesis of aqueous polypyrrole dispersions stabilized with polyvinyl alcohol and preparation of hemocompatible films based on them. Russ. J. Appl. Chem. 2015;88(6):1026–1032. doi: 10.1134/S107042721506021X. DOI

Pich A., Lu Y., Adler H.-J.P. Polymeric particles with conjugated polymer: layer on its surface as effective adsorbents of amino acids. Polymer. Sep. 2006;47(19):6536–6543. doi: 10.1016/j.polymer.2006.07.055. DOI

Vaitkuviene A., et al. Some biocompatibility aspects of conducting polymer polypyrrole evaluated with bone marrow-derived stem cells. Colloids Surf. A Physicochem. Eng. Asp. 2014;442:152–156. doi: 10.1016/j.colsurfa.2013.06.030. Feb. DOI

Sak-Bosnar M., Budimir M.V., Kovac S., Kukulj D., Duic L. Chemical and electrochemical characterization of chemically synthesized conducting polypyrrole. J. Polym. Sci. Polym. Chem. 1992;30(8):1609–1614. doi: 10.1002/pola.1992.080300813. DOI

Razaq A., Mihranyan A., Welch K., Nyholm L., Strømme M. Influence of the type of oxidant on anion exchange properties of fibrous cladophora cellulose/polypyrrole composites. J. Phys. Chem. B. 2009;113(2):426–433. doi: 10.1021/jp806517h. Jan. PubMed DOI

Chen X., Issi J.-P., Devaux J., Billaud D. Chemically oxidized polypyrrole: influence of the experimental conditions on its electrical conductivity and morphology. Polym. Eng. Sci. 1995;35(8):642–647. doi: 10.1002/pen.760350803. DOI

Azioune A., Chehimi M.M., Miksa B., Basinska T., Slomkowski S. Hydrophobic Protein−Polypyrrole interactions: the role of van der Waals and lewis Acid−Base forces as determined by contact angle measurements. Langmuir. 2002;18(4):1150–1156. doi: 10.1021/la010444o. Feb. DOI

Azioune A., Pech K., Saoudi B., Chehimi M.M., McCarthy G.P., Armes S.P. Adsorption of human serum albumin onto polypyrrole powder and polypyrrole-silica nanocomposites. Synth. Met. 1999;102(1):1419–1420. doi: 10.1016/S0379-6779(98)00982-5. Jun. DOI

Sanches E.A., et al. Nanostructured polypyrrole powder: a structural and morphological characterization. J. Nanomater. 2015;2015 doi: 10.1155/2015/129678. Sep. DOI

Noh K.A., Kim D.-W., Jin C.-S., Shin K.-H., Kim J.H., Ko J.M. Synthesis and pseudo-capacitance of chemically-prepared polypyrrole powder. J. Power Sources. 2003;124(2):593–595. doi: 10.1016/S0378-7753(03)00813-9. Nov. DOI

Ustamehmetoğlu B., Kizilcan N., Saraç A.S., Akar A. Soluble polypyrrole copolymers. J. Appl. Polym. Sci. 2001;82(5):1098–1106. doi: 10.1002/app.1944. DOI

Biran C., Toppare L., Tinçer T., Yağci Y., Harabagiu V. Mechanical properties of conducting H-type polysiloxane–polypyrrole graft copolymers and polytetrahydrofuran–polypyrrole block copolymers. J. Appl. Polym. Sci. 2002;86(7):1663–1666. doi: 10.1002/app.11031. DOI

Gunaydin O., Toppare L., Yagci Y., Harabagiu V., Pintela M., Simionescu B.C. Synthesis of conducting polysiloxane — polypyrrole graft copolymers. Polym. Bull. 2002;47(6):501–508. doi: 10.1007/s002890200014. Feb. DOI

Omastová M., et al. Towards conducting inks: polypyrrole–silver colloids. Electrochim. Acta. 2014;122:296–302. doi: 10.1016/j.electacta.2013.11.037. Mar. DOI

Zelenev A., Sonnenberg W., Matijević E. Preparation, characterization, and adhesion of monodispersed polypyrrole particles. Colloid Polym. Sci. 1998;276(9):838–841. doi: 10.1007/s003960050318. Oct. DOI

Káčerová S., et al. Biocompatibility of colloidal polypyrrole. Colloids Surf. B Biointerfaces. 2023;232 doi: 10.1016/j.colsurfb.2023.113605. Dec. PubMed DOI

Maity S. Optimization of processing parameters of in-situ polymerization of pyrrole on woollen textile to improve its thermal conductivity. Prog. Org. Coating. 2017;107:48–53. doi: 10.1016/j.porgcoat.2017.03.010. Jun. DOI

Zhu Q., et al. Epoxy coating with in-situ synthesis of polypyrrole functionalized graphene oxide for enhanced anticorrosive performance. Prog. Org. Coating. 2020;140 doi: 10.1016/j.porgcoat.2019.105488. Mar. DOI

Zhao Y., et al. A novel flexible sensor for respiratory monitoring based on in situ polymerization of polypyrrole and polyurethane coating. RSC Adv. 2017;7(78):49576–49585. doi: 10.1039/C7RA08331A. Oct. DOI

Maráková N., et al. Antimicrobial activity and cytotoxicity of cotton fabric coated with conducting polymers, polyaniline or polypyrrole, and with deposited silver nanoparticles. Appl. Surf. Sci. 2017;396:169–176. doi: 10.1016/j.apsusc.2016.11.024. Feb. DOI

Ravichandran R., Sundarrajan S., Venugopal J.R., Mukherjee S., Ramakrishna S. Applications of conducting polymers and their issues in biomedical engineering. J. R. Soc. Interface. 2010;7(suppl_5) doi: 10.1098/rsif.2010.0120.focus. Oct. PubMed DOI PMC

Garner B., Hodgson A.J., Wallace G.G., Underwood P.A. Human endothelial cell attachment to and growth on polypyrrole-heparin is vitronectin dependent. J. Mater. Sci. Mater. Med. 1999;10(1):19–27. doi: 10.1023/A:1008835925998. Jan. PubMed DOI

Slepička P., Slepičková Kasálková N., Bačáková L., Kolská Z., Švorčík V. Enhancement of polymer cytocompatibility by nanostructuring of polymer surface. J. Nanomater. 2012;2012 doi: 10.1155/2012/527403. Jul. DOI

Wilson C.J., Clegg R.E., Leavesley D.I., Pearcy M.J. Mediation of biomaterial–cell interactions by adsorbed proteins: a review. Tissue Eng. 2005;11(1–2):1–18. doi: 10.1089/ten.2005.11.1. Jan. PubMed DOI

Mitchell G.R., Tojeira A. Role of anisotropy in tissue engineering. Procedia Eng. 2013;59:117–125. doi: 10.1016/j.proeng.2013.05.100. DOI

Hoque M.E. Robust formulation for the design of tissue engineering scaffolds: a comprehensive study on structural anisotropy, viscoelasticity and degradation of 3D scaffolds fabricated with customized desktop robot based rapid prototyping (DRBRP) system. Mater. Sci. Eng. C. Mar. 2017;72:433–443. doi: 10.1016/j.msec.2016.11.019. PubMed DOI

Bursac N., Parker K.K., Iravanian S., Tung L. Cardiomyocyte cultures with controlled macroscopic anisotropy. Circ. Res. 2002;91(12):e45–e54. doi: 10.1161/01.RES.0000047530.88338.EB. Dec. PubMed DOI

Nikkhah M., Edalat F., Manoucheri S., Khademhosseini A. Engineering microscale topographies to control the cell–substrate interface. Biomaterials. 2012;33(21):5230–5246. doi: 10.1016/j.biomaterials.2012.03.079. Jul. PubMed DOI PMC

Yang F., Murugan R., Wang S., Ramakrishna S. Electrospinning of nano/micro scale poly(l-lactic acid) aligned fibers and their potential in neural tissue engineering. Biomaterials. 2005;26(15):2603–2610. doi: 10.1016/j.biomaterials.2004.06.051. May. PubMed DOI

Yin Z., et al. The regulation of tendon stem cell differentiation by the alignment of nanofibers. Biomaterials. 2010;31(8):2163–2175. doi: 10.1016/j.biomaterials.2009.11.083. Mar. PubMed DOI

Humpolicek P., et al. Polyaniline cryogels: biocompatibility of novel conducting macroporous material. Sci. Rep. 2018;8:135. doi: 10.1038/s41598-017-18290-1. Jan. PubMed DOI PMC

Milakin K.A., et al. Biocompatible and antibacterial gelatin-based polypyrrole cryogels. Polymer. 2020;197 doi: 10.1016/j.polymer.2020.122491. May. DOI

Golgovici F., Cârlan M.-S., Popescu A.-G., Anicai L. Electrochemical synthesis of polypyrrole and polypyrrole-indomethacin coatings on NiCr alloys involving deep eutectic solvents. Metals. 2020;10(9) doi: 10.3390/met10091130. Art. no. 9, Sep. DOI

Thunberg J., et al. In situ synthesis of conductive polypyrrole on electrospun cellulose nanofibers: scaffold for neural tissue engineering. Cellulose. 2015;22(3):1459–1467. doi: 10.1007/s10570-015-0591-5. Jun. DOI

Wu A., Kolla H., Manohar S.K. Chemical synthesis of highly conducting polypyrrole nanofiber film. Macromolecules. 2005;38(19):7873–7875. doi: 10.1021/ma051299e. Sep. DOI

Sahoo S., Karthikeyan G., Nayak G. Ch, Das C.K. Electrochemical characterization of in situ polypyrrole coated graphene nanocomposites. Synth. Met. 2011;161(15):1713–1719. doi: 10.1016/j.synthmet.2011.06.011. Aug. DOI

Vellguth N., Shamsuyeva M., Kroll S., Renz F., Endres H.-J. Electrical conductivity in biocomposites via polypyrrole coating. J. Mater. Sci. Mater. Electron. 2019;30(3):2373–2381. doi: 10.1007/s10854-018-0510-2. Feb. DOI

Nagy A., Rossant J., Nagy R., Abramow-Newerly W., Roder J.C. Derivation of completely cell culture-derived mice from early-passage embryonic stem cells. Proc. Natl. Acad. Sci. USA. 1993;90(18):8424–8428. doi: 10.1073/pnas.90.18.8424. Sep. PubMed DOI PMC

Carpenter A.E., et al. CellProfiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biol. 2006;7(10):R100. doi: 10.1186/gb-2006-7-10-r100. PubMed DOI PMC

Pang A.L., Arsad A., Ahmadipour M. Synthesis and factor affecting on the conductivity of polypyrrole: a short review. Polym. Adv. Technol. 2021;32(4):1428–1454. doi: 10.1002/pat.5201. Apr. DOI

Guimard N.K., Gomez N., Schmidt C.E. Conducting polymers in biomedical engineering. Prog. Polym. Sci. 2007;32(8):876–921. doi: 10.1016/j.progpolymsci.2007.05.012. Aug. DOI

Patois T., Lakard B., Martin N., Fievet P. Effect of various parameters on the conductivity of free standing electrosynthesized polypyrrole films. Synth. Met. 2010;160(19):2180–2185. doi: 10.1016/j.synthmet.2010.08.005. Oct. DOI

Kašpárková V., et al. Cell-compatible conducting polyaniline films prepared in colloidal dispersion mode. Colloids Surf. B Biointerfaces. 2017;157:309–316. doi: 10.1016/j.colsurfb.2017.05.066. Sep. PubMed DOI

Mahmoodian M., Pourabbas B., Mohajerzadeh S. Effect of anionic dopants on thickness, morphology and electrical properties of polypyrrole ultra-thin films prepared by in situ chemical polymerization. Thin Solid Films. 2015;583:255–263. doi: 10.1016/j.tsf.2015.03.043. May. DOI

Sasso C., Beneventi D., Zeno E., Chaussy D., Petit-Conil M., Belgacem N. Polypyrrole and polypyrrole/wood-derived materials conducting composites: a review. Bioresources. 2011;6(3):3585–3620.

Navale S.T., Mane A.T., Ghanwat A.A., Mulik A.R., Patil V.B. Camphor sulfonic acid (CSA) doped polypyrrole (PPy) films: measurement of microstructural and optoelectronic properties. Measurement. 2014;50:363–369. doi: 10.1016/j.measurement.2014.01.012. Apr. DOI

Berg J., Eriksson L., Claesson P., Borve K. 3-Component Langmuir-Blodgett-Films with a controllable degree of polarity. Langmuir. 1994;10(4):1225–1234. doi: 10.1021/la00016a041. Apr. DOI

Vogler E.A. Structure and reactivity of water at biomaterial surfaces. Adv. Colloid Interface Sci. 1998;74(1):69–117. doi: 10.1016/S0001-8686(97)00040-7. Feb. PubMed DOI

Stejskal J., Trchová M. Conducting polypyrrole nanotubes: a review. Chem. Pap. 2018;72(7):1563–1595. doi: 10.1007/s11696-018-0394-x. Jul. PubMed DOI

Abidian M.R., Corey J.M., Kipke D.R., Martin D.C. Conducting-polymer nanotubes improve electrical properties, mechanical adhesion, neural attachment, and neurite outgrowth of neural electrodes. Small. 2010;6(3):421–429. doi: 10.1002/smll.200901868. PubMed DOI PMC

Satriano C., Carnazza S., Guglielmino S., Marletta G. Surface free energy and cell attachment onto ion-beam irradiated polymer surfaces. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms. 2003;208:287–293. doi: 10.1016/S0168-583X(03)00647-5. Aug. DOI

Tallawi M., et al. Strategies for the chemical and biological functionalization of scaffolds for cardiac tissue engineering: a review. J. R. Soc. Interface. 2015;12(108) doi: 10.1098/rsif.2015.0254. Jul. PubMed DOI PMC

Wu M., Zhong C., Deng Y., Zhang Q., Zhang X., Zhao X. Resveratrol loaded glycyrrhizic acid-conjugated human serum albumin nanoparticles for tail vein injection II: pharmacokinetics, tissue distribution and bioavailability. Drug Deliv. Jan. 2020;27(1):81–90. doi: 10.1080/10717544.2019.1704944. PubMed DOI PMC

Van Vlierberghe S., Vanderleyden E., Boterberg V., Dubruel P. Gelatin functionalization of biomaterial surfaces: strategies for immobilization and visualization. Polymers. 2011;3(1) doi: 10.3390/polym3010114. Art. no. 1, Mar. DOI

Fee T., Downs C., Eberhardt A., Zhou Y., Berry J. Image-based quantification of fiber alignment within electrospun tissue engineering scaffolds is related to mechanical anisotropy. J. Biomed. Mater. Res. 2016;104(7):1680–1686. doi: 10.1002/jbm.a.35697. PubMed DOI

Lin C.-H., Tang X., Chen P., Luo S.-C. Unraveling the adhesion behavior of different cell lines on biomimetic PEDOT interfaces: the role of surface morphology and antifouling properties. ACS Appl. Bio Mater. 2023 doi: 10.1021/acsabm.3c00833. Nov. PubMed DOI

Tringides C.M., Mooney D.J. Conductive hydrogel scaffolds for the 3D localization and orientation of fibroblasts. Macromol. Biosci. 2024;24(1) doi: 10.1002/mabi.202300044. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...