Metals and Trace Elements in Calcified Valves in Patients with Acquired Severe Aortic Valve Stenosis: Is There a Connection with the Degeneration Process?
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
PubMed
36836554
PubMed Central
PMC9967375
DOI
10.3390/jpm13020320
PII: jpm13020320
Knihovny.cz E-resources
- Keywords
- aortic valve stenosis, biological effects, biomonitoring, calcification, metals and trace elements,
- Publication type
- Journal Article MeSH
BACKGROUND: Acquired calcified aortic valve stenosis is the most common valve disease in adulthood. In the etiopathogenesis of this complex pathology, the importance of inflammation is mentioned, in which non-infectious influences represented by the biological effects of metal pollutants may participate. The main goal of the study was to determine the concentration of 21 metals and trace elements-aluminium (Al), barium (Ba), cadmium (Cd), calcium (Ca), chrome (Cr), cobalt (Co), copper (Cu), gold (Au), lead (Pb), magnesium (Mg), mercury (Hg), molybdenum (Mo), nickel (Ni), phosphorus (P), selenium (Se), strontium (Sr), sulfur (S), tin (Sn), titanium (Ti), vanadium (V) and zinc (Zn)-in the tissue of calcified aortic valves and to compare them with the concentrations of the same elements in the tissue of healthy aortic valves in the control group. MATERIAL AND METHODS: The study group consisted of 49 patients (25 men, mean age: 74) with acquired, severe, calcified aortic valve stenosis with indicated heart surgery. The control group included 34 deceased (20 men, median age: 53) with no evidence of heart disease. Calcified valves were explanted during cardiac surgery and deep frozen. Similarly, the valves of the control group were removed. All valves were lyophilized and analyzed by inductively coupled plasma mass spectrometry. The concentrations of selected elements were compared by means of standard statistical methods. RESULTS: Calcified aortic valves contained significantly higher (p < 0.05) concentrations of Ba, Ca, Co, Cr, Mg, P, Pb, Se, Sn, Sr and Zn and-in contrast-lower concentrations of Cd, Cu, Mo, S and V than valves of the control group. Significant positive correlations of concentrations between the pairs Ca-P, Cu-S and Se-S and strong negative correlations between the elements Mg-Se, P-S and Ca-S were found in the affected valves. CONCLUSION: Aortic valve calcification is associated with increased tissue accumulation of the majority of the analyzed elements, including metal pollutants. Some exposure factors may increase their accumulation in the valve tissue. A relationship between exposure to environmental burden and the aortic valve calcification process cannot be ruled out. Advances in histochemical and imaging techniques allowing imaging of metal pollutants directly in valve tissue may represent an important future perspective.
See more in PubMed
Roger V.L., Go A.S., Lloyd-Jones D.M., Adams R.J., Berry J.D., Brown T.M., Carnethon M.R., Dai S., de Simone G., Ford E.S., et al. Heart Disease and Stroke Statistics—2011 Update: A Report From the American Heart Association. Circulation. 2011;123:e18–e209. doi: 10.1161/CIR.0b013e3182009701. PubMed DOI PMC
Lis G.J., Czapla-Masztafiak J., Kwiatek W.M., Gajda M., Jasek E., Jasinska M., Czubek U., Borchert M., Appel K., Nessler J., et al. Distribution of selected elements in calcific human aortic valves studied by microscopy combined with SR-μXRF: Influence of lipids on progression of calcification. Micron. 2014;67:141–148. doi: 10.1016/j.micron.2014.08.002. PubMed DOI
Otto C.M., Kuusisto J., Reichenbach D.D., Gown A.M., O’Brien K.D. Characterization of the early lesion of ‘degenerative’ valvular aortic stenosis. Histological and immunohistochemical studies. Circulation. 1994;90:844–853. doi: 10.1161/01.CIR.90.2.844. PubMed DOI
Fondard O., Detaint D., Iung B., Choqueux C., Adle-Biassette H., Jarraya M., Hvass U., Couetil J.P., Henin D., Michel J.B., et al. Extracellular matrix remodelling in human aortic valve disease: The role of matrix metalloproteinases and their tissue inhibitors. Eur. Heart J. 2005;26:1333–1341. doi: 10.1093/eurheartj/ehi248. PubMed DOI
Rajamannan N.M., Subramaniam M., Rickard D., Stock S.R., Donovan J., Springett M., Orszulak T., Fullerton D.A., Tajik A.J., Bonow R.O., et al. Human Aortic Valve Calcification Is Associated With an Osteoblast Phenotype. Circulation. 2003;107:2181–2184. doi: 10.1161/01.CIR.0000070591.21548.69. PubMed DOI PMC
Wirrig E.E., Hinton R.B., Yutzey K.E. Differential expression of cartilage and bone-related proteins in pediatric and adult diseased aortic valves. J. Mol. Cell. Cardiol. 2011;50:561–569. doi: 10.1016/j.yjmcc.2010.12.005. PubMed DOI PMC
Combs M.D., Yutzey K.E. Heart Valve Development: Regulatory Networks in Development and Disease. Circ. Res. 2009;105:408–421. doi: 10.1161/CIRCRESAHA.109.201566. PubMed DOI PMC
Sanchez P.L., Mazzone A. C-reactive protein in degenerative aortic valve stenosis. Cardiovasc. Ultrasound. 2006;4:24. doi: 10.1186/1476-7120-4-24. PubMed DOI PMC
Galante A., Pietroiusti A., Vellini M., Piccolo P., Possati G., De Bonis M., Grillo R.L., Fontana C., Favalli C. C-reactive protein is increased in patients with degenerative aortic valvular stenosis. J. Am. Coll. Cardiol. 2001;38:1078–1082. doi: 10.1016/S0735-1097(01)01484-X. PubMed DOI
Nilsson K., Liu A., Påhlson C., Lindquist O. Demonstration of intracellular microorganisms (Rickettsia spp., Chlamydia pneumoniae, Bartonella spp.) in pathological human aortic valves by PCR. J. Infect. 2005;50:46–52. doi: 10.1016/j.jinf.2003.10.009. PubMed DOI
Vainio K., Vengen O., Hoel T., Fremstad H., Anestad G. Failure to detect Chlamydia pneumoniae in aortic valves and peripheral blood mononuclear cells from patients undergoing aortic valve replacement in Norway. Scand. J. Infect. Dis. 2002;34:660–663. doi: 10.1080/00365540210147796. PubMed DOI
Rose A.G. Failure to detect Chlamydia pneumoniae in senile calcific aortic stenosis or calcified congenital bicuspid aortic valve by immunofluorescence, polymerase chain reaction and electron microscopy. Cardiovasc. Pathol. Off. J. Soc. Cardiovasc. Pathol. 2002;11:300–304. doi: 10.1016/S1054-8807(02)00116-3. PubMed DOI
Flora S.J.S. Toxic metals: Health effects, and therapeutic measures. J. Biomed. Ther. Sci. 2014;12:48–64.
Ray P.D., Yosim A., Fry R.C. Incorporating epigenetic data into the risk assessment process for the toxic metals arsenic, cadmium, chromium, lead, and mercury: Strategies and challenges. Front. Genet. 2014;5:201. doi: 10.3389/fgene.2014.00201. PubMed DOI PMC
Bondy S.C. Metal Toxicity, Inflammation and Oxidative Stress. In: Bondy S.C., Campbell A., editors. Inflammation, Aging, and Oxidative Stress. Springer International Publishing; Cham, Switzerland: 2016. [(accessed on 25 July 2021)]. pp. 3–16. (Oxidative Stress in Applied Basic Research and Clinical Practice). Available online: http://link.springer.com/10.1007/978-3-319-33486-8_1. DOI
Bjørklund G., Dadar M., Aaseth J. Delayed-type hypersensitivity to metals in connective tissue diseases and fibromyalgia. Environ. Res. 2018;161:573–579. doi: 10.1016/j.envres.2017.12.004. PubMed DOI
Stejskal V., Reynolds T., Bjørklund G. Increased frequency of delayed type hypersensitivity to metals in patients with connective tissue disease. J. Trace Elem. Med. Biol. 2015;31:230–236. doi: 10.1016/j.jtemb.2015.01.001. PubMed DOI
Vahanian A., Beyersdorf F., Praz F., Milojevic M., Baldus S., Bauersachs J., Capodanno D., Conradi L., De Bonis M., De Paulis R., et al. 2021 ESC/EACTS Guidelines for the management of valvular heart disease. Eur. Heart J. 2022;43:561–632. doi: 10.1093/eurheartj/ehab395. PubMed DOI
Pawade T., Clavel M.A., Tribouilloy C., Dreyfus J., Mathieu T., Tastet L., Renard C., Gun M., Jenkins W.S.A., Macron L., et al. Computed Tomography Aortic Valve Calcium Scoring in Patients With Aortic Stenosis. Circ. Cardiovasc. Imaging. 2018;11:e007146. doi: 10.1161/CIRCIMAGING.117.007146. PubMed DOI
Baumgartner H., Hung J., Bermejo J., Chambers J.B., Evangelista A., Griffin B.P., Iung B., Otto C.M., Pellikka P.A., Quiñones M. American Society of Echocardiography; European Association of Echocardiography. Echocardiographic assessment of valve stenosis: EAE/ASE recommendations for clinical practice. J. Am. Soc. Echocardiogr. 2009;22:1–23. doi: 10.1016/j.echo.2008.11.029. PubMed DOI
Chambers D.J., Haire K., Morley N., Fairbanks L., Strumia E., Young C.P., Venn G.E. St. Thomas’ Hospital cardioplegia: Enhanced protection with exogenous creatine phosphate. Ann. Thorac. Surg. 1996;61:67–75. doi: 10.1016/0003-4975(95)00819-5. PubMed DOI
Janna H., Abbas M.D., Mojid M.H. Demineralized Drinking Water in Local Reverse Osmosis Water Treatment Stations and the Potential Effect on Human Health. J. Geosci. Environ. Prot. 2016;4:104–110. doi: 10.4236/gep.2016.42012. DOI
Tohno Y., Tohno S., Minami T., Moriwake Y., Nishiwaki F., Hashimoto K., Yamamoto H. Differences in Accumulation of Elements in Human Cardiac Valves. Biol. Trace Elem. Res. 2000;77:107–118. doi: 10.1385/BTER:77:2:107. PubMed DOI
Frustaci A., Magnavita N., Chimenti C., Caldarulo M., Sabbioni E., Pietra R., Cellini C., Possati G.F., Maseri A. Marked elevation of myocardial trace elements in idiopathic dilated cardiomyopathy compared with secondary cardiac dysfunction. J. Am. Coll. Cardiol. 1999;33:1578–1583. doi: 10.1016/S0735-1097(99)00062-5. PubMed DOI
Aalbers T.G., Houtman J.P., Makkink B. Trace-element concentrations in human autopsy tissue. Clin. Chem. 1987;33:2057–2064. doi: 10.1093/clinchem/33.11.2057. PubMed DOI
Nyström-Rosander C., Lindh U., Thelin S., Lindquist O., Friman G., Ilbäck N.G. Trace Element Changes in Sclerotic Heart Valves from Patients Undergoing Aortic Valve Surgery. Biol. Trace Elem. Res. 2002;88:9–24. doi: 10.1385/BTER:88:1:09. PubMed DOI
Houston M.C. The role of mercury and cadmium heavy metals in vascular disease, hypertension, coronary heart disease, and myocardial infarction. Altern. Ther. Health Med. 2007;13:S128–S133. PubMed
Navas-Acien A., Guallar E., Silbergeld E.K., Rothenberg S.J. Lead Exposure and Cardiovascular Disease—A Systematic Review. Environ. Health Perspect. 2007;115:472–482. doi: 10.1289/ehp.9785. PubMed DOI PMC
Lushchak V.I. Glutathione Homeostasis and Functions: Potential Targets for Medical Interventions. J. Amino Acids. 2012;2012:736837. doi: 10.1155/2012/736837. PubMed DOI PMC
Bhambri A., Del Rosso J.Q. Calciphylaxis: A review. J. Clin. Aesthetic. Dermatol. 2008;1:38–41. PubMed PMC
Manousek J., Kala P., Lokaj P., Ondrus T., Helanova K., Miklikova M., Brazdil V., Tomandlova M., Parenica J., Pavkova Goldbergova M., et al. Oxidative Stress in Takotsubo Syndrome-Is It Essential for an Acute Attack? Indirect Evidences Support Multisite Impact Including the Calcium Overload-Energy Failure Hypothesis. Front. Cardiovasc. Med. 2021;8:732708. doi: 10.3389/fcvm.2021.732708. PubMed DOI PMC
Manousek J., Felsoci M., Miklik R., Parenica J., Krejci J., Bjørklund G., Klanova J., Mlejnek D., Miklikova M., Lokaj P., et al. Delayed-type Hypersensitivity to Metals in Newly Diagnosed Patients with Nonischemic Dilated Cardiomyopathy. Cardiovasc. Toxicol. 2020;20:571–580. doi: 10.1007/s12012-020-09582-6. PubMed DOI
Lerman D.A., Prasad S., Alotti N. Calcific Aortic Valve Disease: Molecular Mechanisms And Therapeutic Approaches. Eur. Cardiol. Rev. 2015;10:108. doi: 10.15420/ecr.2015.10.2.108. PubMed DOI PMC
Karna E., Szoka L., Huynh T.Y.L., Palka J.A. Proline-dependent regulation of collagen metabolism. Cell Mol. Life Sci. CMLS. 2020;77:1911–1918. doi: 10.1007/s00018-019-03363-3. PubMed DOI PMC
Khalili B., Rimaz M. Interaction of L-proline with group IIB (Zn2+, Cd2+, Hg2+) metal cations in the gas and aqueous phases: A quantum computational study. Can. J. Chem. 2016;94:501–508. doi: 10.1139/cjc-2015-0616. DOI
Srivastava R., Lefebvre N., Onkelinx C. Effects of metal salts on collagen synthesis in embryonic rat calvaria. Toxicol. Appl. Pharmacol. 1976;37:229–235. doi: 10.1016/0041-008X(76)90086-7. PubMed DOI
Kuta J., Machát J., Benová D., Červenka R., Zeman J., Martinec P. Association of minor and trace elements with mineralogical constituents of urinary stones: A hard nut to crack in existing studies of urolithiasis. Environ. Geochem. Health. 2013;35:511–522. doi: 10.1007/s10653-013-9511-5. PubMed DOI
Brazdis R.I., Fierascu I., Avramescu S.M., Fierascu R.C. Recent Progress in the Application of Hydroxyapatite for the Adsorption of Heavy Metals from Water Matrices. Materials. 2021;14:6898. doi: 10.3390/ma14226898. PubMed DOI PMC
Poprac P., Jomova K., Simunkova M., Kollar V., Rhodes C.J., Valko M. Targeting Free Radicals in Oxidative Stress-Related Human Diseases. Trends Pharmacol. Sci. 2017;38:592–607. doi: 10.1016/j.tips.2017.04.005. PubMed DOI
Mertens K., Lowes D.A., Webster N.R., Talib J., Hall L., Davies M.J., Beattie J.H., Galley H.F. Low zinc and selenium concentrations in sepsis are associated with oxidative damage and inflammation. Br. J. Anaesth. 2015;114:990–999. doi: 10.1093/bja/aev073. PubMed DOI
Bernhard D., Rossmann A., Wick G. Metals in cigarette smoke. IUBMB Life Int. Union Biochem. Mol. Biol. Life. 2005;57:805–809. doi: 10.1080/15216540500459667. PubMed DOI
Rastogi S. Renal effects of environmental and occupational lead exposure. Indian J. Occup. Environ. Med. 2008;12:103. doi: 10.4103/0019-5278.44689. PubMed DOI PMC
Satarug S. Cadmium Sources and Toxicity. Toxics. 2019;7:25. doi: 10.3390/toxics7020025. PubMed DOI PMC
Linus Pauling Institute, Micronutrient Information Center. Oregon State University. Molybdenum. Oregon State University. [(accessed on 24 October 2021)]. Available online: https://lpi.oregonstate.edu/mic/minerals/molybdenum.
Linus Pauling Institute, Micronutrient Information Center. Oregon State University. Selenium [Internet]. Oregon State University. [(accessed on 26 October 2021)]. Available online: https://lpi.oregonstate.edu/mic/minerals/selenium.
Keegan G.M., Learmonth I.D., Case C.P. Orthopaedic metals and their potential toxicity in the arthroplasty patient: A review of current knowledge and future strategies. J. Bone Jt. Surg. Br. 2007;89:567–573. doi: 10.1302/0301-620X.89B5.18903. PubMed DOI
U.S. Food & Drug Administration . Biological Responses to Metal Implants. U.S. Food & Drug Administration; Silver Spring, MD, USA: 2019. [(accessed on 26 October 2021)]. Available online: https://www.fda.gov/media/131150/download.
Lassalle M., Colas S., Rudnichi A., Zureik M., Dray-Spira R. Is There a Cardiotoxicity Associated With Metallic Head Hip Prostheses? A Cohort Study in the French National Health Insurance Databases. Clin. Orthop. 2018;476:1441–1451. doi: 10.1097/01.blo.0000533617.64678.69. PubMed DOI PMC
Maňoušek J., Andršová I., Stejskal V., Vlašínová J., Sepši M., Kuta J., Klánová J., Mazík M., Jarkovský J., Šnajdrová L., et al. Hypersensitivity to material and environmental burden as a possible cause of late complications of cardiac implantable electronic devices. Europace. 2018;20:e140–e147. doi: 10.1093/europace/eux227. PubMed DOI PMC
Hanawa T. Materials for metallic stents. J. Artif. Organs. 2009;12:73–79. doi: 10.1007/s10047-008-0456-x. PubMed DOI
Sakamoto A., Jinnouchi H., Torii S., Virmani R., Finn A. Understanding the Impact of Stent and Scaffold Material and Strut Design on Coronary Artery Thrombosis from the Basic and Clinical Points of View. Bioengineering. 2018;5:71. doi: 10.3390/bioengineering5030071. PubMed DOI PMC
Kunitake J.A.M.R., Choi S., Nguyen K.X., Lee M.M., He F., Sudilovsky D., Morris P.G., Jochelson M.S., Hudis C.A., Muller D.A., et al. Correlative imaging reveals physiochemical heterogeneity of microcalcifications in human breast carcinomas. J. Struct. Biol. 2018;202:25–34. doi: 10.1016/j.jsb.2017.12.002. PubMed DOI PMC
Haddad A.C.S.S., Tortamano A., de Souza A.L., de Oliveira P.V. An in vitro comparison of nickel and chromium release from brackets. Braz. Oral Res. 2009;23:399–406. doi: 10.1590/S1806-83242009000400009. PubMed DOI
Hallab N.J., Messina C., Skipor A., Jacobs J.J. Differences in the fretting corrosion of metal-metal and ceramic-metal modular junctions of total hip replacements. J. Orthop. Res. Off. Publ. Orthop. Res. Soc. 2004;22:250–259. doi: 10.1016/S0736-0266(03)00186-4. PubMed DOI
Amini F., Jafari A., Amini P., Sepasi S. Metal ion release from fixed orthodontic appliances—An in vivo study. Eur. J. Orthod. 2012;34:126–130. doi: 10.1093/ejo/cjq181. PubMed DOI
Kamerud K.L., Hobbie K.A., Anderson K.A. Stainless Steel Leaches Nickel and Chromium into Foods during Cooking. J. Agric. Food Chem. 2013;61:9495–9501. doi: 10.1021/jf402400v. PubMed DOI PMC
Wang Y., Dai S. Structural basis of metal hypersensitivity. Immunol. Res. 2013;55:83–90. doi: 10.1007/s12026-012-8351-1. PubMed DOI PMC