• This record comes from PubMed

Metals and Trace Elements in Calcified Valves in Patients with Acquired Severe Aortic Valve Stenosis: Is There a Connection with the Degeneration Process?

. 2023 Feb 13 ; 13 (2) : . [epub] 20230213

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

BACKGROUND: Acquired calcified aortic valve stenosis is the most common valve disease in adulthood. In the etiopathogenesis of this complex pathology, the importance of inflammation is mentioned, in which non-infectious influences represented by the biological effects of metal pollutants may participate. The main goal of the study was to determine the concentration of 21 metals and trace elements-aluminium (Al), barium (Ba), cadmium (Cd), calcium (Ca), chrome (Cr), cobalt (Co), copper (Cu), gold (Au), lead (Pb), magnesium (Mg), mercury (Hg), molybdenum (Mo), nickel (Ni), phosphorus (P), selenium (Se), strontium (Sr), sulfur (S), tin (Sn), titanium (Ti), vanadium (V) and zinc (Zn)-in the tissue of calcified aortic valves and to compare them with the concentrations of the same elements in the tissue of healthy aortic valves in the control group. MATERIAL AND METHODS: The study group consisted of 49 patients (25 men, mean age: 74) with acquired, severe, calcified aortic valve stenosis with indicated heart surgery. The control group included 34 deceased (20 men, median age: 53) with no evidence of heart disease. Calcified valves were explanted during cardiac surgery and deep frozen. Similarly, the valves of the control group were removed. All valves were lyophilized and analyzed by inductively coupled plasma mass spectrometry. The concentrations of selected elements were compared by means of standard statistical methods. RESULTS: Calcified aortic valves contained significantly higher (p < 0.05) concentrations of Ba, Ca, Co, Cr, Mg, P, Pb, Se, Sn, Sr and Zn and-in contrast-lower concentrations of Cd, Cu, Mo, S and V than valves of the control group. Significant positive correlations of concentrations between the pairs Ca-P, Cu-S and Se-S and strong negative correlations between the elements Mg-Se, P-S and Ca-S were found in the affected valves. CONCLUSION: Aortic valve calcification is associated with increased tissue accumulation of the majority of the analyzed elements, including metal pollutants. Some exposure factors may increase their accumulation in the valve tissue. A relationship between exposure to environmental burden and the aortic valve calcification process cannot be ruled out. Advances in histochemical and imaging techniques allowing imaging of metal pollutants directly in valve tissue may represent an important future perspective.

See more in PubMed

Roger V.L., Go A.S., Lloyd-Jones D.M., Adams R.J., Berry J.D., Brown T.M., Carnethon M.R., Dai S., de Simone G., Ford E.S., et al. Heart Disease and Stroke Statistics—2011 Update: A Report From the American Heart Association. Circulation. 2011;123:e18–e209. doi: 10.1161/CIR.0b013e3182009701. PubMed DOI PMC

Lis G.J., Czapla-Masztafiak J., Kwiatek W.M., Gajda M., Jasek E., Jasinska M., Czubek U., Borchert M., Appel K., Nessler J., et al. Distribution of selected elements in calcific human aortic valves studied by microscopy combined with SR-μXRF: Influence of lipids on progression of calcification. Micron. 2014;67:141–148. doi: 10.1016/j.micron.2014.08.002. PubMed DOI

Otto C.M., Kuusisto J., Reichenbach D.D., Gown A.M., O’Brien K.D. Characterization of the early lesion of ‘degenerative’ valvular aortic stenosis. Histological and immunohistochemical studies. Circulation. 1994;90:844–853. doi: 10.1161/01.CIR.90.2.844. PubMed DOI

Fondard O., Detaint D., Iung B., Choqueux C., Adle-Biassette H., Jarraya M., Hvass U., Couetil J.P., Henin D., Michel J.B., et al. Extracellular matrix remodelling in human aortic valve disease: The role of matrix metalloproteinases and their tissue inhibitors. Eur. Heart J. 2005;26:1333–1341. doi: 10.1093/eurheartj/ehi248. PubMed DOI

Rajamannan N.M., Subramaniam M., Rickard D., Stock S.R., Donovan J., Springett M., Orszulak T., Fullerton D.A., Tajik A.J., Bonow R.O., et al. Human Aortic Valve Calcification Is Associated With an Osteoblast Phenotype. Circulation. 2003;107:2181–2184. doi: 10.1161/01.CIR.0000070591.21548.69. PubMed DOI PMC

Wirrig E.E., Hinton R.B., Yutzey K.E. Differential expression of cartilage and bone-related proteins in pediatric and adult diseased aortic valves. J. Mol. Cell. Cardiol. 2011;50:561–569. doi: 10.1016/j.yjmcc.2010.12.005. PubMed DOI PMC

Combs M.D., Yutzey K.E. Heart Valve Development: Regulatory Networks in Development and Disease. Circ. Res. 2009;105:408–421. doi: 10.1161/CIRCRESAHA.109.201566. PubMed DOI PMC

Sanchez P.L., Mazzone A. C-reactive protein in degenerative aortic valve stenosis. Cardiovasc. Ultrasound. 2006;4:24. doi: 10.1186/1476-7120-4-24. PubMed DOI PMC

Galante A., Pietroiusti A., Vellini M., Piccolo P., Possati G., De Bonis M., Grillo R.L., Fontana C., Favalli C. C-reactive protein is increased in patients with degenerative aortic valvular stenosis. J. Am. Coll. Cardiol. 2001;38:1078–1082. doi: 10.1016/S0735-1097(01)01484-X. PubMed DOI

Nilsson K., Liu A., Påhlson C., Lindquist O. Demonstration of intracellular microorganisms (Rickettsia spp., Chlamydia pneumoniae, Bartonella spp.) in pathological human aortic valves by PCR. J. Infect. 2005;50:46–52. doi: 10.1016/j.jinf.2003.10.009. PubMed DOI

Vainio K., Vengen O., Hoel T., Fremstad H., Anestad G. Failure to detect Chlamydia pneumoniae in aortic valves and peripheral blood mononuclear cells from patients undergoing aortic valve replacement in Norway. Scand. J. Infect. Dis. 2002;34:660–663. doi: 10.1080/00365540210147796. PubMed DOI

Rose A.G. Failure to detect Chlamydia pneumoniae in senile calcific aortic stenosis or calcified congenital bicuspid aortic valve by immunofluorescence, polymerase chain reaction and electron microscopy. Cardiovasc. Pathol. Off. J. Soc. Cardiovasc. Pathol. 2002;11:300–304. doi: 10.1016/S1054-8807(02)00116-3. PubMed DOI

Flora S.J.S. Toxic metals: Health effects, and therapeutic measures. J. Biomed. Ther. Sci. 2014;12:48–64.

Ray P.D., Yosim A., Fry R.C. Incorporating epigenetic data into the risk assessment process for the toxic metals arsenic, cadmium, chromium, lead, and mercury: Strategies and challenges. Front. Genet. 2014;5:201. doi: 10.3389/fgene.2014.00201. PubMed DOI PMC

Bondy S.C. Metal Toxicity, Inflammation and Oxidative Stress. In: Bondy S.C., Campbell A., editors. Inflammation, Aging, and Oxidative Stress. Springer International Publishing; Cham, Switzerland: 2016. [(accessed on 25 July 2021)]. pp. 3–16. (Oxidative Stress in Applied Basic Research and Clinical Practice). Available online: http://link.springer.com/10.1007/978-3-319-33486-8_1. DOI

Bjørklund G., Dadar M., Aaseth J. Delayed-type hypersensitivity to metals in connective tissue diseases and fibromyalgia. Environ. Res. 2018;161:573–579. doi: 10.1016/j.envres.2017.12.004. PubMed DOI

Stejskal V., Reynolds T., Bjørklund G. Increased frequency of delayed type hypersensitivity to metals in patients with connective tissue disease. J. Trace Elem. Med. Biol. 2015;31:230–236. doi: 10.1016/j.jtemb.2015.01.001. PubMed DOI

Vahanian A., Beyersdorf F., Praz F., Milojevic M., Baldus S., Bauersachs J., Capodanno D., Conradi L., De Bonis M., De Paulis R., et al. 2021 ESC/EACTS Guidelines for the management of valvular heart disease. Eur. Heart J. 2022;43:561–632. doi: 10.1093/eurheartj/ehab395. PubMed DOI

Pawade T., Clavel M.A., Tribouilloy C., Dreyfus J., Mathieu T., Tastet L., Renard C., Gun M., Jenkins W.S.A., Macron L., et al. Computed Tomography Aortic Valve Calcium Scoring in Patients With Aortic Stenosis. Circ. Cardiovasc. Imaging. 2018;11:e007146. doi: 10.1161/CIRCIMAGING.117.007146. PubMed DOI

Baumgartner H., Hung J., Bermejo J., Chambers J.B., Evangelista A., Griffin B.P., Iung B., Otto C.M., Pellikka P.A., Quiñones M. American Society of Echocardiography; European Association of Echocardiography. Echocardiographic assessment of valve stenosis: EAE/ASE recommendations for clinical practice. J. Am. Soc. Echocardiogr. 2009;22:1–23. doi: 10.1016/j.echo.2008.11.029. PubMed DOI

Chambers D.J., Haire K., Morley N., Fairbanks L., Strumia E., Young C.P., Venn G.E. St. Thomas’ Hospital cardioplegia: Enhanced protection with exogenous creatine phosphate. Ann. Thorac. Surg. 1996;61:67–75. doi: 10.1016/0003-4975(95)00819-5. PubMed DOI

Janna H., Abbas M.D., Mojid M.H. Demineralized Drinking Water in Local Reverse Osmosis Water Treatment Stations and the Potential Effect on Human Health. J. Geosci. Environ. Prot. 2016;4:104–110. doi: 10.4236/gep.2016.42012. DOI

Tohno Y., Tohno S., Minami T., Moriwake Y., Nishiwaki F., Hashimoto K., Yamamoto H. Differences in Accumulation of Elements in Human Cardiac Valves. Biol. Trace Elem. Res. 2000;77:107–118. doi: 10.1385/BTER:77:2:107. PubMed DOI

Frustaci A., Magnavita N., Chimenti C., Caldarulo M., Sabbioni E., Pietra R., Cellini C., Possati G.F., Maseri A. Marked elevation of myocardial trace elements in idiopathic dilated cardiomyopathy compared with secondary cardiac dysfunction. J. Am. Coll. Cardiol. 1999;33:1578–1583. doi: 10.1016/S0735-1097(99)00062-5. PubMed DOI

Aalbers T.G., Houtman J.P., Makkink B. Trace-element concentrations in human autopsy tissue. Clin. Chem. 1987;33:2057–2064. doi: 10.1093/clinchem/33.11.2057. PubMed DOI

Nyström-Rosander C., Lindh U., Thelin S., Lindquist O., Friman G., Ilbäck N.G. Trace Element Changes in Sclerotic Heart Valves from Patients Undergoing Aortic Valve Surgery. Biol. Trace Elem. Res. 2002;88:9–24. doi: 10.1385/BTER:88:1:09. PubMed DOI

Houston M.C. The role of mercury and cadmium heavy metals in vascular disease, hypertension, coronary heart disease, and myocardial infarction. Altern. Ther. Health Med. 2007;13:S128–S133. PubMed

Navas-Acien A., Guallar E., Silbergeld E.K., Rothenberg S.J. Lead Exposure and Cardiovascular Disease—A Systematic Review. Environ. Health Perspect. 2007;115:472–482. doi: 10.1289/ehp.9785. PubMed DOI PMC

Lushchak V.I. Glutathione Homeostasis and Functions: Potential Targets for Medical Interventions. J. Amino Acids. 2012;2012:736837. doi: 10.1155/2012/736837. PubMed DOI PMC

Bhambri A., Del Rosso J.Q. Calciphylaxis: A review. J. Clin. Aesthetic. Dermatol. 2008;1:38–41. PubMed PMC

Manousek J., Kala P., Lokaj P., Ondrus T., Helanova K., Miklikova M., Brazdil V., Tomandlova M., Parenica J., Pavkova Goldbergova M., et al. Oxidative Stress in Takotsubo Syndrome-Is It Essential for an Acute Attack? Indirect Evidences Support Multisite Impact Including the Calcium Overload-Energy Failure Hypothesis. Front. Cardiovasc. Med. 2021;8:732708. doi: 10.3389/fcvm.2021.732708. PubMed DOI PMC

Manousek J., Felsoci M., Miklik R., Parenica J., Krejci J., Bjørklund G., Klanova J., Mlejnek D., Miklikova M., Lokaj P., et al. Delayed-type Hypersensitivity to Metals in Newly Diagnosed Patients with Nonischemic Dilated Cardiomyopathy. Cardiovasc. Toxicol. 2020;20:571–580. doi: 10.1007/s12012-020-09582-6. PubMed DOI

Lerman D.A., Prasad S., Alotti N. Calcific Aortic Valve Disease: Molecular Mechanisms And Therapeutic Approaches. Eur. Cardiol. Rev. 2015;10:108. doi: 10.15420/ecr.2015.10.2.108. PubMed DOI PMC

Karna E., Szoka L., Huynh T.Y.L., Palka J.A. Proline-dependent regulation of collagen metabolism. Cell Mol. Life Sci. CMLS. 2020;77:1911–1918. doi: 10.1007/s00018-019-03363-3. PubMed DOI PMC

Khalili B., Rimaz M. Interaction of L-proline with group IIB (Zn2+, Cd2+, Hg2+) metal cations in the gas and aqueous phases: A quantum computational study. Can. J. Chem. 2016;94:501–508. doi: 10.1139/cjc-2015-0616. DOI

Srivastava R., Lefebvre N., Onkelinx C. Effects of metal salts on collagen synthesis in embryonic rat calvaria. Toxicol. Appl. Pharmacol. 1976;37:229–235. doi: 10.1016/0041-008X(76)90086-7. PubMed DOI

Kuta J., Machát J., Benová D., Červenka R., Zeman J., Martinec P. Association of minor and trace elements with mineralogical constituents of urinary stones: A hard nut to crack in existing studies of urolithiasis. Environ. Geochem. Health. 2013;35:511–522. doi: 10.1007/s10653-013-9511-5. PubMed DOI

Brazdis R.I., Fierascu I., Avramescu S.M., Fierascu R.C. Recent Progress in the Application of Hydroxyapatite for the Adsorption of Heavy Metals from Water Matrices. Materials. 2021;14:6898. doi: 10.3390/ma14226898. PubMed DOI PMC

Poprac P., Jomova K., Simunkova M., Kollar V., Rhodes C.J., Valko M. Targeting Free Radicals in Oxidative Stress-Related Human Diseases. Trends Pharmacol. Sci. 2017;38:592–607. doi: 10.1016/j.tips.2017.04.005. PubMed DOI

Mertens K., Lowes D.A., Webster N.R., Talib J., Hall L., Davies M.J., Beattie J.H., Galley H.F. Low zinc and selenium concentrations in sepsis are associated with oxidative damage and inflammation. Br. J. Anaesth. 2015;114:990–999. doi: 10.1093/bja/aev073. PubMed DOI

Bernhard D., Rossmann A., Wick G. Metals in cigarette smoke. IUBMB Life Int. Union Biochem. Mol. Biol. Life. 2005;57:805–809. doi: 10.1080/15216540500459667. PubMed DOI

Rastogi S. Renal effects of environmental and occupational lead exposure. Indian J. Occup. Environ. Med. 2008;12:103. doi: 10.4103/0019-5278.44689. PubMed DOI PMC

Satarug S. Cadmium Sources and Toxicity. Toxics. 2019;7:25. doi: 10.3390/toxics7020025. PubMed DOI PMC

Linus Pauling Institute, Micronutrient Information Center. Oregon State University. Molybdenum. Oregon State University. [(accessed on 24 October 2021)]. Available online: https://lpi.oregonstate.edu/mic/minerals/molybdenum.

Linus Pauling Institute, Micronutrient Information Center. Oregon State University. Selenium [Internet]. Oregon State University. [(accessed on 26 October 2021)]. Available online: https://lpi.oregonstate.edu/mic/minerals/selenium.

Keegan G.M., Learmonth I.D., Case C.P. Orthopaedic metals and their potential toxicity in the arthroplasty patient: A review of current knowledge and future strategies. J. Bone Jt. Surg. Br. 2007;89:567–573. doi: 10.1302/0301-620X.89B5.18903. PubMed DOI

U.S. Food & Drug Administration . Biological Responses to Metal Implants. U.S. Food & Drug Administration; Silver Spring, MD, USA: 2019. [(accessed on 26 October 2021)]. Available online: https://www.fda.gov/media/131150/download.

Lassalle M., Colas S., Rudnichi A., Zureik M., Dray-Spira R. Is There a Cardiotoxicity Associated With Metallic Head Hip Prostheses? A Cohort Study in the French National Health Insurance Databases. Clin. Orthop. 2018;476:1441–1451. doi: 10.1097/01.blo.0000533617.64678.69. PubMed DOI PMC

Maňoušek J., Andršová I., Stejskal V., Vlašínová J., Sepši M., Kuta J., Klánová J., Mazík M., Jarkovský J., Šnajdrová L., et al. Hypersensitivity to material and environmental burden as a possible cause of late complications of cardiac implantable electronic devices. Europace. 2018;20:e140–e147. doi: 10.1093/europace/eux227. PubMed DOI PMC

Hanawa T. Materials for metallic stents. J. Artif. Organs. 2009;12:73–79. doi: 10.1007/s10047-008-0456-x. PubMed DOI

Sakamoto A., Jinnouchi H., Torii S., Virmani R., Finn A. Understanding the Impact of Stent and Scaffold Material and Strut Design on Coronary Artery Thrombosis from the Basic and Clinical Points of View. Bioengineering. 2018;5:71. doi: 10.3390/bioengineering5030071. PubMed DOI PMC

Kunitake J.A.M.R., Choi S., Nguyen K.X., Lee M.M., He F., Sudilovsky D., Morris P.G., Jochelson M.S., Hudis C.A., Muller D.A., et al. Correlative imaging reveals physiochemical heterogeneity of microcalcifications in human breast carcinomas. J. Struct. Biol. 2018;202:25–34. doi: 10.1016/j.jsb.2017.12.002. PubMed DOI PMC

Haddad A.C.S.S., Tortamano A., de Souza A.L., de Oliveira P.V. An in vitro comparison of nickel and chromium release from brackets. Braz. Oral Res. 2009;23:399–406. doi: 10.1590/S1806-83242009000400009. PubMed DOI

Hallab N.J., Messina C., Skipor A., Jacobs J.J. Differences in the fretting corrosion of metal-metal and ceramic-metal modular junctions of total hip replacements. J. Orthop. Res. Off. Publ. Orthop. Res. Soc. 2004;22:250–259. doi: 10.1016/S0736-0266(03)00186-4. PubMed DOI

Amini F., Jafari A., Amini P., Sepasi S. Metal ion release from fixed orthodontic appliances—An in vivo study. Eur. J. Orthod. 2012;34:126–130. doi: 10.1093/ejo/cjq181. PubMed DOI

Kamerud K.L., Hobbie K.A., Anderson K.A. Stainless Steel Leaches Nickel and Chromium into Foods during Cooking. J. Agric. Food Chem. 2013;61:9495–9501. doi: 10.1021/jf402400v. PubMed DOI PMC

Wang Y., Dai S. Structural basis of metal hypersensitivity. Immunol. Res. 2013;55:83–90. doi: 10.1007/s12026-012-8351-1. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...