Oxidative Stress in Takotsubo Syndrome-Is It Essential for an Acute Attack? Indirect Evidences Support Multisite Impact Including the Calcium Overload-Energy Failure Hypothesis

. 2021 ; 8 () : 732708. [epub] 20211019

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34738019

Indirect evidences in reviews and case reports on Takotsubo syndrome (TTS) support the fact that the existence of oxidative stress (OS) might be its common feature in the pre-acute stage. The sources of OS are exogenous (environmental factors including pharmacological and toxic influences) and endogenous, the combination of both may be present, and they are being discussed in detail. OS is associated with several pathological conditions representing TTS comorbidities and triggers. The dominant source of OS electrones are mitochondria. Our analysis of drug therapy related to acute TTS shows many interactions, e.g., cytostatics and glucocorticoids with mitochondrial cytochrome P450 and other enzymes important for OS. One of the most frequently discussed mechanisms in TTS is the effect of catecholamines on myocardium. Yet, their metabolic influence is neglected. OS is associated with the oxidation of catecholamines leading to the synthesis of their oxidized forms - aminochromes. Under pathological conditions, this pathway may dominate. There are evidences of interference between OS, catecholamine/aminochrome effects, their metabolism and antioxidant protection. The OS offensive may cause fast depletion of antioxidant protection including the homocystein-methionine system, whose activity decreases with age. The alteration of effector subcellular structures (mitochondria, sarco/endoplasmic reticulum) and subsequent changes in cellular energetics and calcium turnover may also occur and lead to the disruption of cellular function, including neurons and cardiomyocytes. On the organ level (nervous system and heart), neurocardiogenic stunning may occur. The effects of OS correspond to the effect of high doses of catecholamines in the experiment. Intensive OS might represent "conditio sine qua non" for this acute clinical condition. TTS might be significantly more complex pathology than currently perceived so far.

Zobrazit více v PubMed

Sato H, Uchida T, Dote K, Ishihara M. Tako-Tsubo-like left ventricular dysfunction due to multivessel coronary spasm. In: Kodama K, Haze K, Hori M. editors. Clinical Aspect of Myocardial Injury: From Ischemia to Heart Failure (in Japanese). Tokyo: Kagakuhyoronsha Publishing Co; (1990). p 56–64.

Lyon AR, Bossone E, Schneider B, Sechtem U, Citro R, Underwood SR, et al. . Current state of knowledge on Takotsubo syndrome: a position statement from the taskforce on takotsubo syndrome of the Heart Failure Association of the European Society of Cardiology: current state of knowledge on Takotsubo syndrome. Eur J Heart Fail. (2016) 18:8–27. 10.1002/ejhf.424 PubMed DOI

Bybee KA, Kara T, Prasad A, Lerman A, Barsness GW, Wright RS, et al. . Systematic review: transient left ventricular apical ballooning: a syndrome that mimics ST-segment elevation myocardial infarction. Ann Intern Med. (2004) 141:858–65. 10.7326/0003-4819-141-11-200412070-00010 PubMed DOI

Gianni M, Dentali F, Grandi AM, Sumner G, Hiralal R, Lonn E. Apical ballooning syndrome or takotsubo cardiomyopathy: a systematic review. Eur Heart J. (2006) 27:1523–9. 10.1093/eurheartj/ehl032 PubMed DOI

Kurowski V, Kaiser A, von Hof K, Killermann DP, Mayer B, Hartmann F, et al. . Apical and midventricular transient left ventricular dysfunction syndrome (Tako-Tsubo Cardiomyopathy) frequency, mechanisms, and prognosis. Chest. (2007) 132:809–16. 10.1378/chest.07-0608 PubMed DOI

Deshmukh A, Kumar G, Pant S, Rihal C, Murugiah K, Mehta JL. Prevalence of Takotsubo cardiomyopathy in the United States. Am Heart J. (2012) 164:66–71.e1. 10.1016/j.ahj.2012.03.020 PubMed DOI

Brinjikji W, El-Sayed AM, Salka S. In-hospital mortality among patients with takotsubo cardiomyopathy: a study of the National Inpatient Sample 2008 to (2009). Am Heart J. (2012) 164:215–21. 10.1016/j.ahj.2012.04.010 PubMed DOI

Templin C, Ghadri JR, Diekmann J, Napp LC, Bataiosu DR, Jaguszewski M, et al. . Clinical features and outcomes of takotsubo (stress) cardiomyopathy. N Engl J Med. (2015) 373:929–38. 10.1056/NEJMoa1406761 PubMed DOI

Omerovic E. How to think about stress-induced cardiomyopathy? Think “out of the box”! Scand Cardiovasc J. (2011) 45:67–71. 10.3109/14017431.2011.565794 PubMed DOI

Prasad A, Lerman A, Rihal CS. Apical ballooning syndrome (Tako-Tsubo or stress cardiomyopathy): a mimic of acute myocardial infarction. Am Heart J. (2008) 155:408–17. 10.1016/j.ahj.2007.11.008 PubMed DOI

Kawai S, Kitabatake A, Tomoike H. Takotsubo cardiomyopathy study grou. Guidelines for diagnosis of takotsubo (ampulla) cardiomyopathy. Circ J. (2007) 71:990–2. 10.1253/circj.71.990 PubMed DOI

Parodi G, Citro R, Bellandi B, Provenza G, Marrani M, Bossone E, et al. . Revised clinical diagnostic criteria for Tako-tsubo syndrome: the Tako-tsubo Italian Network proposal. Int J Cardiol. (2014) 172:282–3. 10.1016/j.ijcard.2013.12.239 PubMed DOI

Pelliccia F, Parodi G, Greco C, Antoniucci D, Brenner R, Bossone E, et al. . Comorbidities frequency in Takotsubo syndrome: an international collaborative systematic review including (1109). Patients. Am J Med. (2015) 128:654.e11–654.e19. 10.1016/j.amjmed.2015.01.016 PubMed DOI

Department of Cardiology Karolinska Institute at Karolinska University Hospital Sweden S Y-H . Takotsubo syndrome triggered by acute coronary syndrome in a cohort of 20 patients: an often missed diagnosis. Int J Cardiol Res. (2015) 2:28–33. 10.19070/2470-4563-150007 DOI

Angulo-Llanos R, Sanz-Ruiz R, Solis J, Fernández-Avilés F. Acute myocardial infarction: an uncommon complication of takotsubo cardiomyopathy. Catheter Cardiovasc Interv. (2013) 82:909–13. 10.1002/ccd.24846 PubMed DOI

Y-Hassan S. Myocardial infarction in patients with takotsubo syndrome: trigger and consequence. Am J Med. (2018) 131:e217. 10.1016/j.amjmed.2017.09.030 PubMed DOI

Nef HM, Möllmann H, Troidl C, Kostin S, Böttger T, Voss S, et al. . Expression profiling of cardiac genes in Tako-Tsubo cardiomyopathy: insight into a new cardiac entity. J Mol Cell Cardiol. (2008) 44:395–404. 10.1016/j.yjmcc.2007.10.015 PubMed DOI

Nanno T, Kobayashi S, Oda S, Ishiguchi H, Myoren T, Oda T, et al. . Relationship between cardiac sympathetic hyperactivity and myocardial oxidative stress in patients with takotsubo cardiomyopathy. J Card Fail. (2015) 21:S146. 10.1016/j.cardfail.2015.08.012 DOI

Surikow SY, Nguyen TH, Stafford I, Chapman M, Chacko S, Singh K, et al. . Nitrosative stress as a modulator of inflammatory change in a model of takotsubo syndrome. JACC Basic Transl Sci. (2018) 3:213–26. 10.1016/j.jacbts.2017.10.002 PubMed DOI PMC

Mao S, Luo X, Li Y, He C, Huang F, Su C. Role of PI3K/AKT/mTOR pathway associated oxidative stress and cardiac dysfunction in takotsubo syndrome. Curr Neurovasc Res. (2020) 17:35–43. 10.2174/1567202617666191223144715 PubMed DOI

Roshanzamir S, Showkathali R. Takotsubo cardiomyopathy a short review. Curr Cardiol Rev. (2013) 9:191–6. 10.2174/1573403X11309030003 PubMed DOI PMC

Sies H, Berndt C, Jones DP. Oxidative stress. Annu Rev Biochem. (2017) 86:715–48. 10.1146/annurev-biochem-061516-045037 PubMed DOI

Betteridge DJ. What is oxidative stress? Metabolism. (2000) 49:3–8. 10.1016/S0026-0495(00)80077-3 PubMed DOI

Phaniendra A, Jestadi DB, Periyasamy L. Free radicals: properties, sources, targets, and their implication in various diseases. Indian J Clin Biochem. (2015) 30:11–26. 10.1007/s12291-014-0446-0 PubMed DOI PMC

Sies H. Oxidative stress: a concept in redox biology and medicine. Redox Biol. (2015) 4:180–3. 10.1016/j.redox.2015.01.002 PubMed DOI PMC

Finkel T, Holbrook NJ. Oxidants, oxidative stress and the biology of ageing. Nature. (2000) 408:239–47. 10.1038/35041687 PubMed DOI

Gagné F. Oxidative stress. In: Biochemical Ecotoxicology. Elsevier: (2014). p. 103–15. 10.1016/B978-0-12-411604-7.00006-4 DOI

Ott M, Gogvadze V, Orrenius S, Zhivotovsky B. Mitochondria, oxidative stress and cell death. Apoptosis. (2007) 12:913–22. 10.1007/s10495-007-0756-2 PubMed DOI

Skulachev VP. Mitochondria-targeted antioxidants as promising drugs for treatment of age-related brain diseases. J Alzheimers Dis. (2012) 28:283–9. 10.3233/JAD-2011-111391 PubMed DOI

Lushchak VI. Free radicals, reactive oxygen species, oxidative stress and its classification. Chem Biol Interact. (2014) 224:164–75. 10.1016/j.cbi.2014.10.016 PubMed DOI

Gille L, Nohl H. The ubiquinol/bc1 redox couple regulates mitochondrial oxygen radical formation. Arch Biochem Biophys. (2001) 388:34–8. 10.1006/abbi.2000.2257 PubMed DOI

Schulz E, Wenzel P, Münzel T, Daiber A. Mitochondrial redox signaling: interaction of mitochondrial reactive oxygen species with other sources of oxidative stress. Antioxid Redox Signal. (2014) 20:308–24. 10.1089/ars.2012.4609 PubMed DOI PMC

Hopps E, Noto D, Caimi G, Averna MR. A novel component of the metabolic syndrome: the oxidative stress. Nutr Metab Cardiovasc Dis. (2010) 20:72–7. 10.1016/j.numecd.2009.06.002 PubMed DOI

Block G. Factors associated with oxidative stress in human populations. Am J Epidemiol. (2002) 156:274–85. 10.1093/aje/kwf029 PubMed DOI

Mooney LA, Perera FP, Van Bennekum AM, Blaner WS, Karkoszka J, Covey L, et al. . Gender differences in autoantibodies to oxidative DNA base damage in cigarette smokers. Cancer Epidemiol Biomark Prev. (2001) 10:641–8. PubMed

Lang CA, Naryshkin S, Schneider DL, Mills BJ, Lindeman RD. Low blood glutathione levels in healthy aging adults. J Lab Clin Med. (1992) 120:720–5. PubMed

Simioni C, Zauli G, Martelli AM, Vitale M, Sacchetti G, Gonelli A, et al. . Oxidative stress: role of physical exercise and antioxidant nutraceuticals in adulthood and aging. Oncotarget. (2018) 9:17181–98. 10.18632/oncotarget.24729 PubMed DOI PMC

Galbusera C, Orth P, Fedida D, Spector T. Superoxide radical production by allopurinol and xanthine oxidase. Biochem Pharmacol. (2006) 71:1747–52. 10.1016/j.bcp.2006.02.008 PubMed DOI

Griguer CE, Oliva CR, Kelley EE, Giles GI, Lancaster JR, Gillespie GY. Xanthine oxidase-dependent regulation of hypoxia-inducible factor in cancer cells. Cancer Res. (2006) 66:2257–63. 10.1158/0008-5472.CAN-05-3364 PubMed DOI

Nanduri J, Vaddi DR, Khan SA, Wang N, Makerenko V, Prabhakar NR. Xanthine oxidase mediates hypoxia-inducible factor-2α degradation by intermittent hypoxia. Eltzschig HK, editor. PLoS ONE. (2013) 8:e75838. 10.1371/journal.pone.0075838 PubMed DOI PMC

Miller JW, Selhub J, Joseph JA. Oxidative damage caused by free radicals produced during catecholamine autoxidation: protective effects of O-methylation and melatonin. Free Radic Biol Med. (1996) 21:241–9. 10.1016/0891-5849(96)00033-0 PubMed DOI

Saller S, Merz-Lange J, Raffael S, Hecht S, Pavlik R, Thaler C, et al. . Norepinephrine, active norepinephrine transporter, and norepinephrine-metabolism are involved in the generation of reactive oxygen species in human ovarian granulosa cells. Endocrinology. (2012) 153:1472–83. 10.1210/en.2011-1769 PubMed DOI

Renaud HJ, Rutter A, Winn LM. Assessment of xenobiotic biotransformation including reactive oxygen species generation in the embryo using benzene as an example. In: Harris C, Hansen JM, editors. Developmental Toxicology. Totowa, NJ: Humana Press; (2012). p. 253–63. (Methods in Molecular Biology; vol. 889). Available online at: http://link.springer.com/10.1007/978-1-61779-867-2_15 (accessed November 2, 2020). PubMed DOI

Michail K, Baghdasarian A, Narwaley M, Aljuhani N, Siraki AG. Scavenging of free-radical metabolites of aniline xenobiotics and drugs by amino acid derivatives: toxicological implications of radical-transfer reactions. Chem Res Toxicol. (2013) 26:1872–83. 10.1021/tx4002463 PubMed DOI

Granot E, Kohen R. Oxidative stress in childhood-in health and disease states. Clin Nutr. (2004) 23:3–11. 10.1016/S0261-5614(03)00097-9 PubMed DOI

Moldogazieva NT, Mokhosoev IM, Feldman NB, Lutsenko SV. ROS and RNS signalling: adaptive redox switches through oxidative/nitrosative protein modifications. Free Radic Res. (2018) 52:507–43. 10.1080/10715762.2018.1457217 PubMed DOI

Yun J, Finkel T. Mitohormesis. Cell Metab. (2014) 19:757–66. 10.1016/j.cmet.2014.01.011 PubMed DOI PMC

Di Lisa F, Canton M, Carpi A, Kaludercic N, Menabò R, Menazza S, et al. . Mitochondrial injury and protection in ischemic pre- and postconditioning. Antioxid Redox Signal. (2011) 14:881–91. 10.1089/ars.2010.3375 PubMed DOI

Vetrani C, Costabile G, Di Marino L, Rivellese AA. Nutrition and oxidative stress: a systematic review of human studies. Int J Food Sci Nutr. (2013) 64:312–26. 10.3109/09637486.2012.738651 PubMed DOI

Giordano FJ. Oxygen, oxidative stress, hypoxia, and heart failure. J Clin Invest. (2005) 115:500–8. 10.1172/JCI200524408 PubMed DOI PMC

Bolli R. Mechanism of myocardial ‘stunning'. Circulation. (1990) 82:723–38. 10.1161/01.CIR.82.3.723 PubMed DOI

Dhalla NS. Formation of aminochrome leads to cardiac dysfunction and sudden cardiac death. Circ Res. (2018) 123:409–11. 10.1161/CIRCRESAHA.118.313416 PubMed DOI

Finsterer J, Ohnsorge P. Influence of mitochondrion-toxic agents on the cardiovascular system. Regul Toxicol Pharmacol RTP. (2013) 67:434–45. 10.1016/j.yrtph.2013.09.002 PubMed DOI

Scatena R. Mitochondria and drugs. Adv Exp Med Biol. (2012) 942:329–46. 10.1007/978-94-007-2869-1_15 PubMed DOI

Amariles P. A comprehensive literature search: drugs as possible triggers of takotsubo cardiomyopathy. Curr Clin Pharmacol. (2011) 6:1–11. 10.2174/157488411794941340 PubMed DOI

Bernards J, Van Kolen K, Govaerts E, Somville FJ, von Stritzky M. Transient left ventricular apical ballooning syndrome in a patient with allopurinol induced skin rash: a case report. Int J Cardiol. (2014) 177:e53–5. 10.1016/j.ijcard.2014.09.130 PubMed DOI

Abbasi D, Mannan H, Patel V, Farhan Hasni S. Rare cardiac manifestation of a commonly prescribed drug: takotsubo cardiomyopathy caused by allopurinol induced dress syndrome. J Heart Cardiovasc Res. (2018) 2:1–6. 10.21767/2576-1455.1000116 DOI

Coen M, Rigamonti F, Roth A, Koessler T. Chemotherapy-induced Takotsubo cardiomyopathy, a case report and review of the literature. BMC Cancer. (2017) 17:394. 10.1186/s12885-017-3384-4 PubMed DOI PMC

Desai A, Noor A, Joshi S, Kim AS. Takotsubo cardiomyopathy in cancer patients. Cardio-Oncol. (2019) 5:7. 10.1186/s40959-019-0042-9 PubMed DOI PMC

Budnik M, Kucharz J, Wiechno P, Demkow T, Kochanowski J, Górska E, et al. . Chemotherapy-induced takotsubo syndrome. In: Pokorski M, editor. Clinical Pulmonary Research. Cham: Springer International Publishing; (2018). p. 19–29. (Advances in Experimental Medicine and Biology; vol. 1114). Available online at: http://link.springer.com/10.1007/5584_2018_222 (accessed November 3, 2020). PubMed DOI

Pai VB, Nahata MC. Cardiotoxicity of chemotherapeutic agents: incidence, treatment and prevention. Drug Saf. (2000) 22:263–302. 10.2165/00002018-200022040-00002 PubMed DOI

Angsutararux P, Luanpitpong S, Issaragrisil S. Chemotherapy-induced cardiotoxicity: overview of the roles of oxidative stress. Oxid Med Cell Longev. (2015) 2015:1–13. 10.1155/2015/795602 PubMed DOI PMC

Costantini D, Marasco V, Møller AP. A meta-analysis of glucocorticoids as modulators of oxidative stress in vertebrates. J Comp Physiol B. (2011) 181:447–56. 10.1007/s00360-011-0566-2 PubMed DOI

Wickboldt N, Pache J-C, Dietrich P-Y, Toso C, Gallay C, Brochard L, et al. . Takotsubo syndrome secondary to adrenal adenocarcinoma: cortisol as a possible culprit. Am J Respir Crit Care Med. (2012) 186:1061–2. 10.1164/ajrccm.186.10.1061 PubMed DOI

Teppo H-R, Soini Y, Karihtala P. Reactive oxygen species-mediated mechanisms of action of targeted cancer therapy. Oxid Med Cell Longev. (2017) 2017:1–11. 10.1155/2017/1485283 PubMed DOI PMC

Hayes JD, Strange RC. Glutathione S-transferase polymorphisms and their biological consequences. Pharmacology. (2000) 61:154–66. 10.1159/000028396 PubMed DOI

Strange RC, Fryer AA. The glutathione S-transferases: influence of polymorphism on cancer susceptibility. IARC Sci Publ. (1999) 148:231–49. PubMed

Tamer L, Calikoglu M, Ates NA, Yildirim H, Ercan B, Saritas E, et al. . Glutathione-S-transferase gene polymorphisms (GSTT1, GSTM1, GSTP1) as increased risk factors for asthma. Respirology. (2004) 9:493–8. 10.1111/j.1440-1843.2004.00657.x PubMed DOI

Mondola P, Damiano S, Sasso A, Santillo M. The Cu, Zn superoxide dismutase: not only a dismutase enzyme. Front Physiol. (2016) 7:594. 10.3389/fphys.2016.00594 PubMed DOI PMC

Zhou S-F. Drugs behave as substrates, inhibitors and inducers of human cytochrome P450 3A4. Curr Drug Metab. (2008) 9:310–22. 10.2174/138920008784220664 PubMed DOI

Zhou S-F, Xue CC, Yu X-Q, Li C, Wang G. Clinically important drug interactions potentially involving mechanism-based inhibition of cytochrome P450 3A4 and the role of therapeutic drug monitoring. Ther Drug Monit. (2007) 29:687–710. 10.1097/FTD.0b013e31815c16f5 PubMed DOI

Preissner SC, Hoffmann MF, Preissner R, Dunkel M, Gewiess A, Preissner S. Polymorphic cytochrome P450 enzymes (CYPs) and their role in personalized therapy. Nie D, editor. PLoS ONE. (2013) 8:e82562. 10.1371/journal.pone.0082562 PubMed DOI PMC

Shet MS, Fisher CW, Holmans PL, Estabrook RW. Human cytochrome P450 3A4: enzymatic properties of a purified recombinant fusion protein containing NADPH-P450 reductase. Proc Natl Acad Sci. (1993) 90:11748–52. 10.1073/pnas.90.24.11748 PubMed DOI PMC

Fleming I. The pharmacology of the cytochrome P450 epoxygenase/soluble epoxide hydrolase axis in the vasculature and cardiovascular disease. Simonsen U, editor. Pharmacol Rev. (2014) 66:1106–40. 10.1124/pr.113.007781 PubMed DOI

Zanger UM, Schwab M. Cytochrome P450 enzymes in drug metabolism: regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol Ther. (2013) 138:103–41. 10.1016/j.pharmthera.2012.12.007 PubMed DOI

Sotaniemi EA, Arranto AJ, Pelkonen O, Pasanen M. Age and cytochrome P450-linked drug metabolism in humans: an analysis of 226 subjects with equal histopathologic conditions*. Clin Pharmacol Ther. (1997) 61:331–9. 10.1016/S0009-9236(97)90166-1 PubMed DOI

Xu M, Ju W, Hao H, Wang G, Li P. Cytochrome P450 2J2: distribution, function, regulation, genetic polymorphisms and clinical significance. Drug Metab Rev. (2013) 45:311–52. 10.3109/03602532.2013.806537 PubMed DOI

Evangelista EA, Kaspera R, Mokadam NA, Jones JP, Totah RA. Activity, Inhibition, and induction of cytochrome P450 2J2 in adult human primary cardiomyocytes. Drug Metab Dispos. (2013) 41:2087–94. 10.1124/dmd.113.053389 PubMed DOI PMC

Murray M. CYP2J2 - regulation, function and polymorphism. Drug Metab Rev. (2016) 48:351–68. 10.1080/03602532.2016.1188938 PubMed DOI

Alberts B. Chapter 16 - cell signaling. In: Morales M, editor. Essential Cell Biology. 4th ed. New York, NY: Garland Science; (2014). p. 539–51.

Lyon AR, Rees PS, Prasad S, Poole-Wilson PA, Harding SE. Stress (Takotsubo) cardiomyopathy-a novel pathophysiological hypothesis to explain catecholamine-induced acute myocardial stunning. Nat Clin Pract Cardiovasc Med. (2008) 5:22–9. 10.1038/ncpcardio1066 PubMed DOI

Paur H, Wright PT, Sikkel MB, Tranter MH, Mansfield C, O'Gara P, et al. . High levels of circulating epinephrine trigger apical cardiodepression in a β2-adrenergic receptor/Gi-dependent manner: a new model of Takotsubo cardiomyopathy. Circulation. (2012) 126:697–706. 10.1161/CIRCULATIONAHA.112.111591 PubMed DOI PMC

Koeth O, Mark B, Zahn R, Zeymer U. Midventricular form of takotsubo cardiomyopathy as a recurrence 1 year after typical apical ballooning: a case report. Cases J. (2008) 1:331. 10.1186/1757-1626-1-331 PubMed DOI PMC

Blessing E, Steen H, Rosenberg M, Katus H, Frey N. Recurrence of takotsubo cardiomyopathy with variant forms of left ventricular dysfunction. J Am Soc Echocardiogr. (2007) 20:439.e11–2. 10.1016/j.echo.2006.10.021 PubMed DOI

Xiao RP, Tomhave ED, Wang DJ, Ji X, Boluyt MO, Cheng H, et al. . Age-associated reductions in cardiac beta1- and beta2-adrenergic responses without changes in inhibitory G proteins or receptor kinases. J Clin Invest. (1998) 101:1273–82. 10.1172/JCI1335 PubMed DOI PMC

Spyrou N, Rosen SD, Fath-Ordoubadi F, Jagathesan R, Foale R, Kooner JS, et al. . Myocardial beta-adrenoceptor density one month after acute myocardial infarction predicts left ventricular volumes at six months. J Am Coll Cardiol. (2002) 40:1216–24. 10.1016/S0735-1097(02)02162-9 PubMed DOI

Lombardi MS, Kavelaars A, Penela P, Scholtens EJ, Roccio M, Schmidt RE, et al. . Oxidative stress decreases G protein-coupled receptor kinase 2 in lymphocytes via a calpain-dependent mechanism. Mol Pharmacol. (2002) 62:379–88. 10.1124/mol.62.2.379 PubMed DOI

Y-Hassan S. Plasma Epinephrine Level and its Causal Link to Takotsubo Syndrome revisited: critical review with a diverse conclusion. Cardiovasc Revasc Med. (2019) 20:907–14. 10.1016/j.carrev.2018.10.026 PubMed DOI

Y-Hassan S, Henareh L. Plasma catecholamine levels in patients with takotsubo syndrome: implications for the pathogenesis of the disease. Int J Cardiol. (2015) 181:35–8. 10.1016/j.ijcard.2014.11.149 PubMed DOI

Hartmann C, Radermacher P, Wepler M, Nußbaum B. Non-hemodynamic effects of catecholamines. Shock. (2017) 48:390–400. 10.1097/SHK.0000000000000879 PubMed DOI

Mayer SE. Effect of catecholamines on cardiac metabolism. Circ Res. (1974) 35(Suppl. 3):129–37. 10.1161/res.35.3_supplement.iii-129 PubMed DOI

Schönfeld P, Wojtczak L. Fatty acids decrease mitochondrial generation of reactive oxygen species at the reverse electron transport but increase it at the forward transport. Biochim Biophys Acta BBA Bioenerg. (2007) 1767:1032–40. 10.1016/j.bbabio.2007.04.005 PubMed DOI

Sirota TV. A novel approach to study the reaction of adrenaline autooxidation: a possibility for polarographic determination of superoxide dismutase activity and antioxidant properties of various preparations. Biochem Mosc Suppl Ser B Biomed Chem. (2011) 5:253–9. 10.1134/S1990750811030139 DOI

Odajima T, Onishi M. Formation of adrenochrome from epinephrine by myeloperoxidase via a free radical: its biological significance. Jpn J Oral Biol. (1997) 39:297–303. 10.2330/joralbiosci1965.39.297 DOI

Behonick GS, Novak MJ, Nealley EW, Baskin SI. Toxicology update: the cardiotoxicity of the oxidative stress metabolites of catecholamines (aminochromes). J Appl Toxicol. (2001) 21:S15–22. 10.1002/jat.793 PubMed DOI

Heacock RA, Powell WS. 6 adrenochrome and related compounds. In: Progress in Medicinal Chemistry. Amsterdam: Elsevier; (1973). p. 275–340. Available online at: https://linkinghub.elsevier.com/retrieve/pii/S0079646808704016 (accessed November 14, 2020). PubMed

Matthews S, Henderson A, Campbell A. The adrenochrome pathway: the major route for adrenalin catabolism by polymorphonuclear leucocytes. J Mol Cell Cardiol. (1985) 17:339–48. 10.1016/S0022-2828(85)80133-4 PubMed DOI

Valerino DM, McCormack JJ. Xanthine oxidase-mediated oxidation of epinephrine. Biochem Pharmacol. (1971) 20:47–55. 10.1016/0006-2952(71)90470-9 PubMed DOI

Costa VM, Silva R, Ferreira LM, Branco PS, Carvalho F, Bastos ML, et al. . Oxidation process of adrenaline in freshly isolated rat cardiomyocytes: formation of adrenochrome, quinoproteins, and GSH adduct. Chem Res Toxicol. (2007) 20:1183–91. 10.1021/tx7000916 PubMed DOI

Guarnieri C, Ventura C. Formation of adrenochrome by bovine cardiac sarcolemma. Biochem Biophys Res Commun. (1984) 120:22–7. 10.1016/0006-291X(84)91408-6 PubMed DOI

Guarnieri C, Ventura C, Georgountzos A, Muscari C, Budini R. Involvement of superoxide radicals on adrenochrome formation stimulated by arachidonic acid in bovine heart sarcolemmal vesicles. Biochim Biophys Acta BBA Gen Subj. (1985) 838:355–60. 10.1016/0304-4165(85)90234-X PubMed DOI

Manousek J, Stejskal V, Kubena P, Jarkovsky J, Nemec P, Lokaj P, et al. . Delayed-type hypersensitivity to metals of environmental burden in patients with takotsubo syndrome - is there a clinical relevance? Andò G, editor. PLoS ONE. (2016) 11:e0164786. 10.1371/journal.pone.0164786 PubMed DOI PMC

Karon BS, Daly TM, Scott MG. Mechanisms of dopamine and dobutamine interference in biochemical tests that use peroxide and peroxidase to generate chromophore. Clin Chem. (1998) 44:155–60. 10.1093/clinchem/44.1.155 PubMed DOI

Kinae N, Masuda H, Shin IS, Furugori M, Shimoi K. Functional properties of wasabi and horseradish. BioFactors. (2000) 13:265–9. 10.1002/biof.5520130140 PubMed DOI

Finkel-Oron A, Olchowski J, Jotkowitz A, Barski L. Takotsubo cardiomyopathy triggered by wasabi consumption: can sushi break your heart? BMJ Case Rep. (2019) 12:e230065. 10.1136/bcr-2019-230065 PubMed DOI PMC

Jeon U, Park S, Park S, Lee E, Gil H-W. Clinical characteristics of stress cardiomyopathy in patients with acute poisoning. Sci Rep. (2018) 8:223. 10.1038/s41598-017-18478-5 PubMed DOI PMC

Baez S, Segura-Aguilar J, Widersten M, Johansson A-S, Mannervik B. Glutathione transferases catalyse the detoxication of oxidized metabolites (o-quinones) of catecholamines and may serve as an antioxidant system preventing degenerative cellular processes. Biochem J. (1997) 324:25–8. 10.1042/bj3240025 PubMed DOI PMC

Fliegel L, Takeo S, Beamish RE, Dhalla NS. Adrenochrome uptake and subcellular distribution in the isolated perfused rat heart. Can J Cardiol. (1985) 1:122–7. PubMed

Takeo S, Taam GM, Beamish RE, Dhalla NS. Effects of adrenochrome on calcium accumulating and adenosine triphosphatase activities of the rat heart microsomes. J Pharmacol Exp Ther. (1980) 214:688–93. PubMed

Tappia PS, Hata T, Hozaima L, Sandhu MS, Panagia V, Dhalla NS. Role of oxidative stress in catecholamine-induced changes in cardiac sarcolemmal Ca2+ transport. Arch Biochem Biophys. (2001) 387:85–92. 10.1006/abbi.2000.2234 PubMed DOI

Taam GM, Takeo S, Ziegelhoffer A, Singal PK, Beamish RE, Dhalla NS. Effect of adrenochrome on adenine nucleotides and mitochondrial oxidative phosphorylation in rat heart. Can J Cardiol. (1986) 2:88–93. PubMed

Yates JC, Beamish RE, Dhalla NS. Ventricular dysfunction and necrosis produced by adrenochrome metabolite of epinephrine: relation to pathogenesis of catecholamine cardiomyopathy. Am Heart J. (1981) 102:210–21. 10.1016/S0002-8703(81)80012-9 PubMed DOI

Mitchell A, Marquis F. Can takotsubo cardiomyopathy be diagnosed by autopsy? Report of a presumed case presenting as cardiac rupture. BMC Clin Pathol. (2017) 17:4. 10.1186/s12907-017-0045-0 PubMed DOI PMC

Kawai S. Pathology of takotsubo (ampulla) cardiomyopathy. In: Veselka J, editor. Cardiomyopathies - From Basic Research to Clinical Management. InTech; (2012). Available online at: http://www.intechopen.com/books/cardiomyopathies-from-basic-research-to-clinical-management/pathology-of-takotsubo-ampulla-cardiomyopahty (accessed January 2, 2021).

Pascual I, Abó AI, Piqué M. Histological findings in tako-tsubo syndrome. Rev Esp Cardiol Engl Ed. (2015) 68:625. 10.1016/j.rec.2014.08.013 PubMed DOI

Devaraj S, Wang-Polagruto J, Polagruto J, Keen CL, Jialal I. High-fat, energy-dense, fast-food-style breakfast results in an increase in oxidative stress in metabolic syndrome. Metabolism. (2008) 57:867–70. 10.1016/j.metabol.2008.02.016 PubMed DOI PMC

Hu Y, Block G, Norkus EP, Morrow JD, Dietrich M, Hudes M. Relations of glycemic index and glycemic load with plasma oxidative stress markers. Am J Clin Nutr. (2006) 84:70–6. 10.1093/ajcn/84.1.70 PubMed DOI

Ghadri JR, Sarcon A, Diekmann J, Bataiosu DR, Cammann VL, Jurisic S, et al. . Happy heart syndrome: role of positive emotional stress in takotsubo syndrome. Eur Heart J. (2016) 37:2823–9. 10.1093/eurheartj/ehv757 PubMed DOI PMC

Hinchman CA, Ballatori N. Glutathione conjugation and conversion to mercapturic acids can occur as an intrahepatic process. J Toxicol Environ Health. (1994) 41:387–409. 10.1080/15287399409531852 PubMed DOI

Lenzi M, Cocchi V, Malaguti M, Barbalace MC, Marchionni S, Hrelia S, et al. . 6-(Methylsulfonyl) hexyl isothiocyanate as potential chemopreventive agent: molecular and cellular profile in leukaemia cell lines. Oncotarget. (2017) 8:111697–714. 10.18632/oncotarget.22902 PubMed DOI PMC

Nomura T, Shinoda S, Yamori T, Sawaki S, Nagata I, Ryoyama K, et al. . Selective sensitivity to wasabi-derived 6-(methylsulfinyl)hexyl isothiocyanate of human breast cancer and melanoma cell lines studied in vitro. Cancer Detect Prev. (2005) 29:155–60. 10.1016/j.cdp.2004.07.010 PubMed DOI

Lushchak VI. Glutathione homeostasis and functions: potential targets for medical interventions. J Amino Acids. (2012) 2012:1–26. 10.1155/2012/736837 PubMed DOI PMC

Bakke J, Gustafsson J-Å. Mercapturic acid pathway metabolites of xenobiotics: generation of potentially toxic metabolites during enterohepatic circulation. Trends Pharmacol Sci. (1984) 5:517–21. 10.1016/0165-6147(84)90532-7 DOI

Reis R, Charehsaz M, Sipahi H, Ekici AID, Macit Ç, Akkaya H, et al. . Energy drink induced lipid peroxidation and oxidative damage in rat liver and brain when used alone or combined with alcohol: energy drink induced oxidative damage in rat combined with alcohol. J Food Sci. (2017) 82:1037–43. 10.1111/1750-3841.13662 PubMed DOI

Das SK, Vasudevan DM. Alcohol-induced oxidative stress. Life Sci. (2007) 81:177–87. 10.1016/j.lfs.2007.05.005 PubMed DOI

Meyer CG, Gabasha S, Gurujal R, Vacek TP. Down on your luck: cardiomyopathy precipitated by a bar fight. Oxf Med Case Rep. (2018) 2018:omy012. 10.1093/omcr/omy012 PubMed DOI PMC

Ozguner F, Koyu A, Cesur G. Active smoking causes oxidative stress and decreases blood melatonin levels. Toxicol Ind Health. (2005) 21:21–6. 10.1191/0748233705th211oa PubMed DOI

Kovacic P. Role of oxidative metabolites of cocaine in toxicity and addiction: oxidative stress and electron transfer. Med Hypotheses. (2005) 64:350–6. 10.1016/j.mehy.2004.06.028 PubMed DOI

Gill D, Sheikh N, Ruiz VG, Liu K. Case report: cocaine-induced takotsubo cardiomyopathy. Hell J Cardiol HJC Hell Kardiologike Epitheorese. (2018) 59:129–32. 10.1016/j.hjc.2017.05.008 PubMed DOI

Sundboll J, Pareek M, Hogsbro M, Madsen EH. Iatrogenic takotsubo cardiomyopathy induced by locally applied epinephrine and cocaine. Case Rep. (2014) 2014:bcr2013202401-bcr2013202401. 10.1136/bcr-2013-202401 PubMed DOI PMC

Vanova N, Pejchal J, Herman D, Dlabkova A, Jun D. Oxidative stress in organophosphate poisoning: role of standard antidotal therapy: oxidative stress in organophosphate poisoning: role of antidotes. J Appl Toxicol. (2018) 38:1058–70. 10.1002/jat.3605 PubMed DOI

Kitami M, Oizumi H, Kish SJ, Furukawa Y. Takotsubo cardiomyopathy associated with lithium intoxication in bipolar disorder: a case report. J Clin Psychopharmacol. (2014) 34:410–1. 10.1097/JCP.0b013e3182a95a27 PubMed DOI

Schroeder I, Zoller M, Angstwurm M, Kur F, Frey L. Venlafaxine intoxication with development of takotsubo cardiomyopathy: successful use of extracorporeal life support, intravenous lipid emulsion and cytosorb®. Int J Artif Organs. (2017) 40:358–60. 10.5301/ijao.5000595 PubMed DOI

Romanò M, Zorzoli F, Bertona R, Villani R. Takotsubo cardiomyopathy as an early complication of drug-induced suicide attempt. Case Rep Med. (2013) 2013:1–4. 10.1155/2013/946378 PubMed DOI PMC

Tonomura S, Kakehi Y, Sato M, Naito Y, Shimizu H, Goto Y, et al. . Takotsubo-like myocardial dysfunction in a patient with botulism. Intern Med. (2017) 56:2925–7. 10.2169/internalmedicine.8968-17 PubMed DOI PMC

Jung JM, Kim YH, Park MH, Kwon DY. Takotsubo cardiomyopathy following severe tetanus. Neurology Asia. (2012) 17:75–8. 10.2169/internalmedicine.2494-18 PubMed DOI PMC

Lemor A, Lee S, Gongora C, Gholitabar F, Mehta D. Stress induce cardiomyopathy (takotsubo cardiomyopathy): mortality, gender, and admission month based on a nationwide sample during (2013). Abstract 1297-320. In: Presented at: the 66th Scientific Session & Expo of the American College of Cardiology. Washington, DC: (2017). Available oniline at: https://www.thecardiologyadvisor.com/acc-2017-meeting-highlights/seasonal-takotsubo-cardiomyopathy/article/646521/ (accessed June 29, 2021).

Brimblecombe P. Air pollution episodes. In: Encyclopedia of Environmental Health. Elsevier: (2011). p. 39–45. Available online at: https://linkinghub.elsevier.com/retrieve/pii/B9780444522726000581 (accessed November 14, 2020).

Jaffe DA. The nitrogen cycle. In: International Geophysics. Elsevier; (2000). p. 322–42. Available online at: https://linkinghub.elsevier.com/retrieve/pii/S0074614200801187 (accessed November 14, 2020).

Amann M. Health Risks of Ozone From Long-Range Transboundary Air Pollution. Edited by: Frank Theakston. WHO Regional Office Europe; (2008). P. xi. Available online at: https://www.euro.who.int/__data/assets/pdf_file/0005/78647/E91843.pdf (accessed June 29, 2021).

Selye H. A syndrome produced by diverse nocuous agents. Nature. (1936) 138:32. 10.1038/138032a0 PubMed DOI

Schwarzer R, Schulz U. Stressful life events. In: Weiner IB, editor. Handbook of Psychology. Hoboken, NJ: John Wiley & Sons, Inc. (2003). p. wei0902. Available online at: http://doi.wiley.com/10.1002/0471264385.wei0902 (accessed November 15, 2020). DOI

Spiers JG, Chen H-JC, Sernia C, Lavidis NA. Activation of the hypothalamic-pituitary-adrenal stress axis induces cellular oxidative stress. Front Neurosci. (2015) 8:456. 10.3389/fnins.2014.00456 PubMed DOI PMC

Schiavone S, Jaquet V, Trabace L, Krause K-H. Severe life stress and oxidative stress in the brain: from animal models to human pathology. Antioxid Redox Signal. (2013) 18:1475–90. 10.1089/ars.2012.4720 PubMed DOI PMC

RajMohan V, Mohandas E. The limbic system. Indian J Psychiatry. (2007) 49:132. 10.4103/0019-5545.33264 PubMed DOI PMC

Teague CR, Dhabhar FS, Barton RH, Beckwith-Hall B, Powell J, Cobain M, et al. . Metabonomic studies on the physiological effects of acute and chronic psychological stress in sprague–dawley rats. J Proteome Res. (2007) 6:2080–93. 10.1021/pr060412s PubMed DOI

Akashi YJ, Goldstein DS, Barbaro G, Ueyama T. Takotsubo cardiomyopathy: a new form of acute, reversible heart failure. Circulation. (2008) 118:2754–62. 10.1161/CIRCULATIONAHA.108.767012 PubMed DOI PMC

Giannakopoulos K, El-Battrawy I, Schramm K, Ansari U, Hoffmann U, Borggrefe M, et al. . Comparison and outcome analysis of patients with takotsubo cardiomyopathy triggered by emotional stress or physical stress. Front Psychol. (2017) 8:527. 10.3389/fpsyg.2017.00527 PubMed DOI PMC

Hellsten Y, Frandsen U, Orthenblad N, Sjødin B, Richter EA. Xanthine oxidase in human skeletal muscle following eccentric exercise: a role in inflammation. J Physiol. (1997) 498:239–48. 10.1113/jphysiol.1997.sp021855 PubMed DOI PMC

Anthonymuthu TS, Kim-Campbell N, Bayir H. Oxidative lipidomics: applications in critical care. Curr Opin Crit Care. (2017) 23:251–6. 10.1097/MCC.0000000000000419 PubMed DOI PMC

Sen CK. Glutathione homeostasis in response to exercise training and nutritional supplements. In: DK Das. editor. Stress Adaptation, Prophylaxis and Treatment. Boston, MA: Springer; (1999). p. 31–42. Available online at: http://link.springer.com/10.1007/978-1-4615-5097-6_4 (accessed November 15, 2020). PubMed DOI

Christensen TE, Bang LE, Holmvang L, Hasbak P, Kjær A, Bech P, et al. . Neuroticism, depression and anxiety in takotsubo cardiomyopathy. BMC Cardiovasc Disord. (2016) 16:118. 10.1186/s12872-016-0277-4 PubMed DOI PMC

Friedman J. Why is the nervous system vulnerable to oxidative stress? In: Gadoth N, Göbel HH, editors. Oxidative Stress and Free Radical Damage in Neurology. Totowa, NJ: Humana Press; (2011). p. 19–27. Available online at: http://link.springer.com/10.1007/978-1-60327-514-9_2 (accessed November 15, 2020). DOI

Cobley JN, Fiorello ML, Bailey DM. 13 reasons why the brain is susceptible to oxidative stress. Redox Biol. (2018) 15:490–503. 10.1016/j.redox.2018.01.008 PubMed DOI PMC

Du J, Wang Y, Hunter R, Wei Y, Blumenthal R, Falke C, et al. . Dynamic regulation of mitochondrial function by glucocorticoids. Proc Natl Acad Sci. (2009) 106:3543–8. 10.1073/pnas.0812671106 PubMed DOI PMC

You J-M, Yun S-J, Nam KN, Kang C, Won R, Lee EH. Mechanism of glucocorticoid-induced oxidative stress in rat hippocampal slice cultures. Can J Physiol Pharmacol. (2009) 87:440–7. 10.1139/Y09-027 PubMed DOI

Chetty S, Friedman AR, Taravosh-Lahn K, Kirby ED, Mirescu C, Guo F, et al. . Stress and glucocorticoids promote oligodendrogenesis in the adult hippocampus. Mol Psychiatry. (2014) 19:1275–83. 10.1038/mp.2013.190 PubMed DOI PMC

Klein C, Hiestand T, Ghadri J-R, Templin C, Jäncke L, Hänggi J. Takotsubo Syndrome - Predictable from brain imaging data. Sci Rep. (2017) 7:5434. 10.1038/s41598-017-05592-7 PubMed DOI PMC

Vaccaro A, Despas F, Delmas C, Lairez O, Lambert E, Lambert G, et al. . Direct evidences for sympathetic hyperactivity and baroreflex impairment in tako tsubo cardiopathy. Baumert M, editor. PLoS ONE. (2014) 9:e93278. 10.1371/journal.pone.0093278 PubMed DOI PMC

Desai R, Singh S, Patel U, Fong HK, Kaur VP, Varma Y, et al. . Frequency of takotsubo cardiomyopathy in epilepsy-related hospitalizations among adults and its impact on in-hospital outcomes: a national standpoint. Int J Cardiol. (2020) 299:67–70. 10.1016/j.ijcard.2019.07.034 PubMed DOI

Shin E-J, Jeong JH, Chung YH, Kim W-K, Ko K-H, Bach J-H, et al. . Role of oxidative stress in epileptic seizures. Neurochem Int. (2011) 59:122–37. 10.1016/j.neuint.2011.03.025 PubMed DOI PMC

Halliwell B. Reactive oxygen species and the central nervous system. J Neurochem. (1992) 59:1609–23. 10.1111/j.1471-4159.1992.tb10990.x PubMed DOI

Ameta R, Chohadia AK, Jain A, Punjabi PB. Fenton and photo-fenton processes. In: Advanced Oxidation Processes for Waste Water Treatment. Elsevier; (2018). p. 49–87. Available online at: https://linkinghub.elsevier.com/retrieve/pii/B9780128104996000036 (accessed November 15, 2020).

Winterbourn CC. Toxicity of iron and hydrogen peroxide: the Fenton reaction. Toxicol Lett. (1995) 82–83:969–74. 10.1016/0378-4274(95)03532-X PubMed DOI

Gutteridge JMC. Iron promoters of the Fenton reaction and lipid peroxidation can be released from haemoglobin by peroxides. FEBS Lett. (1986) 201:291–5. 10.1016/0014-5793(86)80626-3 PubMed DOI

Li S, Koerner MM, El-Banayosy A, Soleimani B, Pae WE, Leuenberger UA. Takotsubo's syndrome after mitral valve repair and rescue with extracorporeal membrane oxygenation. Ann Thorac Surg. (2014) 97:1777–8. 10.1016/j.athoracsur.2013.08.032 PubMed DOI

Wever-Pinzon O, Tami L. Takotsubo cardiomyopathy following a blood transfusion: takotsubo cardiomyopathy following a blood transfusion. Congest Heart Fail. (2009) 16:129–31. 10.1111/j.1751-7133.2009.00134.x PubMed DOI

Postema PG, Wiersma JJ, van der Bilt IaC, Dekkers P, van Bergen PFMM. Takotsubo cardiomyopathy shortly following pacemaker implantation-case report and review of the literature Neth Heart. J Mon J Neth Soc Cardiol Neth Heart Found. (2014) 22:456–9. 10.1007/s12471-012-0320-8 PubMed DOI PMC

Madias JE. Low prevalence of diabetes mellitus in patients with Takotsubo syndrome: a plausible ‘protective' effect with pathophysiologic connotations. Eur Heart J Acute Cardiovasc Care. (2016) 5:164–70. 10.1177/2048872615570761 PubMed DOI

Rena G, Hardie DG, Pearson ER. The mechanisms of action of metformin. Diabetologia. (2017) 60:1577–85. 10.1007/s00125-017-4342-z PubMed DOI PMC

Li M, Li X, Zhang H, Lu Y. Molecular mechanisms of metformin for diabetes and cancer treatment. Front Physiol. (2018) 9:1039. 10.3389/fphys.2018.01039 PubMed DOI PMC

Chakraborty A, Chowdhury S, Bhattacharyya M. Effect of metformin on oxidative stress, nitrosative stress and inflammatory biomarkers in type 2 diabetes patients. Diabetes Res Clin Pract. (2011) 93:56–62. 10.1016/j.diabres.2010.11.030 PubMed DOI

Marshall JS, Warrington R, Watson W, Kim HL. An introduction to immunology and immunopathology. Allergy Asthma Clin Immunol. (2018) 14:49. 10.1186/s13223-018-0278-1 PubMed DOI PMC

De Giorgi A, Fabbian F, Pala M, Parisi C, Misurati E, Molino C, et al. . Takotsubo cardiomyopathy and acute infectious diseases: a mini-review of case reports. Angiology. (2015) 66:257–61. 10.1177/0003319714523673 PubMed DOI

Galea F, Abela G, Felice H. Takotsubo cardiomyopathy in chronic infection. Scott Med J. (2013) 58:e11–4. 10.1177/0036933013508044 PubMed DOI

Mori K, Yagi M, Oe K, Shimojima M, Yamagishi M. Pericarditis-complicated takotsubo cardiomyopathy in a patient with rheumatoid arthritis. Cardiovasc Diagn Ther. (2018) 8:520–4. 10.21037/cdt.2018.05.02 PubMed DOI PMC

Ugurlucan M, Zorman Y, Ates G, Arslan AH, Yildiz Y, Karahan Zor A, et al. . Takotsubo cardiomyopathy in a patient with multiple autoimmune disorders and hyperthyroidism. Res Cardiovasc Med. (2013) 2:145–8. 10.5812/cardiovascmed.10023 PubMed DOI PMC

Rathish D, Karalliyadda M. Takotsubo syndrome in patients with myasthenia gravis: a systematic review of previously reported cases. BMC Neurol. (2019) 19:281. 10.1186/s12883-019-1523-z PubMed DOI PMC

Bayer AD, Cahill JF, Rizvi SA. Multiple sclerosis relapse presenting as an acute cardiomyopathy. Mult Scler Relat Disord. (2019) 27:7–8. 10.1016/j.msard.2018.09.021 PubMed DOI

Boon M, Dennesen PJW, Veldkamp RF. A rare stress cardiomyopathy in a patient with Guillain-Barré syndrome. Neth J Med. (2016) 74:86–8. PubMed

Manfredini R, Fabbian F, Giorgi AD, Pala M, Menegatti AM, Parisi C, et al. . Heart and lung, a dangerous liaison-Tako-tsubo cardiomyopathy and respiratory diseases: a systematic review. World J Cardiol. (2014) 6:338–44. 10.4330/wjc.v6.i5.338 PubMed DOI PMC

Mirijello A, D'Errico MM, Curci S, Bossa F, d'Angelo C, Vendemiale G, et al. . Takotsubo syndrome and inflammatory bowel diseases: does a link exist? Dig Dis. (2020) 38:204–10. 10.1159/000502088 PubMed DOI

Elikowski W, Malek-Elikowska M, Lisiecka M, Trypuč Z, Mozer-Lisewska I. Takotsubo cardiomyopathy triggered by influenza B. Pol Med J. (2018) 266:67–70. PubMed

Zhou JQ, Choe E, Ang L, Schnittger I, Rockson SG, Tremmel JA, et al. . Stress-induced cardiomyopathy associated with a transfusion reaction: a case of potential crosstalk between the histaminic and adrenergic systems. Exp Clin Cardiol. (2011) 16:30–2. PubMed PMC

Singh K, Marinelli T, Horowitz JD. Takotsubo cardiomyopathy after anti-influenza vaccination: catecholaminergic effects of immune system. Am J Emerg Med. (2013) 31:1627.e1–.e4. 10.1016/j.ajem.2013.06.039 PubMed DOI

Vultaggio A, Matucci A, Del Pace S, Simonetti I, Parronchi P, Rossi O, et al. . Tako-Tsubo-like syndrome during anaphylactic reaction. Eur J Heart Fail. (2007) 9:209–11. 10.1016/j.ejheart.2006.05.011 PubMed DOI

Ghanim D, Adler Z, Qarawani D, Kusniec F, Amir O, Carasso S. Takotsubo cardiomyopathy caused by epinephrine-treated bee sting anaphylaxis: a case report. J Med Case Reports. (2015) 9:247. 10.1186/s13256-015-0722-5 PubMed DOI PMC

Kajander OA, Virtanen MPO, Sclarovsky S, Nikus KC. Iatrogenic inverted takotsubo syndrome following intravenous adrenaline injections for an allergic reaction. Int J Cardiol. (2013) 165:e3–5. 10.1016/j.ijcard.2012.09.157 PubMed DOI

Khoueiry G, Abi Rafeh N, Azab B, Markman E, Waked A, AbouRjaili G, et al. . Reverse takotsubo cardiomyopathy in the setting of anaphylaxis treated with high-dose intravenous epinephrine. J Emerg Med. (2013) 44:96–9. 10.1016/j.jemermed.2011.09.032 PubMed DOI

Imran MA, Khalid H, Karim S, Gierer SA. Broken heart syndrome (takotsubo cardiomyopathy) induced by epinephrine. J Allergy Clin Immunol. (2016) 137:AB47. 10.1016/j.jaci.2015.12.156 PubMed DOI

Aono J, Saito M, Inaba S, Kurata A, Uetani T, Annen S, et al. . Multiple bee sting-induced life-threatening takotsubo cardiomyopathy. Circ J. (2019) 83:489. 10.1253/circj.CJ-18-0047 PubMed DOI

Murase K, Takagi K. Takotsubo cardiomyopathy in a snake bite victim: a case report. Pan Afr Med J. (2012) 13:51. PubMed PMC

Alexakis L-C, Arapi S, Stefanou I, Gargalianos P, Astriti M. Transient reverse takotsubo cardiomyopathy following a spider bite in greece: a case report. Medicine (Baltimore). (2015) 94:e457. 10.1097/MD.0000000000000457 PubMed DOI PMC

Gupta P, Zhu N. Epinephrine or no. epinephrine: shellfish allergy in patient with takotsobu cardiomyopathy. Ann Allergy Asthma Immunol. (2018) 121:S117. 10.1016/j.anai.2018.09.389 DOI

Yew KL, Kok VSL. Exotic food anaphylaxis and the broken heart: sago worm and takotsubo cardiomyopathy. Med J Malaysia. (2012) 67:540–1. PubMed

Kounis NG. Kounis syndrome: an update on epidemiology, pathogenesis, diagnosis and therapeutic management. Clin Chem Lab Med CCLM. (2016) 54:10. 10.1515/cclm-2016-0010 PubMed DOI

Kounis NG, Zavras GM. Histamine-induced coronary artery spasm: the concept of allergic angina. Br J Clin Pract. (1991) 45:121–8. PubMed

Lopez PR, Peiris AN. Kounis syndrome. South Med J. (2010) 103:1148–55. 10.1097/SMJ.0b013e3181f8c56f PubMed DOI

Kounis NG. Mast Cells and the Heart: Kounis Syndrome and Takotsubo Cardiomyopathy (2016). Available online at: http://dev.ministersofdesign.com/tms2/expert-information/mast-cells-heart-kounis-syndrome-takotsubo-cardiomyopathy/ (accessed June 29, 2021).

Yanagawa Y, Nishi K, Tomiharu N, Kawaguchi T. A case of takotsubo cardiomyopathy associated with Kounis syndrome. Int J Cardiol. (2009) 132:e65–7. 10.1016/j.ijcard.2007.08.022 PubMed DOI

Cammann VL, Sarcon A, Ding KJ, Seifert B, Kato K, Di Vece D, et al. . Clinical features and outcomes of patients with malignancy and takotsubo syndrome: observations from the international takotsubo registry. J Am Heart Assoc. (2019) 8:e00881. 10.1161/JAHA.118.010881 PubMed DOI PMC

Wittekind SG, Yanay O, Johnson EM, Gibbons EF. Two pediatric cases of variant neurogenic stress cardiomyopathy after intracranial hemorrhage. Pediatrics. (2014) 134:e1211–7. 10.1542/peds.2013-1881 PubMed DOI

Schoof S, Bertram H, Hohmann D, Jack T, Wessel A, Yelbuz TM. Takotsubo cardiomyopathy in a 2-year-old girl: 3-dimensional visualization of reversible left ventricular dysfunction. J Am Coll Cardiol. (2010) 55:e5. 10.1016/j.jacc.2009.08.050 PubMed DOI

Bertero E, Maack C. Calcium signaling and reactive oxygen species in mitochondria. Circ Res. (2018) 122:1460–78. 10.1161/CIRCRESAHA.118.310082 PubMed DOI

Schwarz DS, Blower MD. The endoplasmic reticulum: structure, function and response to cellular signaling. Cell Mol Life Sci CMLS. (2016) 73:79–94. 10.1007/s00018-015-2052-6 PubMed DOI PMC

Zeeshan H, Lee G, Kim H-R, Chae H-J. Endoplasmic reticulum stress and associated ROS. Int J Mol Sci. (2016) 17:327. 10.3390/ijms17030327 PubMed DOI PMC

Pinali C, Bennett H, Davenport JB, Trafford AW, Kitmitto A. Three-dimensional reconstruction of cardiac sarcoplasmic reticulum reveals a continuous network linking transverse-tubules: this organization is perturbed in heart failure. Circ Res. (2013) 113:1219–30. 10.1161/CIRCRESAHA.113.301348 PubMed DOI

Nantes IL, Rodrigues T, Yokomizo CH, Araújo-Chaves J, Pessoto FS, Kisaki MK, et al. . Antioxidant action of mobile electron carriers of the respiratory chain. In: Clark K, editor. Bioenergetics. InTech; (2012). Available online at: http://www.intechopen.com/books/bioenergetics/antioxidant-action-of-mobile-electron-carriers-of-the-respiratory-chain (accessed November 21, 2020).

Lopez-Crisosto C, Pennanen C, Vasquez-Trincado C, Morales PE, Bravo-Sagua R, Quest AFG, et al. . Sarcoplasmic reticulum-mitochondria communication in cardiovascular pathophysiology. Nat Rev Cardiol. (2017) 14:342–60. 10.1038/nrcardio.2017.23 PubMed DOI

Scriven P, Brown NJ, Pockley AG, Wyld L. The unfolded protein response and cancer: a brighter future unfolding? J Mol Med Berl Ger. (2007) 85:331–41. 10.1007/s00109-006-0150-5 PubMed DOI

Adams CJ, Kopp MC, Larburu N, Nowak PR, Ali MMU. Structure and molecular mechanism of ER stress signaling by the unfolded protein response signal activator IRE1. Front Mol Biosci. (2019) 6:11. 10.3389/fmolb.2019.00011 PubMed DOI PMC

Lu X, Ginsburg KS, Kettlewell S, Bossuyt J, Smith GL, Bers DM. Measuring local gradients of intramitochondrial [Ca 2+] in cardiac myocytes during sarcoplasmic reticulum Ca 2+ release. Circ Res. (2013) 112:424–31. 10.1161/CIRCRESAHA.111.300501 PubMed DOI PMC

Eisner DA, Caldwell JL, Kistamás K, Trafford AW. Calcium and excitation-contraction coupling in the heart. Circ Res. (2017) 121:181–95. 10.1161/CIRCRESAHA.117.310230 PubMed DOI PMC

Bers DM. Cardiac excitation-contraction coupling. Nature. (2002) 415:198–205. 10.1038/415198a PubMed DOI

Bers DM. Altered cardiac myocyte ca regulation in heart failure. Physiology. (2006) 21:380–7. 10.1152/physiol.00019.2006 PubMed DOI

Williams GSB, Boyman L, Lederer WJ. Mitochondrial calcium and the regulation of metabolism in the heart. J Mol Cell Cardiol. (2015) 78:35–45. 10.1016/j.yjmcc.2014.10.019 PubMed DOI PMC

Hobai IA, O'Rourke B. Decreased sarcoplasmic reticulum calcium content is responsible for defective excitation-contraction coupling in canine heart failure. Circulation. (2001) 103:1577–84. 10.1161/01.CIR.103.11.1577 PubMed DOI

Lemasters JJ, Theruvath TP, Zhong Z, Nieminen A-L. Mitochondrial calcium and the permeability transition in cell death. Biochim Biophys Acta BBA Bioenerg. (2009) 1787:1395–401. 10.1016/j.bbabio.2009.06.009 PubMed DOI PMC

Jekabsone A. Nitric oxide and calcium together inactivate mitochondrial complex I and induce cytochrome c release. J Mol Cell Cardiol. (2003) 35:803–9. 10.1016/S0022-2828(03)00137-8 PubMed DOI

Dhalla NS, Temsah RM. Netticadan T. Role of oxidative stress in cardiovascular diseases. J Hypertens. (2000) 18:655–73. 10.1097/00004872-200018060-00002 PubMed DOI

Nef HM, Mollmann H, Troidl C, Kostin S, Voss S, Hilpert P, et al. . Abnormalities in intracellular Ca2+ regulation contribute to the pathomechanism of Tako-Tsubo cardiomyopathy. Eur Heart J. (2009) 30:2155–64. 10.1093/eurheartj/ehp240 PubMed DOI

Asahi M, Sugita Y, Kurzydlowski K, De Leon S, Tada M, Toyoshima C, et al. . Sarcolipin regulates sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) by binding to transmembrane helices alone or in association with phospholamban. Proc Natl Acad Sci USA. (2003) 100:5040–5. 10.1073/pnas.0330962100 PubMed DOI PMC

MacLennan DH, Asahi M, Tupling AR. The regulation of SERCA-type pumps by phospholamban and sarcolipin. Ann N Y Acad Sci. (2003) 986:472–80. 10.1111/j.1749-6632.2003.tb07231.x PubMed DOI

Nef HM, Möllmann H, Akashi YJ, Hamm CW. Mechanisms of stress (Takotsubo) cardiomyopathy. Nat Rev Cardiol. (2010) 7:187–93. 10.1038/nrcardio.2010.16 PubMed DOI

Cimarelli S, Imperiale A, Ben-Sellem D, Rischner J, Detour J, Morel O, et al. . Nuclear medicine imaging of takotsubo cardiomyopathy: typical form and midventricular ballooning syndrome. J Nucl Cardiol. (2008) 15:137–41. 10.1007/BF02976903 PubMed DOI

Nguyen H, Zaroff JG. Neurogenic stunned myocardium. Curr Neurol Neurosci Rep. (2009) 9:486–91. 10.1007/s11910-009-0071-0 PubMed DOI

Biso S, Wongrakpanich S, Agrawal A, Yadlapati S, Kishlyansky M, Figueredo V, et al. . Review of neurogenic stunned myocardium. Cardiovasc Psychiatry Neurol. (2017) 2017:5842182. 10.1155/2017/5842182 PubMed DOI PMC

Guglin M, Novotorova I. Neurogenic stunned myocardium and takotsubo cardiomyopathy are the same syndrome: a pooled analysis. Congest Heart Fail Greenwich Conn. (2011) 17:127–32. 10.1111/j.1751-7133.2011.00210.x PubMed DOI

Kenigsberg BB, Barnett CF, Mai JC, Chang JJ. Neurogenic stunned myocardium in severe neurological injury. Curr Neurol Neurosci Rep. (2019) 19:90. 10.1007/s11910-019-0999-7 PubMed DOI

Gherasim L. Takotsubo syndrome versus neurogenic stunned myocardium. Maedica. (2020) 15:288–96. 10.26574/maedica.2020.15.3.288 PubMed DOI PMC

Nagai M, Hoshide S, Kario K. The insular cortex and cardiovascular system: a new insight into the brain-heart axis. J Am Soc Hypertens. (2010) 4:174–82. 10.1016/j.jash.2010.05.001 PubMed DOI

Uddin LQ, Nomi JS, Hébert-Seropian B, Ghaziri J, Boucher O. Structure and function of the human insula. J Clin Neurophysiol. (2017) 34:300–6. 10.1097/WNP.0000000000000377 PubMed DOI PMC

Y-Hassan S, De Palma R. Contemporary review on the pathogenesis of takotsubo syndrome: the heart shedding tears. Int J Cardiol. (2017) 228:528–36. 10.1016/j.ijcard.2016.11.086 PubMed DOI

Zaroff JG, Rordorf GA, Ogilvy CS, Picard MH. Regional patterns of left ventricular systolic dysfunction after subarachnoid hemorrhage: evidence for neurally mediated cardiac injury. J Am Soc Echocardiogr. (2000) 13:774–9. 10.1067/mje.2000.105763 PubMed DOI

Coote JH, Chauhan RA. The sympathetic innervation of the heart: important new insights. Auton Neurosci Basic Clin. (2016) 199:17–23. 10.1016/j.autneu.2016.08.014 PubMed DOI

Cinca J, Evangelista A, Montoyo J, Barutell C, Figueras J, Valle V, et al. . Electrophysiologic effects of unilateral right and left stellate ganglion block on the human heart. Am Heart J. (1985) 109:46–54. 10.1016/0002-8703(85)90414-4 PubMed DOI

Frankel E, Prior P, Mehta H, Rajagopalan P, Wiener DH, Rose A, et al. . One patient, three variants, four episodes of takotsubo cardiomyopathy. CASE Phila PA. (2020) 4:204–7. 10.1016/j.case.2020.01.009 PubMed DOI PMC

Eitel I, von Knobelsdorff-Brenkenhoff F, Bernhardt P, Carbone I, Muellerleile K, Aldrovandi A, et al. . Clinical characteristics and cardiovascular magnetic resonance findings in stress (takotsubo) cardiomyopathy. JAMA. (2011) 306:92. 10.1001/jama.2011.992 PubMed DOI

Eitel I, Behrendt F, Schindler K, Kivelitz D, Gutberlet M, Schuler G, et al. . Differential diagnosis of suspected apical ballooning syndrome using contrast-enhanced magnetic resonance imaging. Eur Heart J. (2008) 29:2651–9. 10.1093/eurheartj/ehn433 PubMed DOI

Eitel I, Lücke C, Grothoff M, Sareban M, Schuler G, Thiele H, et al. . Inflammation in takotsubo cardiomyopathy: insights from cardiovascular magnetic resonance imaging. Eur Radiol. (2010) 20:422–31. 10.1007/s00330-009-1549-5 PubMed DOI

Ghadri JR, Dougoud S, Maier W, Kaufmann PA, Gaemperli O, Prasad A, et al. . A PET/CT-follow-up imaging study to differentiate takotsubo cardiomyopathy from acute myocardial infarction. Int J Cardiovasc Imaging. (2014) 30:207–9. 10.1007/s10554-013-0311-x PubMed DOI

Scally C, Abbas H, Ahearn T, Srinivasan J, Mezincescu A, Rudd A, et al. . Myocardial and systemic inflammation in acute stress-induced (takotsubo) cardiomyopathy. Circulation. (2019) 139:1581–92. 10.1161/CIRCULATIONAHA.118.037975 PubMed DOI PMC

Santoro F, Costantino MD, Guastafierro F, Triggiani G, Ferraretti A, Tarantino N, et al. . Inflammatory patterns in Takotsubo cardiomyopathy and acute coronary syndrome: a propensity score matched analysis. Atherosclerosis. (2018) 274:157–61. 10.1016/j.atherosclerosis.2018.05.017 PubMed DOI

Margaritelis NV, Veskoukis AS, Paschalis V, Vrabas IS, Dipla K, Zafeiridis A. Blood reflects tissue oxidative stress: a systematic review. Biomarkers. (2015) 20:97–108. 10.3109/1354750X.2014.1002807 PubMed DOI

Dande AS, Sena SF, Wasserman HS, Warshofsky MK, Belsky JL. Prevalence and consequences of vitamin d insufficiency in women with takotsubo cardiomyopathy. J Clin Endocrinol Metab. (2013) 98:E872–6. 10.1210/jc.2013-1082 PubMed DOI

Marfella R, Barbieri M, Sardu C, Rizzo MR, Siniscalchi M, Paolisso P, et al. . Effects of α-lipoic acid therapy on sympathetic heart innervation in patients with previous experience of transient takotsubo cardiomyopathy. J Cardiol. (2016) 67:153–61. 10.1016/j.jjcc.2015.07.012 PubMed DOI

Vinik AI, Maser RE, Ziegler D. Autonomic imbalance: prophet of doom or scope for hope? Diabet Med J Br Diabet Assoc. (2011) 28:643–51. 10.1111/j.1464-5491.2010.03184.x PubMed DOI PMC

Packer L, Witt EH, Tritschler HJ. Alpha-lipoic acid as a biological antioxidant. Free Radic Biol Med. (1995) 19:227–50. 10.1016/0891-5849(95)00017-R PubMed DOI

James SJ, Cutler P, Melnyk S, Jernigan S, Janak L, Gaylor DW, et al. . Metabolic biomarkers of increased oxidative stress and impaired methylation capacity in children with autism. Am J Clin Nutr. (2004) 80:1611–7. 10.1093/ajcn/80.6.1611 PubMed DOI

Lang CA, Mills BJ, Mastropaolo W, Liu MC. Blood glutathione decreases in chronic diseases. J Lab Clin Med. (2000) 135:402–5. 10.1067/mlc.2000.105977 PubMed DOI

Sheng-Huang C, Chieh-Hsin C, Mu-Chun Y, Wen-Tung H, Chia-Ying H, Ya-Ting H, et al. . Effects of estrogen on glutathione and catalase levels in human erythrocyte during menstrual cycle. Biomed Rep. (2015) 3:266–8. 10.3892/br.2014.412 PubMed DOI PMC

Janus SE, Hoit BD. The three faces of takotsubo cardiomyopathy in a single patient. Echocardiography. (2020) 37:135–8. 10.1111/echo.14560 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...