Photoacoustic Properties of Polypyrrole Nanoparticles

. 2021 Sep 21 ; 11 (9) : . [epub] 20210921

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34578773

Grantová podpora
18-05200S Grantová Agentura České Republiky
LM2015062 Ministerstvo Školství, Mládeže a Tělovýchovy
BIOCEV-FAR LQ1604 Ministerstvo Školství, Mládeže a Tělovýchovy
CZ.02.01./0.0./0.0./16_013/0001775 European Regional Development Fund

Photoacoustic imaging, an emerging modality, provides supplemental information to ultrasound imaging. We investigated the properties of polypyrrole nanoparticles, which considerably enhance contrast in photoacoustic images, in relation to the synthesis procedure and to their size. We prepared polypyrrole nanoparticles by water-based redox precipitation polymerization in the presence of ammonium persulphate (ratio nPy:nOxi 1:0.5, 1:1, 1:2, 1:3, 1:5) or iron(III) chloride (nPy:nOxi 1:2.3) acting as an oxidant. To stabilize growing nanoparticles, non-ionic polyvinylpyrrolidone was used. The nanoparticles were characterized and tested as a photoacoustic contrast agent in vitro on an imaging platform combining ultrasound and photoacoustic imaging. High photoacoustic signals were obtained with lower ratios of the oxidant (nPy:nAPS ≥ 1:2), which corresponded to higher number of conjugated bonds in the polymer. The increasing portion of oxidized structures probably shifted the absorption spectra towards shorter wavelengths. A strong photoacoustic signal dependence on the nanoparticle size was revealed; the signal linearly increased with particle surface. Coated nanoparticles were also tested in vivo on a mouse model. To conclude, polypyrrole nanoparticles represent a promising contrast agent for photoacoustic imaging. Variations in the preparation result in varying photoacoustic properties related to their structure and allow to optimize the nanoparticles for in vivo imaging.

Zobrazit více v PubMed

Wang L.V., Hu S. Photoacoustic Tomography: In Vivo Imaging from Organelles to Organs. Science. 2012;335:1458–1462. doi: 10.1126/science.1216210. PubMed DOI PMC

Attia A.B.E., Balasundaram G., Moothanchery M., Dinish U., Bi R., Ntziachristos V., Olivo M. A review of clinical photoacoustic imaging: Current and future trends. Photoacoustics. 2019;16:100144. doi: 10.1016/j.pacs.2019.100144. PubMed DOI PMC

Steinberg I., Huland D.M., Vermesh O., Frostig H.E., Tummers W.S., Gambhir S.S. Photoacoustic clinical imaging. Photoacoustics. 2019;14:77–98. doi: 10.1016/j.pacs.2019.05.001. PubMed DOI PMC

Bell A.G. On the production and reproduction of sound by light. Am. J. Sci. 1880;29:305–324. doi: 10.2475/ajs.s3-20.118.305. DOI

Razansky D. Optoacoustic Imaging. In: Brahme A., editor. Comprehensive Biomedical Physics. Elsevier; Amsterdam, The Netherlands: 2014. pp. 281–300. DOI

Weissleder R. A clearer vision for in vivo imaging. Nat. Biotechnol. 2001;19:316–317. doi: 10.1038/86684. PubMed DOI

Maturi M., Locatelli E., Monaco I., Franchini M.C. Current concepts in nanostructured contrast media development for in vivo photoacoustic imaging. Biomater. Sci. 2019;7:1746–1775. doi: 10.1039/C8BM01444B. PubMed DOI

Wu D., Huang L., Jiang M.S., Jiang H. Contrast Agents for Photoacoustic and Thermoacoustic Imaging: A Review. Int. J. Mol. Sci. 2014;15:23616–23639. doi: 10.3390/ijms151223616. PubMed DOI PMC

Borg R.E., Rochford J. Molecular Photoacoustic Contrast Agents: Design Principles & Applications. Photochem. Photobiol. 2018;94:1175–1209. doi: 10.1111/php.12967. PubMed DOI PMC

Laramie M.D., Smith M.K., Marmarchi F., McNally L.R., Henary M. Small Molecule Optoacoustic Contrast Agents: An Unexplored Avenue for Enhancing In Vivo Imaging. Molecules. 2018;23:2766. doi: 10.3390/molecules23112766. PubMed DOI PMC

Benson R.C., Kues H.A. Absorption and fluorescence properties of cyanine dyes. J. Chem. Eng. Data. 1977;22:379–383. doi: 10.1021/je60075a020. DOI

Luke G., Yeager D., Emelianov S.Y. Biomedical Applications of Photoacoustic Imaging with Exogenous Contrast Agents. Ann. Biomed. Eng. 2012;40:422–437. doi: 10.1007/s10439-011-0449-4. PubMed DOI

Pan D., Kim B., Wang L., Lanza G.M. A brief account of nanoparticle contrast agents for photoacoustic imaging. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2013;5:517–543. doi: 10.1002/wnan.1231. PubMed DOI PMC

Guo D., Ji X., Luo J. Rational nanocarrier design towards clinical translation of cancer nanotherapy. Biomed. Mater. 2021;16:032005. doi: 10.1088/1748-605X/abe35a. PubMed DOI

Figueroa S.M., Fleischmann D., Goepferich A. Biomedical nanoparticle design: What we can learn from viruses. J. Control. Release. 2021;329:552–569. doi: 10.1016/j.jconrel.2020.09.045. PubMed DOI PMC

Mitchell M.J., Billingsley M.M., Haley R.M., Wechsler M.E., Peppas N.A., Langer R. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov. 2021;20:101–124. doi: 10.1038/s41573-020-0090-8. PubMed DOI PMC

Sreeharsha N., Chitrapriya N., Jang Y.J., Kenchappa V. Evaluation of nanoparticle drug-delivery systems used in preclinical studies. Ther. Deliv. 2021;12:325–336. doi: 10.4155/tde-2020-0116. PubMed DOI

Jain P., Lee K.S., El-Sayed I.H., El-Sayed M.A. Calculated Absorption and Scattering Properties of Gold Nanoparticles of Different Size, Shape, and Composition: Applications in Biological Imaging and Biomedicine. J. Phys. Chem. B. 2006;110:7238–7248. doi: 10.1021/jp057170o. PubMed DOI

Gao D., Yuan Z. Photoacoustic-Based Multimodal Nanoprobes: From Constructing to Biological Applications. Int. J. Biol. Sci. 2017;13:401–412. doi: 10.7150/ijbs.18750. PubMed DOI PMC

Lemaster J.E., Jokerst J.V. What is new in nanoparticle-based photoacoustic imaging? Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2017;9:9. doi: 10.1002/wnan.1404. PubMed DOI PMC

Reguera J., de Aberasturi D.J., Henriksen-Lacey M., Langer J., Espinosa A., Szczupak B., Wilhelm C., Liz-Marzán L.M. Janus plasmonic–magnetic gold–iron oxide nanoparticles as contrast agents for multimodal imaging. Nanoscale. 2017;9:9467–9480. doi: 10.1039/C7NR01406F. PubMed DOI

Li X., Wang X., Zhao C., Shao L., Lu J., Tong Y., Chen L., Cui X., Sun H., Liu J., et al. From one to all: Self-assembled theranostic nanoparticles for tumor-targeted imaging and programmed photoactive therapy. J. Nanobiotechnol. 2019;17:1–12. doi: 10.1186/s12951-019-0450-x. PubMed DOI PMC

Ma W., Wang J. Theranostics of Gold Nanoparticles with an Emphasis on Photoacoustic Imaging and Photothermal Therapy. Curr. Pharm. Des. 2018;24:2719–2728. doi: 10.2174/1381612824666180604112201. PubMed DOI

Men X., Yuan Z. Multifunctional conjugated polymer nanoparticles for photoacoustic-based multimodal imaging and cancer photothermal therapy. J. Innov. Opt. Health Sci. 2019;12:1930001. doi: 10.1142/S1793545819300015. DOI

Phan T.T.V., Bui N.Q., Cho S.-W., Bharathiraja S., Manivasagan P., Moorthy M.S., Mondal S., Kim C.-S., Oh J. Photoacoustic Imaging-Guided Photothermal Therapy with Tumor-Targeting HA-FeOOH@PPy Nanorods. Sci. Rep. 2018;8:1–13. doi: 10.1038/s41598-018-27204-8. PubMed DOI PMC

Luciano M., Erfanzadeh M., Zhou F., Zhu H., Bornhütter T., Röder B., Zhu Q., Brückner C. In vivo photoacoustic tumor tomography using a quinoline-annulated porphyrin as NIR molecular contrast agent. Org. Biomol. Chem. 2017;15:972–983. doi: 10.1039/C6OB02640K. PubMed DOI PMC

de Sousa L.E., de Paiva L.S.R., Filho D.A.D.S., Sini G., Neto P.H.D.O. Assessing the effects of increasing conjugation length on exciton diffusion: From small molecules to the polymeric limit. Phys. Chem. Chem. Phys. 2021;23:15635–15644. doi: 10.1039/D1CP01263K. PubMed DOI

Gürbüz O., Şenkal B.F., Içelli O. Structural, optical and electrical properties of polypyrrole in an ionic liquid. Polym. Bull. 2017;74:2625–2639. doi: 10.1007/s00289-016-1856-3. DOI

Liang X., Li Y., Li X., Jing L., Deng Z., Yue X., Li C., Dai Z. PEGylated Polypyrrole Nanoparticles Conjugating Gadolinium Chelates for Dual-Modal MRI/Photoacoustic Imaging Guided Photothermal Therapy of Cancer. Adv. Funct. Mater. 2015;25:1451–1462. doi: 10.1002/adfm.201402338. DOI

Manivasagan P., Bui N.Q., Bharathiraja S., Moorthy M.S., Oh Y.-O., Song K., Seo H., Yoon M., Oh J. Multifunctional biocompatible chitosan-polypyrrole nanocomposites as novel agents for photoacoustic imaging-guided photothermal ablation of cancer. Sci. Rep. 2017;7:43593. doi: 10.1038/srep43593. PubMed DOI PMC

Zha Z., Deng Z., Li Y., Li C., Wang J., Wang S., Qu E., Dai Z. Biocompatible polypyrrole nanoparticles as a novel organic photoacoustic contrast agent for deep tissue imaging. Nanoscale. 2013;5:4462–4467. doi: 10.1039/c3nr00627a. PubMed DOI

Qin D., Zhang L., Zhu H., Chen J., Wu D., Bouakaz A., Wan M., Feng Y. A Highly Efficient One-for-All Nanodroplet for Ultrasound Imaging-Guided and Cavitation-Enhanced Photothermal Therapy. Int. J. Nanomed. 2021;16:3105–3119. doi: 10.2147/IJN.S301734. PubMed DOI PMC

Theune L., Buchmann J., Wedepohl S., Molina M., Laufer J., Calderón M. NIR- and thermo-responsive semi-interpenetrated polypyrrole nanogels for imaging guided combinational photothermal and chemotherapy. J. Control. Release. 2019;311–312:147–161. doi: 10.1016/j.jconrel.2019.08.035. PubMed DOI

Zeng W., Wu X., Chen T., Sun S., Shi Z., Liu J., Ji X., Zeng X., Guan J., Mei L., et al. Renal-Clearable Ultrasmall Polypyrrole Nanoparticles with Size-Regulated Property for Second Near-Infrared Light-Mediated Photothermal Therapy. Adv. Funct. Mater. 2021;31:2008362. doi: 10.1002/adfm.202008362. DOI

Paúrová M., Taboubi O., Šeděnková I., Hromádková J., Matouš P., Herynek V., Šefc L., Babič M. Role of dextran in stabilization of polypyrrole nanoparticles for photoacoustic imaging. Eur. Polym. J. 2021;157:110634. doi: 10.1016/j.eurpolymj.2021.110634. DOI

Paúrová M., Šeděnková I., Hromádková J., Babič M. Polypyrrole nanoparticles: Control of the size and morphology. J. Polym. Res. 2020;27:1–10. doi: 10.1007/s10965-020-02331-x. DOI

Schneider C.A., Rasband W.S., Eliceiri K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods. 2012;9:671–675. doi: 10.1038/nmeth.2089. PubMed DOI PMC

Babič M., Horák D., Jendelová P., Glogarová K., Herynek V., Trchová M., Likavčanová K., Lesný P., Pollert E., Hájek M., et al. Poly(N,N-dimethylacrylamide)-Coated Maghemite Nanoparticles for Stem Cell Labeling. Bioconjug. Chem. 2009;20:283–294. doi: 10.1021/bc800373x. PubMed DOI

Mosmann T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods. 1983;65:55–63. doi: 10.1016/0022-1759(83)90303-4. PubMed DOI

Xu M., Wang L.V. Photoacoustic imaging in biomedicine. Rev. Sci. Instrum. 2006;77:041101. doi: 10.1063/1.2195024. DOI

Shahbazi K., Frey W., Chen Y.-S., Aglyamov S., Emelianov S. Photoacoustics of core–shell nanospheres using comprehensive modeling and analytical solution approach. Commun. Phys. 2019;2:1–11. doi: 10.1038/s42005-019-0216-7. DOI

Babič M., Horák D., Trchová M., Jendelova P., Glogarová K., Lesný P., Herynek V., Hájek M., Syková E. Poly(l-lysine)-Modified Iron Oxide Nanoparticles for Stem Cell Labeling. Bioconjugate Chem. 2008;19:740–750. doi: 10.1021/bc700410z. PubMed DOI

Filippi M., Garello F., Pasquino C., Arena F., Giustetto P., Antico F., Terreno E. Indocyanine green labeling for optical and photoacoustic imaging of mesenchymal stem cells after in vivo transplantation. J. Biophotonics. 2019;12:e201800035. doi: 10.1002/jbio.201800035. PubMed DOI

Okumura K., Yoshida K., Yoshioka K., Aki S., Yoneda N., Inoue D., Kitao A., Ogi T., Kozaka K., Minami T., et al. Photoacoustic imaging of tumour vascular permeability with indocyanine green in a mouse model. Eur. Radiol. Exp. 2018;2:1–9. doi: 10.1186/s41747-018-0036-7. PubMed DOI PMC

Wang Y., Lan M., Shen D., Fang K., Zhu L., Liu Y., Hao L., Li P. Targeted Nanobubbles Carrying Indocyanine Green for Ultrasound, Photoacoustic and Fluorescence Imaging of Prostate Cancer. Int. J. Nanomed. 2020;15:4289–4309. doi: 10.2147/IJN.S243548. PubMed DOI PMC

Kim T.E., Jang H.J., Park S.W., Wei J., Cho S., Park W.I., Lee B.R., Yang C.D., Jung Y.K. Folic Acid Functionalized Carbon Dot/Polypyrrole Nanoparticles for Specific Bioimaging and Photothermal Therapy. ACS Appl. Bio Mater. 2021;4:3453–3461. doi: 10.1021/acsabm.1c00018. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...