An evolutionary mechanism to assimilate new nutrient sensors into the mTORC1 pathway
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
T32 GM007287
NIGMS NIH HHS - United States
P01 CA120964
NCI NIH HHS - United States
R01 AR057352
NIAMS NIH HHS - United States
F31 CA232340
NCI NIH HHS - United States
R01 CA129105
NCI NIH HHS - United States
R01 AI047389
NIAID NIH HHS - United States
R01 CA103866
NCI NIH HHS - United States
PubMed
38514639
PubMed Central
PMC10957897
DOI
10.1038/s41467-024-46680-3
PII: 10.1038/s41467-024-46680-3
Knihovny.cz E-zdroje
- MeSH
- Drosophila melanogaster * metabolismus MeSH
- mTORC1 metabolismus MeSH
- multiproteinové komplexy metabolismus MeSH
- S-adenosylmethionin MeSH
- savci metabolismus MeSH
- TOR serin-threoninkinasy * metabolismus MeSH
- živiny MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- mTORC1 MeSH
- multiproteinové komplexy MeSH
- S-adenosylmethionin MeSH
- TOR serin-threoninkinasy * MeSH
Animals sense and respond to nutrient availability in their environments, a task coordinated in part by the mTOR complex 1 (mTORC1) pathway. mTORC1 regulates growth in response to nutrients and, in mammals, senses specific amino acids through specialized sensors that bind the GATOR1/2 signaling hub. Given that animals can occupy diverse niches, we hypothesized that the pathway might evolve distinct sensors in different metazoan phyla. Whether such customization occurs, and how the mTORC1 pathway might capture new inputs, is unknown. Here, we identify the Drosophila melanogaster protein Unmet expectations (CG11596) as a species-restricted methionine sensor that directly binds the fly GATOR2 complex in a fashion antagonized by S-adenosylmethionine (SAM). We find that in Dipterans GATOR2 rapidly evolved the capacity to bind Unmet and to thereby repurpose a previously independent methyltransferase as a SAM sensor. Thus, the modular architecture of the mTORC1 pathway allows it to co-opt preexisting enzymes to expand its nutrient sensing capabilities, revealing a mechanism for conferring evolvability on an otherwise conserved system.
Department of Biology Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA USA
Department of Genetics Blavatnik Institute Harvard Medical School Boston MA USA
Howard Hughes Medical Institute Harvard Medical School Boston MA USA
Institute of Organic Chemistry and Biochemistry Flemingovo n 2 166 10 Praha 6 Prague Czech Republic
Zobrazit více v PubMed
Oteiza P, Baldwin MW. Evolution of sensory systems. Curr. Opin. Neurobiol. 2021;71:52–59. doi: 10.1016/j.conb.2021.08.005. PubMed DOI
Julius D, Nathans J. Signaling by sensory receptors. Cold Spring Harb. Perspect. Biol. 2012;4:a005991. doi: 10.1101/cshperspect.a005991. PubMed DOI PMC
Nei M, Rooney AP. Concerted and birth-and-death evolution of multigene families. Annu. Rev. Genet. 2005;39:121–152. doi: 10.1146/annurev.genet.39.073003.112240. PubMed DOI PMC
Bridgham JT, Carroll SM, Thornton JW. Evolution of hormone-receptor complexity by molecular exploitation. Science. 2006;312:97–101. doi: 10.1126/science.1123348. PubMed DOI
Leulier F, Lemaitre B. Toll-like receptors—taking an evolutionary approach. Nat. Rev. Genet. 2008;9:165–178. doi: 10.1038/nrg2303. PubMed DOI
Gracheva EO, et al. Molecular basis of infrared detection by snakes. Nature. 2010;464:1006–1011. doi: 10.1038/nature08943. PubMed DOI PMC
Slavik KM, et al. cGAS-like receptors sense RNA and control 3′2′-cGAMP signalling in Drosophila. Nature. 2021;597:109–113. doi: 10.1038/s41586-021-03743-5. PubMed DOI PMC
Liu GY, Sabatini DM. mTOR at the nexus of nutrition, growth, ageing and disease. Nat. Rev. Mol. Cell Biol. 2020;21:183–203. doi: 10.1038/s41580-019-0199-y. PubMed DOI PMC
Condon KJ, Sabatini DM. Nutrient regulation of mTORC1 at a glance. J. Cell Sci. 2019;132:jcs222570. doi: 10.1242/jcs.222570. PubMed DOI PMC
Valvezan AJ, Manning BD. Molecular logic of mTORC1 signalling as a metabolic rheostat. Nat. Metab. 2019;1:321–333. doi: 10.1038/s42255-019-0038-7. PubMed DOI
Kim J, Guan K-L. mTOR as a central hub of nutrient signalling and cell growth. Nat. Cell Biol. 2019;21:63–71. doi: 10.1038/s41556-018-0205-1. PubMed DOI
Melick CH, Jewell JL. Regulation of mTORC1 by upstream stimuli. Genes. 2020;11:989. doi: 10.3390/genes11090989. PubMed DOI PMC
Wolfson RL, et al. Sestrin2 is a leucine sensor for the mTORC1 pathway. Science. 2016;351:43–48. doi: 10.1126/science.aab2674. PubMed DOI PMC
Chantranupong L, et al. The CASTOR proteins are arginine sensors for the mTORC1 pathway. Cell. 2016;165:153–164. doi: 10.1016/j.cell.2016.02.035. PubMed DOI PMC
Gu X, et al. SAMTOR is an S-adenosylmethionine sensor for the mTORC1 pathway. Science. 2017;358:813–818. doi: 10.1126/science.aao3265. PubMed DOI PMC
Shin HR, et al. Lysosomal GPCR-like protein LYCHOS signals cholesterol sufficiency to mTORC1. Science. 2022;377:1290–1298. doi: 10.1126/science.abg6621. PubMed DOI PMC
Bar-Peled L, et al. A tumor suppressor complex with GAP activity for the Rag GTPases that signal amino acid sufficiency to mTORC1. Science. 2013;340:1100–1106. doi: 10.1126/science.1232044. PubMed DOI PMC
Wolfson RL, et al. KICSTOR recruits GATOR1 to the lysosome and is necessary for nutrients to regulate mTORC1. Nature. 2017;543:438–442. doi: 10.1038/nature21423. PubMed DOI PMC
Peng M, Yin N, Li MO. SZT2 dictates GATOR control of mTORC1 signalling. Nature. 2017;543:433–437. doi: 10.1038/nature21378. PubMed DOI PMC
Saxton RA, Chantranupong L, Knockenhauer KE, Schwartz TU, Sabatini DM. Mechanism of arginine sensing by CASTOR1 upstream of mTORC1. Nature. 2016;536:229–233. doi: 10.1038/nature19079. PubMed DOI PMC
Saxton RA, et al. Structural basis for leucine sensing by the Sestrin2-mTORC1 pathway. Science. 2016;351:53–58. doi: 10.1126/science.aad2087. PubMed DOI PMC
Wolfson RL, Sabatini DM. The dawn of the age of amino acid sensors for the mTORC1 pathway. Cell Metab. 2017;26:301–309. doi: 10.1016/j.cmet.2017.07.001. PubMed DOI PMC
González A, Hall MN. Nutrient sensing and TOR signaling in yeast and mammals. EMBO J. 2017;36:397–408. doi: 10.15252/embj.201696010. PubMed DOI PMC
Wang S, et al. Lysosomal amino acid transporter SLC38A9 signals arginine sufficiency to mTORC1. Science. 2015;347:188–194. doi: 10.1126/science.1257132. PubMed DOI PMC
Brunkard JO. Exaptive evolution of Target of Rapamycin signaling in multicellular eukaryotes. Dev. Cell. 2020;54:142–155. doi: 10.1016/j.devcel.2020.06.022. PubMed DOI PMC
Drozak J, et al. UPF0586 protein C9orf41 homolog is anserine-producing methyltransferase. J. Biol. Chem. 2015;290:17190–17205. doi: 10.1074/jbc.M115.640037. PubMed DOI PMC
Cao R, Zhang X, Liu X, Li Y, Li H. Molecular basis for histidine N1 position-specific methylation by CARNMT1. Cell Res. 2018;28:494–496. doi: 10.1038/s41422-018-0003-0. PubMed DOI PMC
Shiotani S, et al. Effect of a dipeptide-enriched diet in an adult Drosophila melanogaster laboratory strain. Biosci. Biotechnol. Biochem. 2013;77:836–838. doi: 10.1271/bbb.120606. PubMed DOI
Tang X, et al. Molecular mechanism of S-adenosylmethionine sensing by SAMTOR in mTORC1 signaling. Sci. Adv. 2022;8:eabn3868. doi: 10.1126/sciadv.abn3868. PubMed DOI PMC
Lebo DPV, McCall K. Murder on the ovarian express: a tale of non-autonomous cell death in the Drosophila ovary. Cells. 2021;10:1454. doi: 10.3390/cells10061454. PubMed DOI PMC
Drummond-Barbosa D, Spradling AC. Stem cells and their progeny respond to nutritional changes during Drosophila oogenesis. Dev. Biol. 2001;231:265–278. doi: 10.1006/dbio.2000.0135. PubMed DOI
LaFever L, Drummond-Barbosa D. Direct control of germline stem cell division and cyst growth by neural insulin in Drosophila. Science. 2005;309:1071–1073. doi: 10.1126/science.1111410. PubMed DOI
Wei Y, Lilly MA. The TORC1 inhibitors Nprl2 and Nprl3 mediate an adaptive response to amino-acid starvation in Drosophila. Cell Death Differ. 2014;21:1460–1468. doi: 10.1038/cdd.2014.63. PubMed DOI PMC
Shimada Y, Burn KM, Niwa R, Cooley L. Reversible response of protein localization and microtubule organization to nutrient stress during Drosophila early oogenesis. Dev. Biol. 2011;355:250–262. doi: 10.1016/j.ydbio.2011.04.022. PubMed DOI PMC
Li, H. et al. Fly Cell Atlas: A single-nucleus transcriptomic atlas of the adult fruit fly. Science375, eabk2432 (2022). PubMed PMC
Grandison RC, Piper MDW, Partridge L. Amino-acid imbalance explains extension of lifespan by dietary restriction in Drosophila. Nature. 2009;462:1061–1064. doi: 10.1038/nature08619. PubMed DOI PMC
Lee BC, et al. Methionine restriction extends lifespan of Drosophila melanogaster under conditions of low amino-acid status. Nat. Commun. 2014;5:3592–3592. doi: 10.1038/ncomms4592. PubMed DOI PMC
Alves AN, Sgrò CM, Piper MDW, Mirth CK. Target of rapamycin drives unequal responses to essential amino acid depletion for egg laying in Drosophila melanogaster. Front. Cell Dev. Biol. 2022;10:822685. doi: 10.3389/fcell.2022.822685. PubMed DOI PMC
Coyle SM, Flores J, Lim WA. Exploitation of latent allostery enables the evolution of new modes of MAP kinase regulation. Cell. 2013;154:875–887. doi: 10.1016/j.cell.2013.07.019. PubMed DOI PMC
Valenstein ML, et al. Structure of the nutrient-sensing hub GATOR2. Nature. 2022;607:610–616. doi: 10.1038/s41586-022-04939-z. PubMed DOI PMC
Tafur L, et al. Cryo-EM structure of the SEA complex. Nature. 2022;611:399–404. doi: 10.1038/s41586-022-05370-0. PubMed DOI PMC
Tenthorey JL, Young C, Sodeinde A, Emerman M, Malik HS. Mutational resilience of antiviral restriction favors primate TRIM5α in host-virus evolutionary arms races. eLife. 2020;9:e59988. doi: 10.7554/eLife.59988. PubMed DOI PMC
Fowler DM, et al. High-resolution mapping of protein sequence-function relationships. Nat. Methods. 2010;7:741–746. doi: 10.1038/nmeth.1492. PubMed DOI PMC
Zheng B, Wu Z, Xu B. The effects of dietary protein levels on the population growth, performance, and physiology of honey bee workers during early spring. J. Insect Sci. 2014;14:191. doi: 10.1093/jisesa/ieu053. PubMed DOI PMC
Fink P, Pflitsch C, Marin K. Dietary essential amino acids affect the reproduction of the keystone herbivore Daphnia pulex. PLoS ONE. 2011;6:e28498. doi: 10.1371/journal.pone.0028498. PubMed DOI PMC
Steck K, et al. Internal amino acid state modulates yeast taste neurons to support protein homeostasis in Drosophila. Elife. 2018;7:e31625. doi: 10.7554/eLife.31625. PubMed DOI PMC
Cristea IM, Chait BT. Conjugation of magnetic beads for immunopurification of protein complexes. Cold Spring Harb. Protoc. 2011;2011:pdb.prot5610. doi: 10.1101/pdb.prot5610. PubMed DOI PMC
Sancak Y, et al. The Rag GTPases bind Raptor and mediate amino acid signaling to mTORC1. Science. 2008;320:1496–1501. doi: 10.1126/science.1157535. PubMed DOI PMC
Longo, P. A., Kavran, J. M., Kim, M.-S. & Leahy, D. J. In Methods in Enzymology 529 (ed. Jon Lorsch) 227–240 (Academic Press, 2013). PubMed PMC
Kunzelmann S, Böttcher R, Schmidts I, Förstemann K. A comprehensive toolbox for genome editing in cultured Drosophila melanogaster cells. G3: Genes Genomes Genet. 2016;6:1777–1785. doi: 10.1534/g3.116.028241. PubMed DOI PMC
González M, et al. Generation of stable Drosophila cell lines using multicistronic vectors. Sci. Rep. 2011;1:75–75. doi: 10.1038/srep00075. PubMed DOI PMC
Piper MDW, et al. A holidic medium for Drosophila melanogaster. Nat. Methods. 2014;11:100–105. doi: 10.1038/nmeth.2731. PubMed DOI PMC
Housden BE, Lin S, Perrimon N. Cas9-based genome editing in Drosophila. Methods Enzymol. 2014;546:415–439. doi: 10.1016/B978-0-12-801185-0.00019-2. PubMed DOI
Kozlov AM, Darriba D, Flouri T, Morel B, Stamatakis A. RAxML-NG: a fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics. 2019;35:4453–4455. doi: 10.1093/bioinformatics/btz305. PubMed DOI PMC