An evolutionary mechanism to assimilate new nutrient sensors into the mTORC1 pathway

. 2024 Mar 21 ; 15 (1) : 2517. [epub] 20240321

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38514639

Grantová podpora
T32 GM007287 NIGMS NIH HHS - United States
P01 CA120964 NCI NIH HHS - United States
R01 AR057352 NIAMS NIH HHS - United States
F31 CA232340 NCI NIH HHS - United States
R01 CA129105 NCI NIH HHS - United States
R01 AI047389 NIAID NIH HHS - United States
R01 CA103866 NCI NIH HHS - United States

Odkazy

PubMed 38514639
PubMed Central PMC10957897
DOI 10.1038/s41467-024-46680-3
PII: 10.1038/s41467-024-46680-3
Knihovny.cz E-zdroje

Animals sense and respond to nutrient availability in their environments, a task coordinated in part by the mTOR complex 1 (mTORC1) pathway. mTORC1 regulates growth in response to nutrients and, in mammals, senses specific amino acids through specialized sensors that bind the GATOR1/2 signaling hub. Given that animals can occupy diverse niches, we hypothesized that the pathway might evolve distinct sensors in different metazoan phyla. Whether such customization occurs, and how the mTORC1 pathway might capture new inputs, is unknown. Here, we identify the Drosophila melanogaster protein Unmet expectations (CG11596) as a species-restricted methionine sensor that directly binds the fly GATOR2 complex in a fashion antagonized by S-adenosylmethionine (SAM). We find that in Dipterans GATOR2 rapidly evolved the capacity to bind Unmet and to thereby repurpose a previously independent methyltransferase as a SAM sensor. Thus, the modular architecture of the mTORC1 pathway allows it to co-opt preexisting enzymes to expand its nutrient sensing capabilities, revealing a mechanism for conferring evolvability on an otherwise conserved system.

Před aktualizací

PubMed

Zobrazit více v PubMed

Oteiza P, Baldwin MW. Evolution of sensory systems. Curr. Opin. Neurobiol. 2021;71:52–59. doi: 10.1016/j.conb.2021.08.005. PubMed DOI

Julius D, Nathans J. Signaling by sensory receptors. Cold Spring Harb. Perspect. Biol. 2012;4:a005991. doi: 10.1101/cshperspect.a005991. PubMed DOI PMC

Nei M, Rooney AP. Concerted and birth-and-death evolution of multigene families. Annu. Rev. Genet. 2005;39:121–152. doi: 10.1146/annurev.genet.39.073003.112240. PubMed DOI PMC

Bridgham JT, Carroll SM, Thornton JW. Evolution of hormone-receptor complexity by molecular exploitation. Science. 2006;312:97–101. doi: 10.1126/science.1123348. PubMed DOI

Leulier F, Lemaitre B. Toll-like receptors—taking an evolutionary approach. Nat. Rev. Genet. 2008;9:165–178. doi: 10.1038/nrg2303. PubMed DOI

Gracheva EO, et al. Molecular basis of infrared detection by snakes. Nature. 2010;464:1006–1011. doi: 10.1038/nature08943. PubMed DOI PMC

Slavik KM, et al. cGAS-like receptors sense RNA and control 3′2′-cGAMP signalling in Drosophila. Nature. 2021;597:109–113. doi: 10.1038/s41586-021-03743-5. PubMed DOI PMC

Liu GY, Sabatini DM. mTOR at the nexus of nutrition, growth, ageing and disease. Nat. Rev. Mol. Cell Biol. 2020;21:183–203. doi: 10.1038/s41580-019-0199-y. PubMed DOI PMC

Condon KJ, Sabatini DM. Nutrient regulation of mTORC1 at a glance. J. Cell Sci. 2019;132:jcs222570. doi: 10.1242/jcs.222570. PubMed DOI PMC

Valvezan AJ, Manning BD. Molecular logic of mTORC1 signalling as a metabolic rheostat. Nat. Metab. 2019;1:321–333. doi: 10.1038/s42255-019-0038-7. PubMed DOI

Kim J, Guan K-L. mTOR as a central hub of nutrient signalling and cell growth. Nat. Cell Biol. 2019;21:63–71. doi: 10.1038/s41556-018-0205-1. PubMed DOI

Melick CH, Jewell JL. Regulation of mTORC1 by upstream stimuli. Genes. 2020;11:989. doi: 10.3390/genes11090989. PubMed DOI PMC

Wolfson RL, et al. Sestrin2 is a leucine sensor for the mTORC1 pathway. Science. 2016;351:43–48. doi: 10.1126/science.aab2674. PubMed DOI PMC

Chantranupong L, et al. The CASTOR proteins are arginine sensors for the mTORC1 pathway. Cell. 2016;165:153–164. doi: 10.1016/j.cell.2016.02.035. PubMed DOI PMC

Gu X, et al. SAMTOR is an S-adenosylmethionine sensor for the mTORC1 pathway. Science. 2017;358:813–818. doi: 10.1126/science.aao3265. PubMed DOI PMC

Shin HR, et al. Lysosomal GPCR-like protein LYCHOS signals cholesterol sufficiency to mTORC1. Science. 2022;377:1290–1298. doi: 10.1126/science.abg6621. PubMed DOI PMC

Bar-Peled L, et al. A tumor suppressor complex with GAP activity for the Rag GTPases that signal amino acid sufficiency to mTORC1. Science. 2013;340:1100–1106. doi: 10.1126/science.1232044. PubMed DOI PMC

Wolfson RL, et al. KICSTOR recruits GATOR1 to the lysosome and is necessary for nutrients to regulate mTORC1. Nature. 2017;543:438–442. doi: 10.1038/nature21423. PubMed DOI PMC

Peng M, Yin N, Li MO. SZT2 dictates GATOR control of mTORC1 signalling. Nature. 2017;543:433–437. doi: 10.1038/nature21378. PubMed DOI PMC

Saxton RA, Chantranupong L, Knockenhauer KE, Schwartz TU, Sabatini DM. Mechanism of arginine sensing by CASTOR1 upstream of mTORC1. Nature. 2016;536:229–233. doi: 10.1038/nature19079. PubMed DOI PMC

Saxton RA, et al. Structural basis for leucine sensing by the Sestrin2-mTORC1 pathway. Science. 2016;351:53–58. doi: 10.1126/science.aad2087. PubMed DOI PMC

Wolfson RL, Sabatini DM. The dawn of the age of amino acid sensors for the mTORC1 pathway. Cell Metab. 2017;26:301–309. doi: 10.1016/j.cmet.2017.07.001. PubMed DOI PMC

González A, Hall MN. Nutrient sensing and TOR signaling in yeast and mammals. EMBO J. 2017;36:397–408. doi: 10.15252/embj.201696010. PubMed DOI PMC

Wang S, et al. Lysosomal amino acid transporter SLC38A9 signals arginine sufficiency to mTORC1. Science. 2015;347:188–194. doi: 10.1126/science.1257132. PubMed DOI PMC

Brunkard JO. Exaptive evolution of Target of Rapamycin signaling in multicellular eukaryotes. Dev. Cell. 2020;54:142–155. doi: 10.1016/j.devcel.2020.06.022. PubMed DOI PMC

Drozak J, et al. UPF0586 protein C9orf41 homolog is anserine-producing methyltransferase. J. Biol. Chem. 2015;290:17190–17205. doi: 10.1074/jbc.M115.640037. PubMed DOI PMC

Cao R, Zhang X, Liu X, Li Y, Li H. Molecular basis for histidine N1 position-specific methylation by CARNMT1. Cell Res. 2018;28:494–496. doi: 10.1038/s41422-018-0003-0. PubMed DOI PMC

Shiotani S, et al. Effect of a dipeptide-enriched diet in an adult Drosophila melanogaster laboratory strain. Biosci. Biotechnol. Biochem. 2013;77:836–838. doi: 10.1271/bbb.120606. PubMed DOI

Tang X, et al. Molecular mechanism of S-adenosylmethionine sensing by SAMTOR in mTORC1 signaling. Sci. Adv. 2022;8:eabn3868. doi: 10.1126/sciadv.abn3868. PubMed DOI PMC

Lebo DPV, McCall K. Murder on the ovarian express: a tale of non-autonomous cell death in the Drosophila ovary. Cells. 2021;10:1454. doi: 10.3390/cells10061454. PubMed DOI PMC

Drummond-Barbosa D, Spradling AC. Stem cells and their progeny respond to nutritional changes during Drosophila oogenesis. Dev. Biol. 2001;231:265–278. doi: 10.1006/dbio.2000.0135. PubMed DOI

LaFever L, Drummond-Barbosa D. Direct control of germline stem cell division and cyst growth by neural insulin in Drosophila. Science. 2005;309:1071–1073. doi: 10.1126/science.1111410. PubMed DOI

Wei Y, Lilly MA. The TORC1 inhibitors Nprl2 and Nprl3 mediate an adaptive response to amino-acid starvation in Drosophila. Cell Death Differ. 2014;21:1460–1468. doi: 10.1038/cdd.2014.63. PubMed DOI PMC

Shimada Y, Burn KM, Niwa R, Cooley L. Reversible response of protein localization and microtubule organization to nutrient stress during Drosophila early oogenesis. Dev. Biol. 2011;355:250–262. doi: 10.1016/j.ydbio.2011.04.022. PubMed DOI PMC

Li, H. et al. Fly Cell Atlas: A single-nucleus transcriptomic atlas of the adult fruit fly. Science375, eabk2432 (2022). PubMed PMC

Grandison RC, Piper MDW, Partridge L. Amino-acid imbalance explains extension of lifespan by dietary restriction in Drosophila. Nature. 2009;462:1061–1064. doi: 10.1038/nature08619. PubMed DOI PMC

Lee BC, et al. Methionine restriction extends lifespan of Drosophila melanogaster under conditions of low amino-acid status. Nat. Commun. 2014;5:3592–3592. doi: 10.1038/ncomms4592. PubMed DOI PMC

Alves AN, Sgrò CM, Piper MDW, Mirth CK. Target of rapamycin drives unequal responses to essential amino acid depletion for egg laying in Drosophila melanogaster. Front. Cell Dev. Biol. 2022;10:822685. doi: 10.3389/fcell.2022.822685. PubMed DOI PMC

Coyle SM, Flores J, Lim WA. Exploitation of latent allostery enables the evolution of new modes of MAP kinase regulation. Cell. 2013;154:875–887. doi: 10.1016/j.cell.2013.07.019. PubMed DOI PMC

Valenstein ML, et al. Structure of the nutrient-sensing hub GATOR2. Nature. 2022;607:610–616. doi: 10.1038/s41586-022-04939-z. PubMed DOI PMC

Tafur L, et al. Cryo-EM structure of the SEA complex. Nature. 2022;611:399–404. doi: 10.1038/s41586-022-05370-0. PubMed DOI PMC

Tenthorey JL, Young C, Sodeinde A, Emerman M, Malik HS. Mutational resilience of antiviral restriction favors primate TRIM5α in host-virus evolutionary arms races. eLife. 2020;9:e59988. doi: 10.7554/eLife.59988. PubMed DOI PMC

Fowler DM, et al. High-resolution mapping of protein sequence-function relationships. Nat. Methods. 2010;7:741–746. doi: 10.1038/nmeth.1492. PubMed DOI PMC

Zheng B, Wu Z, Xu B. The effects of dietary protein levels on the population growth, performance, and physiology of honey bee workers during early spring. J. Insect Sci. 2014;14:191. doi: 10.1093/jisesa/ieu053. PubMed DOI PMC

Fink P, Pflitsch C, Marin K. Dietary essential amino acids affect the reproduction of the keystone herbivore Daphnia pulex. PLoS ONE. 2011;6:e28498. doi: 10.1371/journal.pone.0028498. PubMed DOI PMC

Steck K, et al. Internal amino acid state modulates yeast taste neurons to support protein homeostasis in Drosophila. Elife. 2018;7:e31625. doi: 10.7554/eLife.31625. PubMed DOI PMC

Cristea IM, Chait BT. Conjugation of magnetic beads for immunopurification of protein complexes. Cold Spring Harb. Protoc. 2011;2011:pdb.prot5610. doi: 10.1101/pdb.prot5610. PubMed DOI PMC

Sancak Y, et al. The Rag GTPases bind Raptor and mediate amino acid signaling to mTORC1. Science. 2008;320:1496–1501. doi: 10.1126/science.1157535. PubMed DOI PMC

Longo, P. A., Kavran, J. M., Kim, M.-S. & Leahy, D. J. In Methods in Enzymology 529 (ed. Jon Lorsch) 227–240 (Academic Press, 2013). PubMed PMC

Kunzelmann S, Böttcher R, Schmidts I, Förstemann K. A comprehensive toolbox for genome editing in cultured Drosophila melanogaster cells. G3: Genes Genomes Genet. 2016;6:1777–1785. doi: 10.1534/g3.116.028241. PubMed DOI PMC

González M, et al. Generation of stable Drosophila cell lines using multicistronic vectors. Sci. Rep. 2011;1:75–75. doi: 10.1038/srep00075. PubMed DOI PMC

Piper MDW, et al. A holidic medium for Drosophila melanogaster. Nat. Methods. 2014;11:100–105. doi: 10.1038/nmeth.2731. PubMed DOI PMC

Housden BE, Lin S, Perrimon N. Cas9-based genome editing in Drosophila. Methods Enzymol. 2014;546:415–439. doi: 10.1016/B978-0-12-801185-0.00019-2. PubMed DOI

Kozlov AM, Darriba D, Flouri T, Morel B, Stamatakis A. RAxML-NG: a fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics. 2019;35:4453–4455. doi: 10.1093/bioinformatics/btz305. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Structural basis for the dynamic regulation of mTORC1 by amino acids

. 2025 Oct ; 646 (8084) : 493-500. [epub] 20250820

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...