Rag-Ragulator is the central organizer of the physical architecture of the mTORC1 nutrient-sensing pathway
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
N/A
Lustgarten Foundation (The Lustgarten Foundation)
TS200035
U.S. Department of Defense (DOD)
CA103866
HHS | NIH (NIH)
T32 GM007753
NIGMS NIH HHS - United States
F30 CA236179
NCI NIH HHS - United States
N/A
LEO Fondet (LEO Foundation)
W81XWH-21-1-0260
U.S. Department of Defense (DOD)
R01 CA129105
NCI NIH HHS - United States
AI47389
HHS | NIH (NIH)
N/A
CAS | Ústav organické chemie a biochemie Akademie věd České republiky (IOCB, CAS)
R01 AI047389
NIAID NIH HHS - United States
R01 CA103866
NCI NIH HHS - United States
CA129105
HHS | NIH (NIH)
K08 DK129824
NIDDK NIH HHS - United States
N/A
Massachusetts General Hospital (MGH)
F30 CA228229
NCI NIH HHS - United States
N/A
Burroughs Wellcome Fund (BWF)
R37 AI047389
NIAID NIH HHS - United States
N/A
Pershing Square Foundation (PSF)
N/A
Massachusetts Institute of Technology (MIT)
N/A
Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology (KI)
PubMed
39163330
PubMed Central
PMC11363303
DOI
10.1073/pnas.2322755121
Knihovny.cz E-zdroje
- Klíčová slova
- biochemistry, mTOR signaling, nutrient sensing,
- MeSH
- adaptorové proteiny signální transdukční metabolismus MeSH
- aminokyseliny * metabolismus MeSH
- HEK293 buňky MeSH
- lidé MeSH
- lyzozomy * metabolismus MeSH
- monomerní proteiny vázající GTP * metabolismus MeSH
- mTORC1 * metabolismus MeSH
- myši MeSH
- signální transdukce * MeSH
- živiny * metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- adaptorové proteiny signální transdukční MeSH
- aminokyseliny * MeSH
- monomerní proteiny vázající GTP * MeSH
- mTORC1 * MeSH
- RRAGA protein, human MeSH Prohlížeč
- RRAGC protein, human MeSH Prohlížeč
The mechanistic target of rapamycin complex 1 (mTORC1) pathway regulates cell growth and metabolism in response to many environmental cues, including nutrients. Amino acids signal to mTORC1 by modulating the guanine nucleotide loading states of the heterodimeric Rag GTPases, which bind and recruit mTORC1 to the lysosomal surface, its site of activation. The Rag GTPases are tethered to the lysosome by the Ragulator complex and regulated by the GATOR1, GATOR2, and KICSTOR multiprotein complexes that localize to the lysosomal surface through an unknown mechanism(s). Here, we show that mTORC1 is completely insensitive to amino acids in cells lacking the Rag GTPases or the Ragulator component p18. Moreover, not only are the Rag GTPases and Ragulator required for amino acids to regulate mTORC1, they are also essential for the lysosomal recruitment of the GATOR1, GATOR2, and KICSTOR complexes, which stably associate and traffic to the lysosome as the "GATOR" supercomplex. The nucleotide state of RagA/B controls the lysosomal association of GATOR, in a fashion competitively antagonized by the N terminus of the amino acid transporter SLC38A9. Targeting of Ragulator to the surface of mitochondria is sufficient to relocalize the Rags and GATOR to this organelle, but not to enable the nutrient-regulated recruitment of mTORC1 to mitochondria. Thus, our results reveal that the Rag-Ragulator complex is the central organizer of the physical architecture of the mTORC1 nutrient-sensing pathway and underscore that mTORC1 activation requires signal transduction on the lysosomal surface.
Broad Institute of Harvard and the Massachusetts Institute of Technology Cambridge MA 02142
Brown Center on the Biology of Aging Brown University Providence RI 02903
Center for Genomic Medicine Massachusetts General Hospital Boston MA 02114
Department of Biology Massachusetts Institute of Technology Cambridge MA 02139
Department of Medicine Massachusetts General Hospital Boston MA 02114
Department of Pathology and Laboratory Medicine Brown University Providence RI 02903
Department of Pathology Massachusetts General Hospital Boston MA 02114
Department of Surgery Massachusetts General Hospital Boston MA 02114
Harvard Medical School Boston MA 02115
Legorreta Cancer Center Brown University Providence RI 02903
Whitehead Institute for Biomedical Research Cambridge MA 02142
Zobrazit více v PubMed
Valvezan A. J., Manning B. D., Molecular logic of mTORC1 signalling as a metabolic rheostat. Nat. Metabol. 1, 1–13 (2019). PubMed
Melick C. H., Jewell J. L., Regulation of mTORC1 by Upstream Stimuli. Genes-Basel 11, 989 (2020). PubMed PMC
Kim J., Guan K.-L., mTOR as a central hub of nutrient signalling and cell growth. Nat. Cell Biol. 21, 63–71 (2019). PubMed
Liu G. Y., Sabatini D. M., mTOR at the nexus of nutrition, growth, ageing and disease. Nat. Rev. Mol. Cell Bio. 21, 183–203 (2020). PubMed PMC
González A., Hall M. N., Nutrient sensing and TOR signaling in yeast and mammals. Embo J. 36, 397–408 (2017). PubMed PMC
Sancak Y., et al. , The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science 320, 1496–1501 (2008). PubMed PMC
Rogala K. B., et al. , Structural basis for the docking of mTORC1 on the lysosomal surface. Science 366, 468–475 (2019). PubMed PMC
Anandapadamanaban M., et al. , Architecture of human Rag GTPase heterodimers and their complex with mTORC1. Science 366, 203–210 (2019). PubMed PMC
Sancak Y., et al. , Ragulator-rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell 141, 290–303 (2010). PubMed PMC
Menon S., et al. , Spatial control of the TSC complex integrates insulin and nutrient regulation of mTORC1 at the lysosome. Cell 156, 771–785 (2014). PubMed PMC
Bar-Peled L., et al. , A tumor suppressor complex with GAP activity for the Rag GTPases that signal amino acid sufficiency to mTORC1. Science 340, 1100–1106 (2013). PubMed PMC
Shen K., et al. , Architecture of the human GATOR1 and GATOR1–Rag GTPases complexes. Nature 556, 64–69 (2018). PubMed PMC
Shen K., Valenstein M. L., Gu X., Sabatini D. M., Arg-78 of Nprl2 catalyzes GATOR1-stimulated GTP hydrolysis by the Rag GTPases. J. Biol. Chem. 294, jbc.AC119.007382-12 (2019). PubMed PMC
Egri S. B., et al. , Cryo-EM structures of the human GATOR1-Rag-Ragulator complex reveal a spatial-constraint regulated GAP mechanism. Mol. Cell 82, 1836–1849.e5 (2022), 10.1016/j.molcel.2022.03.002. PubMed DOI PMC
Wolfson R. L., et al. , KICSTOR recruits GATOR1 to the lysosome and is necessary for nutrients to regulate mTORC1. Nature 543, 438–442 (2017). PubMed PMC
Peng M., Yin N., Li M. O., SZT2 dictates GATOR control of mTORC1 signalling. Nature 543, 433–437 (2017). PubMed PMC
Valenstein M. L., et al. , Structure of the nutrient-sensing hub GATOR2. Nature 607, 610–616 (2022). PubMed PMC
Wolfson R. L., et al. , Sestrin2 is a leucine sensor for the mTORC1 pathway. Science 351, 43–48 (2016). PubMed PMC
Saxton R. A., et al. , Structural basis for leucine sensing by the Sestrin2-mTORC1 pathway. Science 351, 53–58 (2015). PubMed PMC
Chantranupong L., et al. , The CASTOR proteins are arginine sensors for the mTORC1 Pathway. Cell 165, 153–164 (2016). PubMed PMC
Saxton R. A., Chantranupong L., Knockenhauer K. E., Schwartz T. U., Sabatini D. M., Mechanism of arginine sensing by CASTOR1 upstream of mTORC1. Nature 536, 229–233 (2016). PubMed PMC
Gu X., et al. , SAMTOR is an S-adenosylmethionine sensor for the mTORC1 pathway. Science 358, 813–818 (2017). PubMed PMC
Shin H. R., et al. , Lysosomal GPCR-like protein LYCHOS signals cholesterol sufficiency to mTORC1. Science 377, 1290–1298 (2022). PubMed PMC
Tsun Z.-Y., et al. , The folliculin tumor suppressor is a GAP for the RagC/D GTPases that signal amino acid levels to mTORC1. Mol. cell 52, 495–505 (2013). PubMed PMC
Napolitano G., et al. , A substrate-specific mTORC1 pathway underlies Birt–Hogg–Dubé syndrome. Nature 585, 597–602 (2020). PubMed PMC
Lawrence R. E., et al. , Structural mechanism of a Rag GTPase activation checkpoint by the lysosomal folliculin complex. Science 366, 971–977 (2019). PubMed PMC
Shen K., et al. , Cryo-EM structure of the human FLCN-FNIP2-Rag-ragulator complex. Cell 179, 1319–1329.e8 (2019). PubMed PMC
Abu-Remaileh M., et al. , Lysosomal metabolomics reveals V-ATPase- and mTOR-dependent regulation of amino acid efflux from lysosomes. Science 358, 807–813 (2017). PubMed PMC
Chen W. W., Freinkman E., Wang T., Birsoy K., Sabatini D. M., Absolute quantification of matrix metabolites reveals the dynamics of mitochondrial metabolism. Cell 166, 1324–1337.e11 (2016). PubMed PMC
Efeyan A., et al. , RagA, but Not RagB, is essential for embryonic development and adult mice. Dev. Cell 29, 321–329 (2014). PubMed PMC
Huang Q., Szklarczyk D., Wang M., Simonovic M., von Mering C., PaxDb 5.0: Curated protein quantification data suggests adaptive proteome changes in yeasts. Mol. Cell. Proteom. 22, 100640 (2023). PubMed PMC
Bar-Peled L., Schweitzer L. D., Zoncu R., Sabatini D. M., Ragulator Is a GEF for the Rag GTPases that signal amino acid levels to mTORC1. Cell 150, 1196–1208 (2012). PubMed PMC
Lawrence R. E., et al. , A nutrient-induced affinity switch controls mTORC1 activation by its Rag GTPase-ragulator lysosomal scaffold. Nat. Cell Biol. 20, 1052–1063 (2018). PubMed PMC
Wang S., et al. , Lysosomal amino acid transporter SLC38A9 signals arginine sufficiency to mTORC1. Science 347, 188–194 (2015). PubMed PMC
Rebsamen M., et al. , SLC38A9 is a component of the lysosomal amino acid sensing machinery that controls mTORC1. Nature 519, 477–481 (2015). PubMed PMC
Jung J., Genau H. M., Behrends C., Amino Acid-Dependent mTORC1 Regulation by the Lysosomal Membrane Protein SLC38A9. Mol. Cell Biol. 35, 2479–2494 (2015). PubMed PMC
Fromm S. A., Lawrence R. E., Hurley J. H., Structural mechanism for amino acid-dependent Rag GTPase nucleotide state switching by SLC38A9. Nat. Struct. Mol. Biol. 27, 1017–1023 (2020). PubMed PMC
Tafur L., et al. , Cryo-EM structure of the SEA complex. Nature 611, 399–404 (2022). PubMed PMC
Yan G., et al. , Genome-wide CRISPR screens identify ILF3 as a mediator of mTORC1-dependent amino acid sensing. Nat. Cell Biol. 25, 754–764 (2023). PubMed
Zhao T., et al. , VWCE modulates amino acid-dependent mTOR signaling and coordinates with KICSTOR to recruit GATOR1 to the lysosomes. Nat. Commun. 14, 8464 (2023). PubMed PMC
Demetriades C., Doumpas N., Teleman A. A., Regulation of TORC1 in response to amino acid starvation via lysosomal recruitment of TSC2. Cell 156, 786–799 (2014). PubMed PMC
Yang S., et al. , The Rag GTPase regulates the dynamic behavior of TSC downstream of both amino acid and growth factor restriction. Dev. Cell 55, 272–288.e5 (2020). PubMed PMC
Nada S., et al. , The novel lipid raft adaptor p18 controls endosome dynamics by anchoring the MEK–ERK pathway to late endosomes. Embo J. 28, 477–489 (2009). PubMed PMC
Li K., et al. , Folliculin promotes substrate-selective mTORC1 activity by activating RagC to recruit TFE3. Plos Biol. 20, e3001594 (2022). PubMed PMC
Martina J. A., Puertollano R., Rag GTPases mediate amino acid–dependent recruitment of TFEB and MITF to lysosomes. J. Cell Biol. 200, 475–491 (2013). PubMed PMC
Wada S., et al. , The tumor suppressor FLCN mediates an alternate mTOR pathway to regulate browning of adipose tissue. Gene Dev. 30, 2551–2564 (2016). PubMed PMC
Shen K., Sabatini D. M., Ragulator and SLC38A9 activate the Rag GTPases through noncanonical GEF mechanisms. Proc. Natl. Acad. Sci. U.S.A. 115, 9545–9550 (2018). PubMed PMC
Zoncu R., et al. , mTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H(+)-ATPase. Science 334, 678–683 (2011). PubMed PMC
Evavold C. L., et al. , Control of gasdermin D oligomerization and pyroptosis by the ragulator-rag-mTORC1 pathway. Cell 184, 4495–4511.e19 (2021). PubMed PMC
Zheng Z., et al. , The lysosomal Rag-Ragulator complex licenses RIPK1– and caspase-8–mediated pyroptosis by Yersinia. Science 372, eabg0269 (2021). PubMed PMC
Andrzejewska Z., et al. , Cystinosin is a component of the vacuolar H+-Atpase-Ragulator-Rag complex controlling mammalian target of rapamycin complex 1 signaling. J. Am. Soc. Nephrol. 27, 1678–1688 (2016). PubMed PMC
Shen K., Choe A., Sabatini D. M., Intersubunit crosstalk in the Rag GTPase heterodimer enables mTORC1 to Respond rapidly to amino acid availability. Mol. Cell 68, 552–564.e9 (2017). PubMed PMC
Gollwitzer P., Grützmacher N., Wilhelm S., Kümmel D., Demetriades C., A Rag GTPase dimer code defines the regulation of mTORC1 by amino acids. Nat. Cell Biol. 24, 1394–1406 (2022). PubMed PMC
Figlia G., et al. , Brain-enriched RagB isoforms regulate the dynamics of mTORC1 activity through GATOR1 inhibition. Nat. Cell Biol. 24, 1407–1421 (2022). PubMed PMC
Kedir J. F., “Regulation of amino acid transport across the lysosomal surface by the mTORC1 pathway,” (Massachusetts Institute of Technology, Cambridge, MA, 2022). Accessed 13 March 2023.
Fernandes S. A., et al. , Spatially and functionally distinct mTORC1 entities orchestrate the cellular response to amino acid availability. BioRxiv [Preprint] (2023), 10.1101/2023.10.03.559930 (Accessed 1 November 2023). DOI
Cui Z., et al. , Structure of the lysosomal mTORC1–TFEB–Rag–Ragulator megacomplex. Nature 614, 572–579 (2023). PubMed PMC
Angarola B., Ferguson S. M., Weak membrane interactions allow Rheb to activate mTORC1 signaling without major lysosome enrichment. Mol. Biol. Cell 30, 2750–2760 (2019). PubMed PMC
Cristea I. M., Chait B. T., Conjugation of magnetic beads for immunopurification of protein complexes. Cold Spring Harb. Protoc. 2011, pdb.prot5610 (2011). PubMed PMC
Boussif O., et al. , A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: Polyethylenimine. Proc. Natl. Acad. Sci. U.S.A. 92, 7297–7301 (1995). PubMed PMC
Gu X., et al. , Sestrin mediates detection of and adaptation to low-leucine diets in Drosophila. Nature 608, 209–216 (2022). PubMed PMC
Jun Y., et al. , D-AKAP1a is a signal-anchored protein in the mitochondrial outer membrane. Febs Lett. 590, 954–961 (2016). PubMed
Richardson C. D., Ray G. J., DeWitt M. A., Curie G. L., Corn J. E., Enhancing homology-directed genome editing by catalytically active and inactive CRISPR-Cas9 using asymmetric donor DNA. Nat. Biotechnol. 34, 339–344 (2016). PubMed