A New Approach for the Diagnosis of Myelodysplastic Syndrome Subtypes Based on Protein Interaction Analysis

. 2019 Sep 02 ; 9 (1) : 12647. [epub] 20190902

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid31477761
Odkazy

PubMed 31477761
PubMed Central PMC6718656
DOI 10.1038/s41598-019-49084-2
PII: 10.1038/s41598-019-49084-2
Knihovny.cz E-zdroje

Myelodysplastic syndromes (MDS) are a heterogeneous group of hematological malignancies with a high risk of transformation to acute myeloid leukemia (AML). MDS are associated with posttranslational modifications of proteins and variations in the protein expression levels. In this work, we present a novel interactomic diagnostic method based on both protein array and surface plasmon resonance biosensor technology, which enables monitoring of protein-protein interactions in a label-free manner. In contrast to conventional methods based on the detection of individual biomarkers, our presented method relies on measuring interactions between arrays of selected proteins and patient plasma. We apply this method to plasma samples obtained from MDS and AML patients, as well as healthy donors, and demonstrate that even a small protein array comprising six selected proteins allows the method to discriminate among different MDS subtypes and healthy donors.

Zobrazit více v PubMed

Tefferi A, Vardiman JW. Myelodysplastic syndromes. N. Engl. J. Med. 2009;361:1872–1885. doi: 10.1056/NEJMra0902908. PubMed DOI

Disperati P, et al. Progression of myelodysplasia to acute lymphoblastic leukaemia: implications for disease biology. Leuk. Res. 2006;30:233–239. doi: 10.1016/j.leukres.2005.06.011. PubMed DOI

Hlavackova A, et al. Enhanced plasma protein carbonylation in patients with myelodysplastic syndromes. Free Radic. Biol. Med. 2017;108:1–7. doi: 10.1016/j.freeradbiomed.2017.03.007. PubMed DOI

Aasebo E, Forthun RB, Berven F, Selheim F, Hernandez-Valladares M. Global Cell Proteome Profiling, Phospho-signaling and Quantitative Proteomics for Identification of New Biomarkers in Acute Myeloid Leukemia Patients. Curr. Pharm. Biotechnol. 2016;17:52–70. doi: 10.2174/1389201016666150826115626. PubMed DOI PMC

Hanash S. Disease proteomics. Nature. 2003;422:226–232. doi: 10.1038/nature01514. PubMed DOI

MacBeath G. Protein microarrays and proteomics. Nat. Genet. 2002;32(Suppl):526–532. doi: 10.1038/ng1037. PubMed DOI

Saviranta P, et al. Evaluating sandwich immunoassays in microarray format in terms of the ambient analyte regime. Clin. Chem. 2004;50:1907–1920. doi: 10.1373/clinchem.2004.037929. PubMed DOI

Espina V, et al. Protein microarray detection strategies: focus on direct detection technologies. J. Immunol. Methods. 2004;290:121–133. doi: 10.1016/j.jim.2004.04.013. PubMed DOI

Doi N, et al. Novel fluorescence labeling and high-throughput assay technologies for in vitro analysis of protein interactions. Genome Res. 2002;12:487–492. doi: 10.1101/gr.218802. PubMed DOI PMC

Schwille P, Haupts U, Maiti S, Webb WW. Molecular dynamics in living cells observed by fluorescence correlation spectroscopy with one- and two-photon excitation. Biophys. J. 1999;77:2251–2265. doi: 10.1016/S0006-3495(99)77065-7. PubMed DOI PMC

Mori T, Toyoda M, Ohtsuka T, Okahata Y. Kinetic analyses for bindings of concanavalin A to dispersed and condensed mannose surfaces on a quartz crystal microbalance. Anal. Biochem. 2009;395:211–216. doi: 10.1016/j.ab.2009.08.029. PubMed DOI

Bischoff R, Luider TM. Methodological advances in the discovery of protein and peptide disease markers. J. Chromatogr. B. Analyt Technol. Biomed. Life. Sci. 2004;803:27–40. doi: 10.1016/j.jchromb.2003.09.004. PubMed DOI

Yuk JS, et al. Analysis of protein interactions on protein arrays by a novel spectral surface plasmon resonance imaging. Biosens. Bioelectron. 2006;21:1521–1528. doi: 10.1016/j.bios.2005.07.009. PubMed DOI

Homola J, Yee SS, Gauglitz G. Surface plasmon resonance sensors: review. Sensors and Actuators B: Chemical. 1999;54:3–15. doi: 10.1016/S0925-4005(98)00321-9. DOI

Homola, J. Surface plasmon resonance sensors for detection of chemical and biological species. 108, 462–493 (2008). PubMed

Aube A, Breault-Turcot J, Chaurand P, Pelletier JN, Masson JF. Non-specific adsorption of crude cell lysate on surface plasmon resonance sensors. Langmuir. 2013;29:10141–10148. doi: 10.1021/la401837y. PubMed DOI

Gonzalez MW, Kann MG. Chapter 4: Protein interactions and disease. PLoS Comput. Biol. 2012;8:e1002819. doi: 10.1371/journal.pcbi.1002819. PubMed DOI PMC

Giorgini, F. & Muchowski, P. J. Connecting the dots in Huntington’s disease with protein interaction networks. Genome Biol. 6, 210-2005-6-3-210. Epub 2005 Feb 28 (2005). PubMed PMC

Srinivasa Rao V, Srinivas K, Kumar GN, Sujin GN. Protein interaction network for Alzheimer’s disease using computational approach. Bioinformation. 2013;9:968–972. doi: 10.6026/97320630009968. PubMed DOI PMC

Drusbosky L, et al. Computational drug treatment simulations on projections of dysregulated protein networks derived from the myelodysplastic mutanome match clinical response in patients. Leuk. Res. 2017;52:1–7. doi: 10.1016/j.leukres.2016.11.004. PubMed DOI

Passam FH, et al. Levels of soluble forms of ICAM and VCAM in patients with myelodysplastic syndromes and their prognostic significance. Clin. Lab. Haematol. 2004;26:391–395. doi: 10.1111/j.1365-2257.2004.00640.x. PubMed DOI

Majek P, Pecankova K, Cermak J, Dyr JE. Plasma Protein Biomarker Candidates for Myelodysplastic Syndrome Subgroups. Biomed. Res. Int. 2015;2015:209745. doi: 10.1155/2015/209745. PubMed DOI PMC

Wei S, et al. Microenvironment Induced Myelodysplastic Syndrome (MDS) in S100A9 Transgenic Mice Caused by Myeloid-Derived Suppressor Cells (MDSC) Blood. 2011;118:788–788.

Wang X, Liu R, Wang Y, Cai H, Zhang L. Effects of down-regulation of clusterin by small interference RNA on human acute myeloid leukemia cells. Int. J. Clin. Exp. Med. 2015;8:20925–20931. PubMed PMC

Malcovati L, et al. Diagnosis and treatment of primary myelodysplastic syndromes in adults: recommendations from the European LeukemiaNet. Blood. 2013;122:2943–2964. doi: 10.1182/blood-2013-03-492884. PubMed DOI PMC

Chen C, et al. Identification of disease- and therapy-associated proteome changes in the sera of patients with myelodysplastic syndromes and del(5q) Leukemia. 2010;24:1875–1884. doi: 10.1038/leu.2010.182. PubMed DOI

Geyer PE, Holdt LM, Teupser D, Mann M. Revisiting biomarker discovery by plasma proteomics. Molecular Systems Biology. 2017;13:942. doi: 10.15252/msb.20156297. PubMed DOI PMC

Borrebaeck CA. Precision diagnostics: moving towards protein biomarker signatures of clinical utility in cancer. Nat. Rev. Cancer. 2017;17:199–204. doi: 10.1038/nrc.2016.153. PubMed DOI

Wen SY, et al. LRG1 is an independent prognostic factor for endometrial carcinoma. Tumour Biol. 2014;35:7125–7133. doi: 10.1007/s13277-014-1953-6. PubMed DOI

O’Donnell LC, Druhan LJ, Avalos BR. Molecular characterization and expression analysis of leucine-rich alpha2-glycoprotein, a novel marker of granulocytic differentiation. J. Leukoc. Biol. 2002;72:478–485. PubMed

Cavalcante Mde, S. et al. A panel of glycoproteins as candidate biomarkers for early diagnosis and treatment evaluation of B-cell acute lymphoblastic leukemia. Biomark Res. 4, 1-016-0055-6. eCollection 2016 (2016). PubMed PMC

Sudhoff T, Germing U, Aul C. Levels of circulating endothelial adhesion molecules in patients with myelodysplastic syndromes. Int. J. Oncol. 2002;20:167–172. PubMed

Christiansen I, Sundstrom C, Totterman TH. Elevated serum levels of soluble vascular cell adhesion molecule-1 (sVCAM-1) closely reflect tumour burden in chronic B-lymphocytic leukaemia. Br. J. Haematol. 1998;103:1129–1137. doi: 10.1046/j.1365-2141.1998.01110.x. PubMed DOI

Dalamaga M, et al. Higher fetuin-A, lower adiponectin and free leptin levels mediate effects of excess body weight on insulin resistance and risk for myelodysplastic syndrome. Metabolism. 2013;62:1830–1839. doi: 10.1016/j.metabol.2013.09.007. PubMed DOI

Shannan B, et al. Challenge and promise: roles for clusterin in pathogenesis, progression and therapy of cancer. Cell Death Differ. 2005;13:12. doi: 10.1038/sj.cdd.4401779. PubMed DOI

Patnaik MM, Tefferi A. Refractory anemia with ring sideroblasts (RARS) and RARS with thrombocytosis (RARS-T): 2017 update on diagnosis, risk-stratification, and management. Am. J. Hematol. 2017;92:297–310. doi: 10.1002/ajh.24637. PubMed DOI PMC

Salama I, Malone PS, Mihaimeed F, Jones JL. A review of the S100 proteins in cancer. European Journal of Surgical Oncology (EJSO) 2008;34:357–364. doi: 10.1016/j.ejso.2007.04.009. PubMed DOI

Chen X, et al. Induction of myelodysplasia by myeloid-derived suppressor cells. J. Clin. Invest. 2013;123:4595–4611. doi: 10.1172/JCI67580. PubMed DOI PMC

Schneider RK, et al. Rps14 haploinsufficiency causes a block in erythroid differentiation mediated by S100A8 and S100A9. Nat. Med. 2016;22:288–297. doi: 10.1038/nm.4047. PubMed DOI PMC

Cluzeau T, et al. The Proinflammatory Protein S100A9 Suppresses Erythropoietin Elaboration in Patients with Myelodysplastic Syndromes. Blood. 2015;126:355–355.

Piliarik M, Bockova M, Homola J. Surface plasmon resonance biosensor for parallelized detection of protein biomarkers in diluted blood plasma. Biosens. Bioelectron. 2010;26:1656–1661. doi: 10.1016/j.bios.2010.08.063. PubMed DOI

Lynn NS, Jr, Bockova M, Adam P, Homola J. Biosensor Enhancement Using Grooved Micromixers: Part II, Experimental Studies. Anal. Chem. 2015;87:5524–5530. doi: 10.1021/ac504360d. PubMed DOI

Vaisocherova H, et al. Rapid and sensitive detection of multiple microRNAs in cell lysate by low-fouling surface plasmon resonance biosensor. Biosens. Bioelectron. 2015;70:226–231. doi: 10.1016/j.bios.2015.03.038. PubMed DOI

Špringer T, Piliarik M, Homola J. Surface plasmon resonance sensor with dispersionless microfluidics for direct detection of nucleic acids at the low femtomole level. Sensors and Actuators B: Chemical. 2010;145:588–591. doi: 10.1016/j.snb.2009.11.018. DOI

Pimkova K, et al. Surface plasmon resonance biosensor for the detection of VEGFR-1–a protein marker of myelodysplastic syndromes. Anal. Bioanal Chem. 2012;402:381–387. doi: 10.1007/s00216-011-5395-3. PubMed DOI

Herranz S, Bockova M, Marazuela MD, Homola J, Moreno-Bondi MC. An SPR biosensor for the detection of microcystins in drinking water. Anal. Bioanal Chem. 2010;398:2625–2634. doi: 10.1007/s00216-010-3856-8. PubMed DOI

Visser NF, Scholten A, van den Heuvel RH, Heck AJ. Surface-plasmon-resonance-based chemical proteomics: efficient specific extraction and semiquantitative identification of cyclic nucleotide-binding proteins from cellular lysates by using a combination of surface plasmon resonance, sequential elution and liquid chromatography-tandem mass spectrometry. Chembiochem. 2007;8:298–305. doi: 10.1002/cbic.200600449. PubMed DOI

Tykvart J, et al. Structural and biochemical characterization of a novel aminopeptidase from human intestine. J. Biol. Chem. 2015;290:11321–11336. doi: 10.1074/jbc.M114.628149. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace