A New Approach for the Diagnosis of Myelodysplastic Syndrome Subtypes Based on Protein Interaction Analysis
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
31477761
PubMed Central
PMC6718656
DOI
10.1038/s41598-019-49084-2
PII: 10.1038/s41598-019-49084-2
Knihovny.cz E-zdroje
- MeSH
- analýza hlavních komponent MeSH
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mapování interakce mezi proteiny * MeSH
- mladý dospělý MeSH
- myelodysplastické syndromy krev diagnóza MeSH
- povrchová plasmonová rezonance MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- vazba proteinů MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Myelodysplastic syndromes (MDS) are a heterogeneous group of hematological malignancies with a high risk of transformation to acute myeloid leukemia (AML). MDS are associated with posttranslational modifications of proteins and variations in the protein expression levels. In this work, we present a novel interactomic diagnostic method based on both protein array and surface plasmon resonance biosensor technology, which enables monitoring of protein-protein interactions in a label-free manner. In contrast to conventional methods based on the detection of individual biomarkers, our presented method relies on measuring interactions between arrays of selected proteins and patient plasma. We apply this method to plasma samples obtained from MDS and AML patients, as well as healthy donors, and demonstrate that even a small protein array comprising six selected proteins allows the method to discriminate among different MDS subtypes and healthy donors.
Institute of Hematology and Blood Transfusion Prague Czech Republic
Institute of Organic Chemistry and Biochemistry Czech Academy of Sciences Prague Czech Republic
Institute of Photonics and Electronics Czech Academy of Sciences Prague Czech Republic
Zobrazit více v PubMed
Tefferi A, Vardiman JW. Myelodysplastic syndromes. N. Engl. J. Med. 2009;361:1872–1885. doi: 10.1056/NEJMra0902908. PubMed DOI
Disperati P, et al. Progression of myelodysplasia to acute lymphoblastic leukaemia: implications for disease biology. Leuk. Res. 2006;30:233–239. doi: 10.1016/j.leukres.2005.06.011. PubMed DOI
Hlavackova A, et al. Enhanced plasma protein carbonylation in patients with myelodysplastic syndromes. Free Radic. Biol. Med. 2017;108:1–7. doi: 10.1016/j.freeradbiomed.2017.03.007. PubMed DOI
Aasebo E, Forthun RB, Berven F, Selheim F, Hernandez-Valladares M. Global Cell Proteome Profiling, Phospho-signaling and Quantitative Proteomics for Identification of New Biomarkers in Acute Myeloid Leukemia Patients. Curr. Pharm. Biotechnol. 2016;17:52–70. doi: 10.2174/1389201016666150826115626. PubMed DOI PMC
Hanash S. Disease proteomics. Nature. 2003;422:226–232. doi: 10.1038/nature01514. PubMed DOI
MacBeath G. Protein microarrays and proteomics. Nat. Genet. 2002;32(Suppl):526–532. doi: 10.1038/ng1037. PubMed DOI
Saviranta P, et al. Evaluating sandwich immunoassays in microarray format in terms of the ambient analyte regime. Clin. Chem. 2004;50:1907–1920. doi: 10.1373/clinchem.2004.037929. PubMed DOI
Espina V, et al. Protein microarray detection strategies: focus on direct detection technologies. J. Immunol. Methods. 2004;290:121–133. doi: 10.1016/j.jim.2004.04.013. PubMed DOI
Doi N, et al. Novel fluorescence labeling and high-throughput assay technologies for in vitro analysis of protein interactions. Genome Res. 2002;12:487–492. doi: 10.1101/gr.218802. PubMed DOI PMC
Schwille P, Haupts U, Maiti S, Webb WW. Molecular dynamics in living cells observed by fluorescence correlation spectroscopy with one- and two-photon excitation. Biophys. J. 1999;77:2251–2265. doi: 10.1016/S0006-3495(99)77065-7. PubMed DOI PMC
Mori T, Toyoda M, Ohtsuka T, Okahata Y. Kinetic analyses for bindings of concanavalin A to dispersed and condensed mannose surfaces on a quartz crystal microbalance. Anal. Biochem. 2009;395:211–216. doi: 10.1016/j.ab.2009.08.029. PubMed DOI
Bischoff R, Luider TM. Methodological advances in the discovery of protein and peptide disease markers. J. Chromatogr. B. Analyt Technol. Biomed. Life. Sci. 2004;803:27–40. doi: 10.1016/j.jchromb.2003.09.004. PubMed DOI
Yuk JS, et al. Analysis of protein interactions on protein arrays by a novel spectral surface plasmon resonance imaging. Biosens. Bioelectron. 2006;21:1521–1528. doi: 10.1016/j.bios.2005.07.009. PubMed DOI
Homola J, Yee SS, Gauglitz G. Surface plasmon resonance sensors: review. Sensors and Actuators B: Chemical. 1999;54:3–15. doi: 10.1016/S0925-4005(98)00321-9. DOI
Homola, J. Surface plasmon resonance sensors for detection of chemical and biological species. 108, 462–493 (2008). PubMed
Aube A, Breault-Turcot J, Chaurand P, Pelletier JN, Masson JF. Non-specific adsorption of crude cell lysate on surface plasmon resonance sensors. Langmuir. 2013;29:10141–10148. doi: 10.1021/la401837y. PubMed DOI
Gonzalez MW, Kann MG. Chapter 4: Protein interactions and disease. PLoS Comput. Biol. 2012;8:e1002819. doi: 10.1371/journal.pcbi.1002819. PubMed DOI PMC
Giorgini, F. & Muchowski, P. J. Connecting the dots in Huntington’s disease with protein interaction networks. Genome Biol. 6, 210-2005-6-3-210. Epub 2005 Feb 28 (2005). PubMed PMC
Srinivasa Rao V, Srinivas K, Kumar GN, Sujin GN. Protein interaction network for Alzheimer’s disease using computational approach. Bioinformation. 2013;9:968–972. doi: 10.6026/97320630009968. PubMed DOI PMC
Drusbosky L, et al. Computational drug treatment simulations on projections of dysregulated protein networks derived from the myelodysplastic mutanome match clinical response in patients. Leuk. Res. 2017;52:1–7. doi: 10.1016/j.leukres.2016.11.004. PubMed DOI
Passam FH, et al. Levels of soluble forms of ICAM and VCAM in patients with myelodysplastic syndromes and their prognostic significance. Clin. Lab. Haematol. 2004;26:391–395. doi: 10.1111/j.1365-2257.2004.00640.x. PubMed DOI
Majek P, Pecankova K, Cermak J, Dyr JE. Plasma Protein Biomarker Candidates for Myelodysplastic Syndrome Subgroups. Biomed. Res. Int. 2015;2015:209745. doi: 10.1155/2015/209745. PubMed DOI PMC
Wei S, et al. Microenvironment Induced Myelodysplastic Syndrome (MDS) in S100A9 Transgenic Mice Caused by Myeloid-Derived Suppressor Cells (MDSC) Blood. 2011;118:788–788.
Wang X, Liu R, Wang Y, Cai H, Zhang L. Effects of down-regulation of clusterin by small interference RNA on human acute myeloid leukemia cells. Int. J. Clin. Exp. Med. 2015;8:20925–20931. PubMed PMC
Malcovati L, et al. Diagnosis and treatment of primary myelodysplastic syndromes in adults: recommendations from the European LeukemiaNet. Blood. 2013;122:2943–2964. doi: 10.1182/blood-2013-03-492884. PubMed DOI PMC
Chen C, et al. Identification of disease- and therapy-associated proteome changes in the sera of patients with myelodysplastic syndromes and del(5q) Leukemia. 2010;24:1875–1884. doi: 10.1038/leu.2010.182. PubMed DOI
Geyer PE, Holdt LM, Teupser D, Mann M. Revisiting biomarker discovery by plasma proteomics. Molecular Systems Biology. 2017;13:942. doi: 10.15252/msb.20156297. PubMed DOI PMC
Borrebaeck CA. Precision diagnostics: moving towards protein biomarker signatures of clinical utility in cancer. Nat. Rev. Cancer. 2017;17:199–204. doi: 10.1038/nrc.2016.153. PubMed DOI
Wen SY, et al. LRG1 is an independent prognostic factor for endometrial carcinoma. Tumour Biol. 2014;35:7125–7133. doi: 10.1007/s13277-014-1953-6. PubMed DOI
O’Donnell LC, Druhan LJ, Avalos BR. Molecular characterization and expression analysis of leucine-rich alpha2-glycoprotein, a novel marker of granulocytic differentiation. J. Leukoc. Biol. 2002;72:478–485. PubMed
Cavalcante Mde, S. et al. A panel of glycoproteins as candidate biomarkers for early diagnosis and treatment evaluation of B-cell acute lymphoblastic leukemia. Biomark Res. 4, 1-016-0055-6. eCollection 2016 (2016). PubMed PMC
Sudhoff T, Germing U, Aul C. Levels of circulating endothelial adhesion molecules in patients with myelodysplastic syndromes. Int. J. Oncol. 2002;20:167–172. PubMed
Christiansen I, Sundstrom C, Totterman TH. Elevated serum levels of soluble vascular cell adhesion molecule-1 (sVCAM-1) closely reflect tumour burden in chronic B-lymphocytic leukaemia. Br. J. Haematol. 1998;103:1129–1137. doi: 10.1046/j.1365-2141.1998.01110.x. PubMed DOI
Dalamaga M, et al. Higher fetuin-A, lower adiponectin and free leptin levels mediate effects of excess body weight on insulin resistance and risk for myelodysplastic syndrome. Metabolism. 2013;62:1830–1839. doi: 10.1016/j.metabol.2013.09.007. PubMed DOI
Shannan B, et al. Challenge and promise: roles for clusterin in pathogenesis, progression and therapy of cancer. Cell Death Differ. 2005;13:12. doi: 10.1038/sj.cdd.4401779. PubMed DOI
Patnaik MM, Tefferi A. Refractory anemia with ring sideroblasts (RARS) and RARS with thrombocytosis (RARS-T): 2017 update on diagnosis, risk-stratification, and management. Am. J. Hematol. 2017;92:297–310. doi: 10.1002/ajh.24637. PubMed DOI PMC
Salama I, Malone PS, Mihaimeed F, Jones JL. A review of the S100 proteins in cancer. European Journal of Surgical Oncology (EJSO) 2008;34:357–364. doi: 10.1016/j.ejso.2007.04.009. PubMed DOI
Chen X, et al. Induction of myelodysplasia by myeloid-derived suppressor cells. J. Clin. Invest. 2013;123:4595–4611. doi: 10.1172/JCI67580. PubMed DOI PMC
Schneider RK, et al. Rps14 haploinsufficiency causes a block in erythroid differentiation mediated by S100A8 and S100A9. Nat. Med. 2016;22:288–297. doi: 10.1038/nm.4047. PubMed DOI PMC
Cluzeau T, et al. The Proinflammatory Protein S100A9 Suppresses Erythropoietin Elaboration in Patients with Myelodysplastic Syndromes. Blood. 2015;126:355–355.
Piliarik M, Bockova M, Homola J. Surface plasmon resonance biosensor for parallelized detection of protein biomarkers in diluted blood plasma. Biosens. Bioelectron. 2010;26:1656–1661. doi: 10.1016/j.bios.2010.08.063. PubMed DOI
Lynn NS, Jr, Bockova M, Adam P, Homola J. Biosensor Enhancement Using Grooved Micromixers: Part II, Experimental Studies. Anal. Chem. 2015;87:5524–5530. doi: 10.1021/ac504360d. PubMed DOI
Vaisocherova H, et al. Rapid and sensitive detection of multiple microRNAs in cell lysate by low-fouling surface plasmon resonance biosensor. Biosens. Bioelectron. 2015;70:226–231. doi: 10.1016/j.bios.2015.03.038. PubMed DOI
Špringer T, Piliarik M, Homola J. Surface plasmon resonance sensor with dispersionless microfluidics for direct detection of nucleic acids at the low femtomole level. Sensors and Actuators B: Chemical. 2010;145:588–591. doi: 10.1016/j.snb.2009.11.018. DOI
Pimkova K, et al. Surface plasmon resonance biosensor for the detection of VEGFR-1–a protein marker of myelodysplastic syndromes. Anal. Bioanal Chem. 2012;402:381–387. doi: 10.1007/s00216-011-5395-3. PubMed DOI
Herranz S, Bockova M, Marazuela MD, Homola J, Moreno-Bondi MC. An SPR biosensor for the detection of microcystins in drinking water. Anal. Bioanal Chem. 2010;398:2625–2634. doi: 10.1007/s00216-010-3856-8. PubMed DOI
Visser NF, Scholten A, van den Heuvel RH, Heck AJ. Surface-plasmon-resonance-based chemical proteomics: efficient specific extraction and semiquantitative identification of cyclic nucleotide-binding proteins from cellular lysates by using a combination of surface plasmon resonance, sequential elution and liquid chromatography-tandem mass spectrometry. Chembiochem. 2007;8:298–305. doi: 10.1002/cbic.200600449. PubMed DOI
Tykvart J, et al. Structural and biochemical characterization of a novel aminopeptidase from human intestine. J. Biol. Chem. 2015;290:11321–11336. doi: 10.1074/jbc.M114.628149. PubMed DOI PMC