Linking aberrant glycosylation of plasma glycoproteins with progression of myelodysplastic syndromes: a study based on plasmonic biosensor and lectin array
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
37550349
PubMed Central
PMC10406930
DOI
10.1038/s41598-023-39927-4
PII: 10.1038/s41598-023-39927-4
Knihovny.cz E-zdroje
- MeSH
- akutní myeloidní leukemie * MeSH
- biosenzitivní techniky * MeSH
- glykoproteiny metabolismus MeSH
- glykosylace MeSH
- krevní plazma metabolismus MeSH
- lektiny MeSH
- lidé MeSH
- myelodysplastické syndromy * terapie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- glykoproteiny MeSH
- lektiny MeSH
Aberrant glycosylation of glycoproteins has been linked with various pathologies. Therefore, understanding the relationship between aberrant glycosylation patterns and the onset and progression of the disease is an important research goal that may provide insights into cancer diagnosis and new therapy development. In this study, we use a surface plasmon resonance imaging biosensor and a lectin array to investigate aberrant glycosylation patterns associated with oncohematological disease-myelodysplastic syndromes (MDS). In particular, we detected the interaction between the lectins and glycoproteins present in the blood plasma of patients (three MDS subgroups with different risks of progression to acute myeloid leukemia (AML) and AML patients) and healthy controls. The interaction with lectins from Aleuria aurantia (AAL) and Erythrina cristagalli was more pronounced for plasma samples of the MDS and AML patients, and there was a significant difference between the sensor response to the interaction of AAL with blood plasma from low and medium-risk MDS patients and healthy controls. Our data also suggest that progression from MDS to AML is accompanied by sialylation of glycoproteins and increased levels of truncated O-glycans and that the number of lectins that allow discriminating different stages of disease increases as the disease progresses.
Institute of Hematology and Blood Transfusion Prague Czech Republic
Institute of Photonics and Electronics Czech Academy of Sciences Prague Czech Republic
Zobrazit více v PubMed
Belický Š, Katrlík J, Tkáč J. Glycan and lectin biosensors. Essays Biochem. 2016;60:37–47. doi: 10.1042/EBC20150005. PubMed DOI PMC
Schjoldager KT, Narimatsu Y, Joshi HJ, Clausen H. Global view of human protein glycosylation pathways and functions. Nat. Rev. Mol. Cell Biol. 2020;21:729–749. doi: 10.1038/s41580-020-00294-x. PubMed DOI
Maverakis E, et al. Glycans in the immune system and The Altered Glycan Theory of Autoimmunity: A critical review. J. Autoimmun. 2015;57:1–13. doi: 10.1016/j.jaut.2014.12.002. PubMed DOI PMC
Taniguchi N, Kizuka Y. Glycans and cancer: Role of N-Glycans in cancer biomarker, progression and metastasis, and therapeutics. Adv. Cancer Res. 2015;126:11–51. doi: 10.1016/bs.acr.2014.11.001. PubMed DOI
Hebert DN, Molinari M. Flagging and docking: Dual roles for N-glycans in protein quality control and cellular proteostasis. Trends Biochem. Sci. 2012;37:404–410. doi: 10.1016/j.tibs.2012.07.005. PubMed DOI PMC
Berger M, Kaup M, Blanchard V. Protein glycosylation and its impact on biotechnology. Adv. Biochem. Eng. Biotechnol. 2012;127:165–185. PubMed
Jayaprakash NG, Surolia A. Role of glycosylation in nucleating protein folding and stability. Biochem. J. 2017;474:2333–2347. doi: 10.1042/BCJ20170111. PubMed DOI
Freeze HH, Kinoshita T, Varki A. Glycans in acquired human diseases. In: Varki A, editor. Essentials of Glycobiology, Chapter 43. Cold Spring Harbor Laboratory Press; 2009. PubMed
Mereiter S, Balmaña M, Campos D, Gomes J, Reis CA. Glycosylation in the era of cancer-targeted therapy: Where are we heading? Cancer Cell. 2019;36:6–16. doi: 10.1016/j.ccell.2019.06.006. PubMed DOI
Zhang Z, Wuhrer M, Holst S. Serum sialylation changes in cancer. Glycoconj. J. 2018;35:139–160. doi: 10.1007/s10719-018-9820-0. PubMed DOI PMC
Yogeeswaran G, Salk PL. Metastatic potential is positively correlated with cell surface sialylation of cultured murine tumor cell lines. Science. 1981;212:1514–1516. doi: 10.1126/science.7233237. PubMed DOI
Kaneko Y, Nimmerjahn F, Ravetch JV. Anti-inflammatory activity of immunoglobulin G resulting from Fc sialylation. Science. 2006;313:670–673. doi: 10.1126/science.1129594. PubMed DOI
Shields RL, et al. Lack of fucose on human IgG1 N-linked oligosaccharide improves binding to human FcγRIII and antibody-dependent cellular toxicity. J. Biol. Chem. 2002;277:26733–26740. doi: 10.1074/jbc.M202069200. PubMed DOI
Carvalho S, Reis CA, Pinho SS. Cadherins glycans in cancer: Sweet players in a bitter process. Trends Cancer. 2016;2:519–531. doi: 10.1016/j.trecan.2016.08.003. PubMed DOI
Mereiter S, et al. Glycomic analysis of gastric carcinoma cells discloses glycans as modulators of RON receptor tyrosine kinase activation in cancer. Biochim. Biophys. Acta Gen. Subj. 2016;1860:1795–1808. doi: 10.1016/j.bbagen.2015.12.016. PubMed DOI
Rodrigues JG, et al. Glycosylation in cancer: Selected roles in tumour progression, immune modulation and metastasis. Cell. Immunol. 2018;333:46–57. doi: 10.1016/j.cellimm.2018.03.007. PubMed DOI
Pang X, Li H, Guan F, Li X. Multiple roles of glycans in hematological malignancies. Front. Oncol. 2018;8:1–12. doi: 10.3389/fonc.2018.00364. PubMed DOI PMC
Libisch MG, et al. GALNT11 as a new molecular marker in chronic lymphocytic leukemia. Gene. 2014;533:270–279. doi: 10.1016/j.gene.2013.09.052. PubMed DOI
Yoshimura M, et al. High expression of UDP-N-acetylglucosamine: Beta-d mannoside beta-1,4-N-acetylglucosaminyltransferase III (GnT-III) in chronic myelogenous leukemia in blast crisis. Int. J. Cancer. 1995;60:443–449. doi: 10.1002/ijc.2910600404. PubMed DOI
Mondal S, Chandra S, Mandal C. Elevated mRNA level of hST6Gal I and hST3Gal V positively correlates with the high risk of pediatric acute leukemia. Leuk. Res. 2010;34:463–470. doi: 10.1016/j.leukres.2009.07.042. PubMed DOI
Wang D, et al. Glycosphingolipid-glycan signatures of acute myeloid leukemia cell lines reflect hematopoietic differentiation. J. Proteome Res. 2022;21:1029–1040. doi: 10.1021/acs.jproteome.1c00911. PubMed DOI PMC
Tefferi A, Vardiman JW. Myelodysplastic syndromes. N. Engl. J. Med. 2009;361:1872–1885. doi: 10.1056/NEJMra0902908. PubMed DOI
Ogawa S. Genetics of MDS. Blood. 2019;133:1049–1059. doi: 10.1182/blood-2018-10-844621. PubMed DOI PMC
Hlaváčková A, et al. Enhanced plasma protein carbonylation in patients with myelodysplastic syndromes. Free Radic. Biol. Med. 2017;108:1–7. doi: 10.1016/j.freeradbiomed.2017.03.007. PubMed DOI
Aasebø E, Forthun RB, Berven F, Selheim F, Hernandez-Valladares M. Global cell proteome profiling, phospho-signaling and quantitative proteomics for identification of new biomarkers in acute myeloid leukemia patients. Curr. Pharm. Biotechnol. 2016;17:52–70. doi: 10.2174/1389201016666150826115626. PubMed DOI PMC
Alley WRJ, Mann BF, Novotny MV. High-sensitivity analytical approaches for the structural characterization of glycoproteins. Chem. Rev. 2013;113:2668–2732. doi: 10.1021/cr3003714. PubMed DOI PMC
André S, Kaltner H, Manning JC, Murphy PV, Gabius H-J. Lectins: Getting familiar with translators of the sugar code. Molecules. 2015;20:1788–1823. doi: 10.3390/molecules20021788. PubMed DOI PMC
Kuno A, et al. Evanescent-field fluorescence-assisted lectin microarray: A new strategy for glycan profiling. Nat. Methods. 2005;2:851–856. doi: 10.1038/nmeth803. PubMed DOI
Paleček E, et al. Electrochemistry of nonconjugated proteins and glycoproteins. Toward sensors for biomedicine and glycomics. Chem. Rev. 2015;115:2045–2108. doi: 10.1021/cr500279h. PubMed DOI PMC
Pihíková D, Kasák P, Tkac J. Glycoprofiling of cancer biomarkers: Label-free electrochemical lectin-based biosensors. Open Chem. 2015;13:636–655. doi: 10.1515/chem-2015-0082. PubMed DOI PMC
Mi F, et al. Application of lectin-based biosensor technology in the detection of foodborne pathogenic bacteria: A review. Analyst. 2021;146:429–443. doi: 10.1039/D0AN01459A. PubMed DOI
Safina G. Application of surface plasmon resonance for the detection of carbohydrates, glycoconjugates, and measurement of the carbohydrate-specific interactions: A comparison with conventional analytical techniques. A critical review. Anal. Chim. Acta. 2012;712:9–29. doi: 10.1016/j.aca.2011.11.016. PubMed DOI
Homola J. Surface plasmon resonance sensors for detection of chemical and biological species. Chem. Rev. 2008;108:462–493. doi: 10.1021/cr068107d. PubMed DOI
Bocková M, Slabý J, Špringer T, Homola J. Advances in surface plasmon resonance imaging and microscopy and their biological applications. Annu. Rev. Anal. Chem. 2019;12:151–176. doi: 10.1146/annurev-anchem-061318-115106. PubMed DOI
Chrastinová L, et al. A new approach for the diagnosis of myelodysplastic syndrome subtypes based on protein interaction analysis. Sci. Rep. 2019;9:1–10. doi: 10.1038/s41598-019-49084-2. PubMed DOI PMC
Chatterjee U, Bose PP, Dey S, Singh TP, Chatterjee BP. Antiproliferative effect of T/Tn specific Artocarpus lakoocha agglutinin (ALA) on human leukemic cells (Jurkat, U937, K562) and their imaging by QD-ALA nanoconjugate. Glycoconj. J. 2008;25:741–752. doi: 10.1007/s10719-008-9134-8. PubMed DOI
Roucka M, Zimmermann K, Fido M, Nechansky A. Application of lectin array technology for biobetter characterization: Its correlation with fcγRIII binding and ADCC. Microarrays. 2017;6:1–6. doi: 10.3390/microarrays6010001. PubMed DOI PMC
Kuila N, et al. Ecotropic viral integration site I regulates alpha1, 6-fucosyl transferase expression and blocks erythropoiesis in chronic myeloid leukemia. Leuk. Lymphoma. 2017;58:1941–1947. doi: 10.1080/10428194.2016.1266622. PubMed DOI
Patnaik MM, Te A. Refractory anemia with ring sideroblasts ( RARS ) and RARS with thrombocytosis ( RARS-T ): 2017 update on diagnosis, risk-strati fi cation, and management. Am. J. Hematol. 2017;92:297–310. doi: 10.1002/ajh.24637. PubMed DOI PMC
Kizuka Y, Taniguchi N. Enzymes for N-Glycan branching and their genetic and nongenetic regulation in cancer. Biomolecules. 2016;6:1–21. doi: 10.3390/biom6020025. PubMed DOI PMC
Ihara S, et al. Prometastatic effect of N-acetylglucosaminyltransferase V is due to modification and stabilization of active matriptase by adding β1-6 GlcNAc branching. J. Biol. Chem. 2002;277:16960–16967. doi: 10.1074/jbc.M200673200. PubMed DOI
Goldstein IJ, Winter HC, Poretz RD. Chapter 12 plant lectins: Tools for the study of complex carbohydrates. New Compr. Biochem. 1997;29:403–474. doi: 10.1016/S0167-7306(08)60625-0. DOI
Patel PS, Adhvaryu SG, Balar DB, Parikh BJ, Shah PM. Clinical application of serum levels of sialic acid, fucose and seromucoid fraction as tumour markers in human leukemias. Anticancer Res. 1994;14:747–751. PubMed
Zhou H, et al. Downregulation of miR-224 and let-7i contribute to cell survival and chemoresistance in chronic myeloid leukemia cells by regulating ST3GAL IV expression. Gene. 2017;626:106–118. doi: 10.1016/j.gene.2017.05.030. PubMed DOI
Barbier V, et al. Endothelial E-selectin inhibition improves acute myeloid leukaemia therapy by disrupting vascular niche-mediated chemoresistance. Nat. Commun. 2020;11:1–15. doi: 10.1038/s41467-020-15817-5. PubMed DOI PMC
Ma H, et al. Modification of sialylation is associated with multidrug resistance in human acute myeloid leukemia. Oncogene. 2014;34(6):726–740. doi: 10.1038/onc.2014.7. PubMed DOI
Aller CT, Kucuk O, Springer GF, Gilman-Sachs A. Flow cytometric analysis of T and Tn epitopes on chronic lymphocytic leukemia cells. Am. J. Hematol. 1996;52:29–38. doi: 10.1002/(SICI)1096-8652(199605)52:1<29::AID-AJH5>3.0.CO;2-8. PubMed DOI
Roy B, et al. On-chip lectin microarray for glycoprofiling of different gastritis types and gastric cancer. Biomicrofluidics. 2014;8:1–14. doi: 10.1063/1.4882778. PubMed DOI PMC
Simplicien M, et al. The t/tn-specific helix pomatia lectin induces cell death in lymphoma cells negative for t/tn antigens. Cancers. 2021;13:4356. doi: 10.3390/cancers13174356. PubMed DOI PMC
Piliarik M, Bocková M, Homola J. Surface plasmon resonance biosensor for parallelized detection of protein biomarkers in diluted blood plasma. Biosens. Bioelectron. 2010;26:1656–1661. doi: 10.1016/j.bios.2010.08.063. PubMed DOI
Špringer T, Piliarik M, Homola J. Surface plasmon resonance sensor with dispersionless microfluidics for direct detection of nucleic acids at the low femtomole level. Sensors Actuators B Chem. 2010;145:588–591. doi: 10.1016/j.snb.2009.11.018. DOI
Pimková K, et al. Surface plasmon resonance biosensor for the detection of VEGFR-1—A protein marker of myelodysplastic syndromes. Anal. Bioanal. Chem. 2012;402:381–387. doi: 10.1007/s00216-011-5395-3. PubMed DOI
Herranz S, Bocková M, Marazuela MD, Homola J, Moreno-Bondi MC. An SPR biosensor for the detection of microcystins in drinking water. Anal. Bioanal. Chem. 2010;398:2625–2634. doi: 10.1007/s00216-010-3856-8. PubMed DOI